/* * fs/nfs/nfs4proc.c * * Client-side procedure declarations for NFSv4. * * Copyright (c) 2002 The Regents of the University of Michigan. * All rights reserved. * * Kendrick Smith * Andy Adamson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nfs4_fs.h" #include "delegation.h" #include "internal.h" #include "iostat.h" #include "callback.h" #include "pnfs.h" #include "netns.h" #include "nfs4idmap.h" #include "nfs4session.h" #include "fscache.h" #include "nfs4trace.h" #define NFSDBG_FACILITY NFSDBG_PROC #define NFS4_POLL_RETRY_MIN (HZ/10) #define NFS4_POLL_RETRY_MAX (15*HZ) /* file attributes which can be mapped to nfs attributes */ #define NFS4_VALID_ATTRS (ATTR_MODE \ | ATTR_UID \ | ATTR_GID \ | ATTR_SIZE \ | ATTR_ATIME \ | ATTR_MTIME \ | ATTR_CTIME \ | ATTR_ATIME_SET \ | ATTR_MTIME_SET) struct nfs4_opendata; static int _nfs4_proc_open(struct nfs4_opendata *data); static int _nfs4_recover_proc_open(struct nfs4_opendata *data); static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *); static void nfs_fixup_referral_attributes(struct nfs_fattr *fattr); static int nfs4_proc_getattr(struct nfs_server *, struct nfs_fh *, struct nfs_fattr *, struct nfs4_label *label); static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr, struct nfs4_label *label); static int nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred, struct nfs_fattr *fattr, struct iattr *sattr, struct nfs4_state *state, struct nfs4_label *ilabel, struct nfs4_label *olabel); #ifdef CONFIG_NFS_V4_1 static int nfs41_test_stateid(struct nfs_server *, nfs4_stateid *, struct rpc_cred *); static int nfs41_free_stateid(struct nfs_server *, nfs4_stateid *, struct rpc_cred *); #endif #ifdef CONFIG_NFS_V4_SECURITY_LABEL static inline struct nfs4_label * nfs4_label_init_security(struct inode *dir, struct dentry *dentry, struct iattr *sattr, struct nfs4_label *label) { int err; if (label == NULL) return NULL; if (nfs_server_capable(dir, NFS_CAP_SECURITY_LABEL) == 0) return NULL; err = security_dentry_init_security(dentry, sattr->ia_mode, &dentry->d_name, (void **)&label->label, &label->len); if (err == 0) return label; return NULL; } static inline void nfs4_label_release_security(struct nfs4_label *label) { if (label) security_release_secctx(label->label, label->len); } static inline u32 *nfs4_bitmask(struct nfs_server *server, struct nfs4_label *label) { if (label) return server->attr_bitmask; return server->attr_bitmask_nl; } #else static inline struct nfs4_label * nfs4_label_init_security(struct inode *dir, struct dentry *dentry, struct iattr *sattr, struct nfs4_label *l) { return NULL; } static inline void nfs4_label_release_security(struct nfs4_label *label) { return; } static inline u32 * nfs4_bitmask(struct nfs_server *server, struct nfs4_label *label) { return server->attr_bitmask; } #endif /* Prevent leaks of NFSv4 errors into userland */ static int nfs4_map_errors(int err) { if (err >= -1000) return err; switch (err) { case -NFS4ERR_RESOURCE: case -NFS4ERR_LAYOUTTRYLATER: case -NFS4ERR_RECALLCONFLICT: return -EREMOTEIO; case -NFS4ERR_WRONGSEC: case -NFS4ERR_WRONG_CRED: return -EPERM; case -NFS4ERR_BADOWNER: case -NFS4ERR_BADNAME: return -EINVAL; case -NFS4ERR_SHARE_DENIED: return -EACCES; case -NFS4ERR_MINOR_VERS_MISMATCH: return -EPROTONOSUPPORT; case -NFS4ERR_FILE_OPEN: