/* * SMP support for power macintosh. * * We support both the old "powersurge" SMP architecture * and the current Core99 (G4 PowerMac) machines. * * Note that we don't support the very first rev. of * Apple/DayStar 2 CPUs board, the one with the funky * watchdog. Hopefully, none of these should be there except * maybe internally to Apple. I should probably still add some * code to detect this card though and disable SMP. --BenH. * * Support Macintosh G4 SMP by Troy Benjegerdes (hozer@drgw.net) * and Ben Herrenschmidt . * * Support for DayStar quad CPU cards * Copyright (C) XLR8, Inc. 1994-2000 * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef DEBUG #ifdef DEBUG #define DBG(fmt...) udbg_printf(fmt) #else #define DBG(fmt...) #endif extern void __secondary_start_pmac_0(void); #ifdef CONFIG_PPC32 /* Sync flag for HW tb sync */ static volatile int sec_tb_reset = 0; /* * Powersurge (old powermac SMP) support. */ /* Addresses for powersurge registers */ #define HAMMERHEAD_BASE 0xf8000000 #define HHEAD_CONFIG 0x90 #define HHEAD_SEC_INTR 0xc0 /* register for interrupting the primary processor on the powersurge */ /* N.B. this is actually the ethernet ROM! */ #define PSURGE_PRI_INTR 0xf3019000 /* register for storing the start address for the secondary processor */ /* N.B. this is the PCI config space address register for the 1st bridge */ #define PSURGE_START 0xf2800000 /* Daystar/XLR8 4-CPU card */ #define PSURGE_QUAD_REG_ADDR 0xf8800000 #define PSURGE_QUAD_IRQ_SET 0 #define PSURGE_QUAD_IRQ_CLR 1 #define PSURGE_QUAD_IRQ_PRIMARY 2 #define PSURGE_QUAD_CKSTOP_CTL 3 #define PSURGE_QUAD_PRIMARY_ARB 4 #define PSURGE_QUAD_BOARD_ID 6 #define PSURGE_QUAD_WHICH_CPU 7 #define PSURGE_QUAD_CKSTOP_RDBK 8 #define PSURGE_QUAD_RESET_CTL 11 #define PSURGE_QUAD_OUT(r, v) (out_8(quad_base + ((r) << 4) + 4, (v))) #define PSURGE_QUAD_IN(r) (in_8(quad_base + ((r) << 4) + 4) & 0x0f) #define PSURGE_QUAD_BIS(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) | (v))) #define PSURGE_QUAD_BIC(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) & ~(v))) /* virtual addresses for the above */ static volatile u8 __iomem *hhead_base; static volatile u8 __iomem *quad_base; static volatile u32 __iomem *psurge_pri_intr; static volatile u8 __iomem *psurge_sec_intr; static volatile u32 __iomem *psurge_start; /* values for psurge_type */ #define PSURGE_NONE -1 #define PSURGE_DUAL 0 #define PSURGE_QUAD_OKEE 1 #define PSURGE_QUAD_COTTON 2 #define PSURGE_QUAD_ICEGRASS 3 /* what sort of powersurge board we have */ static int psurge_type = PSURGE_NONE; /* * Set and clear IPIs for powersurge. */ static inline void psurge_set_ipi(int cpu) { if (psurge_type == PSURGE_NONE) return; if (cpu == 0) in_be32(psurge_pri_intr); else if (psurge_type == PSURGE_DUAL) out_8(psurge_sec_intr, 0); else PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_SET, 1 << cpu); } static inline void psurge_clr_ipi(int cpu) { if (cpu > 0) { switch(psurge_type) { case PSURGE_DUAL: out_8(psurge_sec_intr, ~0); case PSURGE_NONE: break; default: PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, 1 << cpu); } } } /* * On powersurge (old SMP powermac architecture) we don't have * separate IPIs for separate messages like openpic does. Instead * we have a bitmap for each processor, where a 1 bit means that * the corresponding message is pending for that processor. * Ideally each cpu's entry would be in a different cache line. * -- paulus. */ static unsigned long psurge_smp_message[NR_CPUS]; void psurge_smp_message_recv(struct pt_regs *regs) { int cpu = smp_processor_id(); int msg; /* clear interrupt */ psurge_clr_ipi(cpu); if (num_online_cpus() < 2) return; /* make sure there is a message there */ for (msg = 0; msg < 4; msg++) if (test_and_clear_bit(msg, &psurge_smp_message[cpu])) smp_message_recv(msg, regs); } irqreturn_t psurge_primary_intr(int irq, void *d, struct pt_regs *regs) { psurge_smp_message_recv(regs); return IRQ_HANDLED; } static void smp_psurge_message_pass(int target, int msg) { int i; if (num_online_cpus() < 2) return; for (i = 0; i < NR_CPUS; i++) { if (!cpu_online(i)) continue; if (target == MSG_ALL || (target == MSG_ALL_BUT_SELF && i != smp_processor_id()) || target == i) { set_bit(msg, &psurge_smp_message[i]); psurge_set_ipi(i); } } } /* * Determine a quad card presence. We read the board ID register, we * force the data bus to change to something else, and we read it again. * It it's stable, then the register probably exist (ugh !) */ static int __init psurge_quad_probe(void) { int type; unsigned int i; type = PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID); if (type < PSURGE_QUAD_OKEE || type > PSURGE_QUAD_ICEGRASS || type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID)) return PSURGE_DUAL; /* looks OK, try a slightly more rigorous test */ /* bogus is not necessarily cacheline-aligned, though I don't suppose that really matters. -- paulus */ for (i = 0; i < 100; i++) { volatile u32 bogus[8]; bogus[(0+i)%8] = 0x00000000; bogus[(1+i)%8] = 0x55555555; bogus[(2+i)%8] = 0xFFFFFFFF; bogus[(3+i)%8] = 0xAAAAAAAA; bogus[(4+i)%8] = 0x33333333; bogus[(5+i)%8] = 0xCCCCCCCC; bogus[(6+i)%8] = 0xCCCCCCCC; bogus[(7+i)%8] = 0x33333333; wmb(); asm volatile("dcbf 0,%0" : : "r" (bogus) : "memory"); mb(); if (type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID)) return PSURGE_DUAL; } return type; } static void __init psurge_quad_init(void) { int procbits; if (ppc_md.progress) ppc_md.progress("psurge_quad_init", 0x351); procbits = ~PSURGE_QUAD_IN(PSURGE_QUAD_WHICH_CPU); if (psurge_type == PSURGE_QUAD_ICEGRASS) PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits); else PSURGE_QUAD_BIC(PSURGE_QUAD_CKSTOP_CTL, procbits); mdelay(33); out_8(psurge_sec_intr, ~0); PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, procbits); PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits); if (psurge_type != PSURGE_QUAD_ICEGRASS) PSURGE_QUAD_BIS(PSURGE_QUAD_CKSTOP_CTL, procbits); PSURGE_QUAD_BIC(PSURGE_QUAD_PRIMARY_ARB, procbits); mdelay(33); PSURGE_QUAD_BIC(PSURGE_QUAD_RESET_CTL, procbits); mdelay(33); PSURGE_QUAD_BIS(PSURGE_QUAD_PRIMARY_ARB, procbits); mdelay(33); } static int __init smp_psurge_probe(void) { int i, ncpus; /* We don't do SMP on the PPC601 -- paulus */ if (PVR_VER(mfspr(SPRN_PVR)) == 1) return 1; /* * The powersurge cpu board can be used in the generation * of powermacs that have a socket for an upgradeable cpu card, * including the 7500, 8500, 9500, 9600. * The device tree doesn't tell you if you have 2 cpus because * OF doesn't know anything about the 2nd processor. * Instead we look for magic bits in magic registers, * in the hammerhead memory controller in the case of the * dual-cpu powersurge board. -- paulus. */ if (find_devices("hammerhead") == NULL) return 1; hhead_base = ioremap(HAMMERHEAD_BASE, 0x800); quad_base = ioremap(PSURGE_QUAD_REG_ADDR, 