return -EBUSY; default: dprintk("%s could not handle NFSv4 error %d\n", __func__, -err); break; } return -EIO; } /* * This is our standard bitmap for GETATTR requests. */ const u32 nfs4_fattr_bitmap[3] = { FATTR4_WORD0_TYPE | FATTR4_WORD0_CHANGE | FATTR4_WORD0_SIZE | FATTR4_WORD0_FSID | FATTR4_WORD0_FILEID, FATTR4_WORD1_MODE | FATTR4_WORD1_NUMLINKS | FATTR4_WORD1_OWNER | FATTR4_WORD1_OWNER_GROUP | FATTR4_WORD1_RAWDEV | FATTR4_WORD1_SPACE_USED | FATTR4_WORD1_TIME_ACCESS | FATTR4_WORD1_TIME_METADATA | FATTR4_WORD1_TIME_MODIFY | FATTR4_WORD1_MOUNTED_ON_FILEID, #ifdef CONFIG_NFS_V4_SECURITY_LABEL FATTR4_WORD2_SECURITY_LABEL #endif }; static const u32 nfs4_pnfs_open_bitmap[3] = { FATTR4_WORD0_TYPE | FATTR4_WORD0_CHANGE | FATTR4_WORD0_SIZE | FATTR4_WORD0_FSID | FATTR4_WORD0_FILEID, FATTR4_WORD1_MODE | FATTR4_WORD1_NUMLINKS | FATTR4_WORD1_OWNER | FATTR4_WORD1_OWNER_GROUP | FATTR4_WORD1_RAWDEV | FATTR4_WORD1_SPACE_USED | FATTR4_WORD1_TIME_ACCESS | FATTR4_WORD1_TIME_METADATA | FATTR4_WORD1_TIME_MODIFY, FATTR4_WORD2_MDSTHRESHOLD #ifdef CONFIG_NFS_V4_SECURITY_LABEL | FATTR4_WORD2_SECURITY_LABEL #endif }; static const u32 nfs4_open_noattr_bitmap[3] = { FATTR4_WORD0_TYPE | FATTR4_WORD0_CHANGE | FATTR4_WORD0_FILEID, }; const u32 nfs4_statfs_bitmap[3] = { FATTR4_WORD0_FILES_AVAIL | FATTR4_WORD0_FILES_FREE | FATTR4_WORD0_FILES_TOTAL, FATTR4_WORD1_SPACE_AVAIL | FATTR4_WORD1_SPACE_FREE | FATTR4_WORD1_SPACE_TOTAL }; const u32 nfs4_pathconf_bitmap[3] = { FATTR4_WORD0_MAXLINK | FATTR4_WORD0_MAXNAME, 0 }; const u32 nfs4_fsinfo_bitmap[3] = { FATTR4_WORD0_MAXFILESIZE | FATTR4_WORD0_MAXREAD | FATTR4_WORD0_MAXWRITE | FATTR4_WORD0_LEASE_TIME, FATTR4_WORD1_TIME_DELTA | FATTR4_WORD1_FS_LAYOUT_TYPES, FATTR4_WORD2_LAYOUT_BLKSIZE | FATTR4_WORD2_CLONE_BLKSIZE }; const u32 nfs4_fs_locations_bitmap[3] = { FATTR4_WORD0_TYPE | FATTR4_WORD0_CHANGE | FATTR4_WORD0_SIZE | FATTR4_WORD0_FSID | FATTR4_WORD0_FILEID | FATTR4_WORD0_FS_LOCATIONS, FATTR4_WORD1_MODE | FATTR4_WORD1_NUMLINKS | FATTR4_WORD1_OWNER | FATTR4_WORD1_OWNER_GROUP | FATTR4_WORD1_RAWDEV | FATTR4_WORD1_SPACE_USED | FATTR4_WORD1_TIME_ACCESS | FATTR4_WORD1_TIME_METADATA | FATTR4_WORD1_TIME_MODIFY | FATTR4_WORD1_MOUNTED_ON_FILEID, }; static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry, struct nfs4_readdir_arg *readdir) { __be32 *start, *p; if (cookie > 2) { readdir->cookie = cookie; memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier)); return; } readdir->cookie = 0; memset(&readdir->verifier, 0, sizeof(readdir->verifier)); if (cookie == 2) return; /* * NFSv4 servers do not return entries for '.' and '..' * Therefore, we fake these entries here. We let '.' * have cookie 0 and '..' have cookie 1. Note that * when talking to the server, we always send cookie 0 * instead of 1 or 2. */ start = p = kmap_atomic(*readdir->pages); if (cookie == 0) { *p++ = xdr_one; /* next */ *p++ = xdr_zero; /* cookie, first word */ *p++ = xdr_one; /* cookie, second word */ *p++ = xdr_one; /* entry len */ memcpy(p, ".\0\0\0", 4); /* entry */ p++; *p++ = xdr_one; /* bitmap length */ *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */ *p++ = htonl(8); /* attribute buffer length */ p = xdr_encode_hyper(p, NFS_FILEID(d_inode(dentry))); } *p++ = xdr_one; /* next */ *p++ = xdr_zero; /* cookie, first word */ *p++ = xdr_two; /* cookie, second word */ *p++ = xdr_two; /* entry len */ memcpy(p, "..\0\0", 4); /* entry */ p++; *p++ = xdr_one; /* bitmap length */ *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */ *p++ = htonl(8); /* attribute buffer length */ p = xdr_encode_hyper(p, NFS_FILEID(d_inode(dentry->d_parent))); readdir->pgbase = (char *)p - (char *)start; readdir->count -= readdir->pgbase; kunmap_atomic(start); } static long nfs4_update_delay(long *timeout) { long ret; if (!timeout) return NFS4_POLL_RETRY_MAX; if (*timeout <= 0) *timeout = NFS4_POLL_RETRY_MIN; if (*timeout > NFS4_POLL_RETRY_MAX) *timeout = NFS4_POLL_RETRY_MAX; ret = *timeout; *timeout <<= 1; return ret; } static int nfs4_delay(struct rpc_clnt *clnt, long *timeout) { int res = 0; might_sleep(); freezable_schedule_timeout_killable_unsafe( nfs4_update_delay(timeout)); if (fatal_signal_pending(current)) res = -ERESTARTSYS; return res; } /* This is the error handling routine for processes that are allowed * to sleep. */ static int nfs4_do_handle_exception(struct nfs_server *server, int errorcode, struct nfs4_exception *exception) { struct nfs_client *clp = server->nfs_client; struct nfs4_state *state = exception->state; struct inode *inode = exception->inode; int ret = errorcode; exception->delay = 0; exception->recovering = 0; exception->retry = 0; switch(errorcode) { case 0: return 0; case -NFS4ERR_OPENMODE: case -NFS4ERR_DELEG_REVOKED: case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_BAD_STATEID: if (inode && nfs_async_inode_return_delegation(inode, NULL) == 0) goto wait_on_recovery; if (state == NULL) break; ret = nfs4_schedule_stateid_recovery(server, state); if (ret < 0) break; goto wait_on_recovery; case -NFS4ERR_EXPIRED: if (state != NULL) { ret = nfs4_schedule_stateid_recovery(server, state); if (ret < 0) break; } case -NFS4ERR_STALE_STATEID: case -NFS4ERR_STALE_CLIENTID: nfs4_schedule_lease_recovery(clp); goto wait_on_recovery; case -NFS4ERR_MOVED: ret = nfs4_schedule_migration_recovery(server); if (ret < 0) break; goto wait_on_recovery; case -NFS4ERR_LEASE_MOVED: nfs4_schedule_lease_moved_recovery(clp); goto wait_on_recovery; #if defined(CONFIG_NFS_V4_1) case -NFS4ERR_BADSESSION: case -NFS4ERR_BADSLOT: case -NFS4ERR_BAD_HIGH_SLOT: case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION: case -NFS4ERR_DEADSESSION: case -NFS4ERR_SEQ_FALSE_RETRY: case -NFS4ERR_SEQ_MISORDERED: dprintk("%s ERROR: %d Reset session\n", __func__, errorcode); nfs4_schedule_session_recovery(clp->cl_session, errorcode); goto wait_on_recovery; #endif /* defined(CONFIG_NFS_V4_1) */ case -NFS4ERR_FILE_OPEN: if (exception->timeout > HZ) { /* We have retried a decent amount, time to * fail */ ret = -EBUSY; break; } case -NFS4ERR_DELAY: nfs_inc_server_stats(server, NFSIOS_DELAY); case -NFS4ERR_GRACE: case -NFS4ERR_RECALLCONFLICT: exception->delay = 1; return 0; case -NFS4ERR_RETRY_UNCACHED_REP: case -NFS4ERR_OLD_STATEID: exception->retry = 1; break; case -NFS4ERR_BADOWNER: /* The following works around a Linux server bug! */ case -NFS4ERR_BADNAME: if (server->caps & NFS_CAP_UIDGID_NOMAP) { server->caps &= ~NFS_CAP_UIDGID_NOMAP; exception->retry = 1; printk(KERN_WARNING "NFS: v4 server %s " "does not accept raw " "uid/gids. " "Reenabling the idmapper.