1024); psurge_sec_intr = hhead_base + HHEAD_SEC_INTR; psurge_type = psurge_quad_probe(); if (psurge_type != PSURGE_DUAL) { psurge_quad_init(); /* All released cards using this HW design have 4 CPUs */ ncpus = 4; } else { iounmap(quad_base); if ((in_8(hhead_base + HHEAD_CONFIG) & 0x02) == 0) { /* not a dual-cpu card */ iounmap(hhead_base); psurge_type = PSURGE_NONE; return 1; } ncpus = 2; } psurge_start = ioremap(PSURGE_START, 4); psurge_pri_intr = ioremap(PSURGE_PRI_INTR, 4); /* * This is necessary because OF doesn't know about the * secondary cpu(s), and thus there aren't nodes in the * device tree for them, and smp_setup_cpu_maps hasn't * set their bits in cpu_possible_map and cpu_present_map. */ if (ncpus > NR_CPUS) ncpus = NR_CPUS; for (i = 1; i < ncpus ; ++i) { cpu_set(i, cpu_present_map); cpu_set(i, cpu_possible_map); set_hard_smp_processor_id(i, i); } if (ppc_md.progress) ppc_md.progress("smp_psurge_probe - done", 0x352); return ncpus; } static void __init smp_psurge_kick_cpu(int nr) { unsigned long start = __pa(__secondary_start_pmac_0) + nr * 8; unsigned long a; /* may need to flush here if secondary bats aren't setup */ for (a = KERNELBASE; a < KERNELBASE + 0x800000; a += 32) asm volatile("dcbf 0,%0" : : "r" (a) : "memory"); asm volatile("sync"); if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu", 0x353); out_be32(psurge_start, start); mb(); psurge_set_ipi(nr); udelay(10); psurge_clr_ipi(nr); if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu - done", 0x354); } /* * With the dual-cpu powersurge board, the decrementers and timebases * of both cpus are frozen after the secondary cpu is started up, * until we give the secondary cpu another interrupt. This routine * uses this to get the timebases synchronized. * -- paulus. */ static void __init psurge_dual_sync_tb(int cpu_nr) { int t; set_dec(tb_ticks_per_jiffy); /* XXX fixme */ set_tb(0, 0); last_jiffy_stamp(cpu_nr) = 0; if (cpu_nr > 0) { mb(); sec_tb_reset = 1; return; } /* wait for the secondary to have reset its TB before proceeding */ for (t = 10000000; t > 0 && !sec_tb_reset; --t) ; /* now interrupt the secondary, starting both TBs */ psurge_set_ipi(1); } static struct irqaction psurge_irqaction = { .handler = psurge_primary_intr, .flags = SA_INTERRUPT, .mask = CPU_MASK_NONE, .name = "primary IPI", }; static void __init smp_psurge_setup_cpu(int cpu_nr) { if (cpu_nr == 0) { /* If we failed to start the second CPU, we should still * send it an IPI to start the timebase & DEC or we might * have them stuck. */ if (num_online_cpus() < 2) { if (psurge_type == PSURGE_DUAL) psurge_set_ipi(1); return; } /* reset the entry point so if we get another intr we won't * try to startup again */ out_be32(psurge_start, 0x100); if (setup_irq(30, &psurge_irqaction)) printk(KERN_ERR "Couldn't get primary IPI interrupt"); } if (psurge_type == PSURGE_DUAL) psurge_dual_sync_tb(cpu_nr); } void __init smp_psurge_take_timebase(void) { /* Dummy implementation */ } void __init smp_psurge_give_timebase(void) { /* Dummy implementation */ } /* PowerSurge-style Macs */ struct smp_ops_t psurge_smp_ops = { .message_pass = smp_psurge_message_pass, .probe = smp_psurge_probe, .kick_cpu = smp_psurge_kick_cpu, .setup_cpu = smp_psurge_setup_cpu, .give_timebase = smp_psurge_give_timebase, .take_timebase = smp_psurge_take_timebase, }; #endif /* CONFIG_PPC32 - actually powersurge support */ #ifdef CONFIG_PPC64 /* * G5s enable/disable