\n", server->nfs_client->cl_hostname); } } /* We failed to handle the error */ return nfs4_map_errors(ret); wait_on_recovery: exception->recovering = 1; return 0; } /* This is the error handling routine for processes that are allowed * to sleep. */ int nfs4_handle_exception(struct nfs_server *server, int errorcode, struct nfs4_exception *exception) { struct nfs_client *clp = server->nfs_client; int ret; ret = nfs4_do_handle_exception(server, errorcode, exception); if (exception->delay) { ret = nfs4_delay(server->client, &exception->timeout); goto out_retry; } if (exception->recovering) { ret = nfs4_wait_clnt_recover(clp); if (test_bit(NFS_MIG_FAILED, &server->mig_status)) return -EIO; goto out_retry; } return ret; out_retry: if (ret == 0) exception->retry = 1; return ret; } static int nfs4_async_handle_exception(struct rpc_task *task, struct nfs_server *server, int errorcode, struct nfs4_exception *exception) { struct nfs_client *clp = server->nfs_client; int ret; ret = nfs4_do_handle_exception(server, errorcode, exception); if (exception->delay) { rpc_delay(task, nfs4_update_delay(&exception->timeout)); goto out_retry; } if (exception->recovering) { rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL); if (test_bit(NFS4CLNT_MANAGER_RUNNING, &clp->cl_state) == 0) rpc_wake_up_queued_task(&clp->cl_rpcwaitq, task); goto out_retry; } if (test_bit(NFS_MIG_FAILED, &server->mig_status)) ret = -EIO; return ret; out_retry: if (ret == 0) exception->retry = 1; return ret; } static int nfs4_async_handle_error(struct rpc_task *task, struct nfs_server *server, struct nfs4_state *state, long *timeout) { struct nfs4_exception exception = { .state = state, }; if (task->tk_status >= 0) return 0; if (timeout) exception.timeout = *timeout; task->tk_status = nfs4_async_handle_exception(task, server, task->tk_status, &exception); if (exception.delay && timeout) *timeout = exception.timeout; if (exception.retry) return -EAGAIN; return 0; } /* * Return 'true' if 'clp' is using an rpc_client that is integrity protected * or 'false' otherwise. */ static bool _nfs4_is_integrity_protected(struct nfs_client *clp) { rpc_authflavor_t flavor = clp->cl_rpcclient->cl_auth->au_flavor; if (flavor == RPC_AUTH_GSS_KRB5I || flavor == RPC_AUTH_GSS_KRB5P) return true; return false; } static void do_renew_lease(struct nfs_client *clp, unsigned long timestamp) { spin_lock(&clp->cl_lock); if (time_before(clp->cl_last_renewal,timestamp)) clp->cl_last_renewal = timestamp; spin_unlock(&clp->cl_lock); } static void renew_lease(const struct nfs_server *server, unsigned long timestamp) { struct nfs_client *clp = server->nfs_client; if (!nfs4_has_session(clp)) do_renew_lease(clp, timestamp); } struct nfs4_call_sync_data { const struct nfs_server *seq_server; struct nfs4_sequence_args *seq_args; struct nfs4_sequence_res *seq_res; }; void nfs4_init_sequence(struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, int cache_reply) { args->sa_slot = NULL; args->sa_cache_this = cache_reply; args->sa_privileged = 0; res->sr_slot = NULL; } static void nfs4_set_sequence_privileged(struct nfs4_sequence_args *args) { args->sa_privileged = 1; } int nfs40_setup_sequence(struct nfs4_slot_table *tbl, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, struct rpc_task *task) { struct nfs4_slot *slot; /* slot already allocated? */ if (res->sr_slot != NULL) goto out_start; spin_lock(&tbl->slot_tbl_lock); if (nfs4_slot_tbl_draining(tbl) && !args->sa_privileged) goto out_sleep; slot = nfs4_alloc_slot(tbl); if (IS_ERR(slot)) { if (slot == ERR_PTR(-ENOMEM)) task->tk_timeout = HZ >> 2; goto out_sleep; } spin_unlock(&tbl->slot_tbl_lock); args->sa_slot = slot; res->sr_slot = slot; out_start: rpc_call_start(task); return 0; out_sleep: if (args->sa_privileged) rpc_sleep_on_priority(&tbl->slot_tbl_waitq, task, NULL, RPC_PRIORITY_PRIVILEGED); else rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL); spin_unlock(&tbl->slot_tbl_lock); return -EAGAIN; } EXPORT_SYMBOL_GPL(nfs40_setup_sequence); static int nfs40_sequence_done(struct rpc_task *task, struct nfs4_sequence_res *res) { struct nfs4_slot *slot = res->sr_slot; struct nfs4_slot_table *tbl; if (slot == NULL) goto out; tbl = slot->table; spin_lock(&tbl->slot_tbl_lock); if (!nfs41_wake_and_assign_slot(tbl, slot)) nfs4_free_slot(tbl, slot); spin_unlock(&tbl->slot_tbl_lock); res->sr_slot = NULL; out: return 1; } #if defined(CONFIG_NFS_V4_1) static void nfs41_sequence_free_slot(struct nfs4_sequence_res *res) { struct nfs4_session *session; struct nfs4_slot_table *tbl; struct nfs4_slot *slot = res->sr_slot; bool send_new_highest_used_slotid = false; tbl = slot->table; session = tbl->session; spin_lock(&tbl->slot_tbl_lock); /* Be nice to the server: try to ensure that the last transmitted * value for highest_user_slotid <= target_highest_slotid */ if (tbl->highest_used_slotid > tbl->target_highest_slotid) send_new_highest_used_slotid = true; if (nfs41_wake_and_assign_slot(tbl, slot)) { send_new_highest_used_slotid = false; goto out_unlock; } nfs4_free_slot(tbl, slot); if (tbl->highest_used_slotid != NFS4_NO_SLOT) send_new_highest_used_slotid = false; out_unlock: spin_unlock(&tbl->slot_tbl_lock); res->sr_slot = NULL; if (send_new_highest_used_slotid) nfs41_notify_server(session->clp); } int nfs41_sequence_done(struct rpc_task *task, struct nfs4_sequence_res *res) { struct nfs4_session *session; struct nfs4_slot *slot = res->sr_slot; struct nfs_client *clp; bool interrupted = false; int ret = 1; if (slot == NULL) goto out_noaction; /* don't increment the sequence number if the task wasn't sent */ if (!RPC_WAS_SENT(task)) goto out; session = slot->table->session; if (slot->interrupted) { slot->interrupted = 0; interrupted = true; } trace_nfs4_sequence_done(session, res); /* Check the SEQUENCE operation status */ switch (res->sr_status) { case 0: /* Update the slot's sequence and clientid lease timer */ ++slot->seq_nr; clp = session->clp; do_renew_lease(clp, res->sr_timestamp); /* Check sequence flags */ nfs41_handle_sequence_flag_errors(clp, res->sr_status_flags); nfs41_update_target_slotid(slot->table, slot, res); break; case 1: /* * sr_status remains 1 if an RPC level error occurred. * The server may or may not have processed the sequence * operation.. * Mark the slot as having hosted an interrupted RPC call. */ slot->interrupted = 1; goto out; case -NFS4ERR_DELAY: /* The server detected a resend of the RPC call and * returned NFS4ERR_DELAY as per Section 2.10.6.2 * of RFC5661. */ dprintk("%s: slot=%u seq=%u: Operation in progress\n", __func__, slot->slot_nr, slot->seq_nr); goto out_retry; case -NFS4ERR_BADSLOT: /* * The slot id we used was probably retired. Try again * using a different