the timebase via an i2c-connected clock chip. */ static struct device_node *pmac_tb_clock_chip_host; static u8 pmac_tb_pulsar_addr; static void (*pmac_tb_freeze)(int freeze); static DEFINE_SPINLOCK(timebase_lock); static unsigned long timebase; static void smp_core99_cypress_tb_freeze(int freeze) { u8 data; int rc; /* Strangely, the device-tree says address is 0xd2, but darwin * accesses 0xd0 ... */ pmac_low_i2c_setmode(pmac_tb_clock_chip_host, pmac_low_i2c_mode_combined); rc = pmac_low_i2c_xfer(pmac_tb_clock_chip_host, 0xd0 | pmac_low_i2c_read, 0x81, &data, 1); if (rc != 0) goto bail; data = (data & 0xf3) | (freeze ? 0x00 : 0x0c); pmac_low_i2c_setmode(pmac_tb_clock_chip_host, pmac_low_i2c_mode_stdsub); rc = pmac_low_i2c_xfer(pmac_tb_clock_chip_host, 0xd0 | pmac_low_i2c_write, 0x81, &data, 1); bail: if (rc != 0) { printk("Cypress Timebase %s rc: %d\n", freeze ? "freeze" : "unfreeze", rc); panic("Timebase freeze failed !\n"); } } static void smp_core99_pulsar_tb_freeze(int freeze) { u8 data; int rc; pmac_low_i2c_setmode(pmac_tb_clock_chip_host, pmac_low_i2c_mode_combined); rc = pmac_low_i2c_xfer(pmac_tb_clock_chip_host, pmac_tb_pulsar_addr | pmac_low_i2c_read, 0x2e, &data, 1); if (rc != 0) goto bail; data = (data & 0x88) | (freeze ? 0x11 : 0x22); pmac_low_i2c_setmode(pmac_tb_clock_chip_host, pmac_low_i2c_mode_stdsub); rc = pmac_low_i2c_xfer(pmac_tb_clock_chip_host, pmac_tb_pulsar_addr | pmac_low_i2c_write, 0x2e, &data, 1); bail: if (rc != 0) { printk(KERN_ERR "Pulsar Timebase %s rc: %d\n", freeze ? "freeze" : "unfreeze", rc); panic("Timebase freeze failed !\n"); } } static void smp_core99_give_timebase(void) { /* Open i2c bus for synchronous access */ if (pmac_low_i2c_open(pmac_tb_clock_chip_host, 0)) panic("Can't open i2c for TB sync !\n"); spin_lock(&timebase_lock); (*pmac_tb_freeze)(1); mb(); timebase = get_tb(); spin_unlock(&timebase_lock); while (timebase) barrier(); spin_lock(&timebase_lock); (*pmac_tb_freeze)(0); spin_unlock(&timebase_lock); /* Close i2c bus */ pmac_low_i2c_close(pmac_tb_clock_chip_host); } static void __devinit smp_core99_take_timebase(void) { while (!timebase) barrier(); spin_lock(&timebase_lock); set_tb(timebase >> 32, timebase & 0xffffffff); timebase = 0; spin_unlock(&timebase_lock); } static void __init smp_core99_setup(int ncpus) { struct device_node *cc = NULL; struct device_node *p; u32 *reg; int ok; /* HW sync only on these platforms */ if (!machine_is_compatible("PowerMac7,2") && !machine_is_compatible("PowerMac7,3") && !machine_is_compatible("RackMac3,1")) return; /* Look for the clock chip */ while ((cc = of_find_node_by_name(cc, "i2c-hwclock")) != NULL) { p = of_get_parent(cc); ok = p && device_is_compatible(p, "uni-n-i2c"); of_node_put(p); if (!ok) continue; reg = (u32 *)get_property(cc, "reg", NULL); if (reg == NULL) continue; switch (*reg) { case 0xd2: if (device_is_compatible(cc, "pulsar-legacy-slewing")) { pmac_tb_freeze = smp_core99_pulsar_tb_freeze; pmac_tb_pulsar_addr = 0xd2; printk(KERN_INFO "Timebase clock is Pulsar chip\n"); } else if (device_is_compatible(cc, "cy28508")) { pmac_tb_freeze = smp_core99_cypress_tb_freeze; printk(KERN_INFO "Timebase clock is Cypress chip\n"); } break; case 0xd4: pmac_tb_freeze = smp_core99_pulsar_tb_freeze; pmac_tb_pulsar_addr = 0xd4; printk(KERN_INFO "Timebase clock is Pulsar chip\n"); break; } if (pmac_tb_freeze != NULL) { pmac_tb_clock_chip_host = of_get_parent(cc); of_node_put(cc); break; } } if (pmac_tb_freeze == NULL) { smp_ops->give_timebase = smp_generic_give_timebase; smp_ops->take_timebase = smp_generic_take_timebase; } } /* nothing to do here, caches are already set up by service processor */ static inline void __devinit core99_init_caches(int cpu) { } #else /* CONFIG_PPC64 */ /* * SMP G4 powermacs use a GPIO to enable/disable the timebase. */ static unsigned int core99_tb_gpio; /* Timebase freeze GPIO */ static unsigned int pri_tb_hi, pri_tb_lo; static unsigned int pri_tb_stamp; /* not __init, called in sleep/wakeup code */ void smp_core99_give_timebase(void) { unsigned long flags; unsigned int t; /* wait for the secondary to be in take_timebase */ for (t = 100000; t > 0 && !sec_tb_reset; --t) udelay(10); if (!sec_tb_reset) { printk(KERN_WARNING "Timeout waiting sync on second CPU\n"); return; } /* freeze the timebase and read it */ /* disable interrupts so the timebase is disabled for the shortest possible time */ local_irq_save(flags); pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 4); pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0); mb(); pri_tb_hi = get_tbu(); pri_tb_lo = get_tbl(); pri_tb_stamp = last_jiffy_stamp(smp_processor_id()); mb(); /* tell the secondary we're ready */ sec_tb_reset = 2; mb(); /* wait for the secondary to have taken it */ /* note: can't use udelay here, since it needs the timebase running */ for (t = 10000000; t > 0 && sec_tb_reset; --t) barrier(); if (sec_tb_reset) /* XXX BUG_ON here? */ printk(KERN_WARNING "Timeout waiting sync(2) on second CPU\n"); /* Now, restart the timebase by leaving the GPIO to an open collector */ pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 0); pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0); local_irq_restore(flags); } /* not __init, called in sleep/wakeup code */ void smp_core99_take_timebase(void) { unsigned long flags; /* tell the primary we're here */ sec_tb_reset = 1; mb(); /* wait for the primary to set pri_tb_hi/lo */ while (sec_tb_reset < 2) mb(); /* set our stuff the same as the primary */ local_irq_save(flags); set_dec(1); set_tb(pri_tb_hi, pri_tb_lo); last_jiffy_stamp(smp_processor_id()) = pri_tb_stamp; mb(); /* tell the primary we're done */ sec_tb_reset = 0; mb(); local_irq_restore(flags); } /* L2 and L3 cache settings to pass from CPU0 to CPU1 on G4 cpus */ volatile static long int core99_l2_cache; volatile static long int core99_l3_cache; static void __devinit core99_init_caches(int cpu) { if (!cpu_has_feature(CPU_FTR_L2CR)) return; if (cpu == 0) { core99_l2_cache = _get_L2CR(); printk("CPU0: L2CR is %lx\n", core99_l2_cache); } else { printk("CPU%d: L2CR was %lx\n", cpu, _get_L2CR()); _set_L2CR(0); _set_L2CR(core99_l2_cache); printk("CPU%d: L2CR set to %lx\n", cpu, core99_l2_cache); } if (!cpu_has_feature(CPU_FTR_L3CR)) return; if (cpu == 0){ core99_l3_cache = _get_L3CR(); printk("CPU0: L3CR is %lx\n", core99_l3_cache); } else { printk("CPU%d: L3CR was %lx\n", cpu, _get_L3CR()); _set_L3CR(0); _set_L3CR(core99_l3_cache); printk("CPU%d: L3CR set to %lx\n", cpu, core99_l3_cache); } } static void __init smp_core99_setup(int ncpus) { struct device_node *cpu; u32 *tbprop = NULL; int i; core99_tb_gpio = KL_GPIO_TB_ENABLE; /* default value */ cpu = of_find_node_by_type(NULL, "cpu"); if (cpu != NULL) { tbprop = (u32 *)get_property(cpu, "timebase-enable", NULL); if (tbprop) core99_tb_gpio = *tbprop; of_node_put(cpu); } /* XXX should get this from reg properties */ for (i = 1; i < ncpus; ++i) smp_hw_index[i] = i; powersave_nap = 0; } #endif static int __init smp_core99_probe(void) { struct device_node *cpus; int ncpus = 0; if (ppc_md.progress) ppc_md.progress("smp_core99_probe", 0x345); /* Count CPUs in the device-tree */ for (cpus = NULL; (cpus = of_find_node_by_type(cpus, "cpu")) != NULL;) ++ncpus; printk(KERN_INFO "PowerMac SMP probe found %d cpus\n", ncpus); /* Nothing more to do if less than 2 of them */ if (ncpus <= 1) return 1; smp_core99_setup(ncpus); mpic_request_ipis(); core99_init_caches(0); return ncpus; } static void __devinit smp_core99_kick_cpu(int nr) { unsigned int save_vector; unsigned long target, flags; volatile unsigned int *vector = ((volatile unsigned int *)(KERNELBASE+0x100)); if (nr < 0 || nr > 3) return; if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu", 0x346); local_irq_save(flags); local_irq_disable(); /* Save reset vector */ save_vector = *vector; /* Setup fake reset vector that does * b __secondary_start_pmac_0 + nr*8 - KERNELBASE */ target = (unsigned long) __secondary_start_pmac_0 + nr * 8; create_branch((unsigned long)vector, target, BRANCH_SET_LINK); /* Put some life in our friend */ pmac_call_feature(PMAC_FTR_RESET_CPU, NULL, nr, 0); /* FIXME: We wait a bit for the CPU to take the exception, I should * instead wait for the entry code to set something for me. Well, * ideally, all that crap will be done in prom.c and the CPU left * in a RAM-based wait loop like CHRP. */ mdelay(1); /* Restore our exception vector */ *vector = save_vector; flush_icache_range((unsigned long) vector, (unsigned long) vector + 4); local_irq_restore(flags); if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu done", 0x347); } static void __devinit smp_core99_setup_cpu(int cpu_nr) { /* Setup L2/L3 */ if (cpu_nr != 0) core99_init_caches(cpu_nr); /* Setup openpic */ mpic_setup_this_cpu(); if (cpu_nr == 0) { #ifdef CONFIG_POWER4 extern void g5_phy_disable_cpu1(void); /* If we didn't start the second CPU, we must take * it off the bus */ if (machine_is_compatible("MacRISC4") && num_online_cpus() < 2) g5_phy_disable_cpu1(); #endif /* CONFIG_POWER4 */ if (ppc_md.progress) ppc_md.progress("core99_setup_cpu 0 done", 0x349); } } #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PPC32) int smp_core99_cpu_disable(void) { cpu_clear(smp_processor_id(), cpu_online_map); /* XXX reset cpu affinity here */ mpic_cpu_set_priority(0xf); asm volatile("mtdec %0" : : "r" (0x7fffffff)); mb(); udelay(20); asm volatile("mtdec %0" : : "r" (0x7fffffff)); return 0; } extern void low_cpu_die(void) __attribute__((noreturn)); /* in sleep.S */ static int cpu_dead[NR_CPUS]; void cpu_die(void) { local_irq_disable(); cpu_dead[smp_processor_id()] = 1; mb(); low_cpu_die(); } void smp_core99_cpu_die(unsigned int cpu) { int timeout; timeout = 1000; while (!cpu_dead[cpu]) { if (--timeout == 0) { printk("CPU %u refused to die!\n", cpu); break; } msleep(1); } cpu_dead[cpu] = 0; } #endif /* Core99 Macs (dual G4s and G5s) */ struct smp_ops_t core99_smp_ops = { .message_pass = smp_mpic_message_pass, .probe = smp_core99_probe, .kick_cpu = smp_core99_kick_cpu, .setup_cpu = smp_core99_setup_cpu, .give_timebase = smp_core99_give_timebase, .take_timebase = smp_core99_take_timebase, #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PPC32) .cpu_disable = smp_core99_cpu_disable, .cpu_die = smp_core99_cpu_die, #endif };