slot id. */ goto retry_nowait; case -NFS4ERR_SEQ_MISORDERED: /* * Was the last operation on this sequence interrupted? * If so, retry after bumping the sequence number. */ if (interrupted) { ++slot->seq_nr; goto retry_nowait; } /* * Could this slot have been previously retired? * If so, then the server may be expecting seq_nr = 1! */ if (slot->seq_nr != 1) { slot->seq_nr = 1; goto retry_nowait; } break; case -NFS4ERR_SEQ_FALSE_RETRY: ++slot->seq_nr; goto retry_nowait; default: /* Just update the slot sequence no. */ ++slot->seq_nr; } out: /* The session may be reset by one of the error handlers. */ dprintk("%s: Error %d free the slot \n", __func__, res->sr_status); nfs41_sequence_free_slot(res); out_noaction: return ret; retry_nowait: if (rpc_restart_call_prepare(task)) { task->tk_status = 0; ret = 0; } goto out; out_retry: if (!rpc_restart_call(task)) goto out; rpc_delay(task, NFS4_POLL_RETRY_MAX); return 0; } EXPORT_SYMBOL_GPL(nfs41_sequence_done); int nfs4_sequence_done(struct rpc_task *task, struct nfs4_sequence_res *res) { if (res->sr_slot == NULL) return 1; if (!res->sr_slot->table->session) return nfs40_sequence_done(task, res); return nfs41_sequence_done(task, res); } EXPORT_SYMBOL_GPL(nfs4_sequence_done); int nfs41_setup_sequence(struct nfs4_session *session, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, struct rpc_task *task) { struct nfs4_slot *slot; struct nfs4_slot_table *tbl; dprintk("--> %s\n", __func__); /* slot already allocated? */ if (res->sr_slot != NULL) goto out_success; tbl = &session->fc_slot_table; task->tk_timeout = 0; spin_lock(&tbl->slot_tbl_lock); if (test_bit(NFS4_SLOT_TBL_DRAINING, &tbl->slot_tbl_state) && !args->sa_privileged) { /* The state manager will wait until the slot table is empty */ dprintk("%s session is draining\n", __func__); goto out_sleep; } slot = nfs4_alloc_slot(tbl); if (IS_ERR(slot)) { /* If out of memory, try again in 1/4 second */ if (slot == ERR_PTR(-ENOMEM)) task->tk_timeout = HZ >> 2; dprintk("<-- %s: no free slots\n", __func__); goto out_sleep; } spin_unlock(&tbl->slot_tbl_lock); args->sa_slot = slot; dprintk("<-- %s slotid=%u seqid=%u\n", __func__, slot->slot_nr, slot->seq_nr); res->sr_slot = slot; res->sr_timestamp = jiffies; res->sr_status_flags = 0; /* * sr_status is only set in decode_sequence, and so will remain * set to 1 if an rpc level failure occurs. */ res->sr_status = 1; trace_nfs4_setup_sequence(session, args); out_success: rpc_call_start(task); return 0; out_sleep: /* Privileged tasks are queued with top priority */ if (args->sa_privileged) rpc_sleep_on_priority(&tbl->slot_tbl_waitq, task, NULL, RPC_PRIORITY_PRIVILEGED); else rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL); spin_unlock(&tbl->slot_tbl_lock); return -EAGAIN; } EXPORT_SYMBOL_GPL(nfs41_setup_sequence); static int nfs4_setup_sequence(const struct nfs_server *server, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, struct rpc_task *task) { struct nfs4_session *session = nfs4_get_session(server); int ret = 0; if (!session) return nfs40_setup_sequence(server->nfs_client->cl_slot_tbl, args, res, task); dprintk("--> %s clp %p session %p sr_slot %u\n", __func__, session->clp, session, res->sr_slot ? res->sr_slot->slot_nr : NFS4_NO_SLOT); ret = nfs41_setup_sequence(session, args, res, task); dprintk("<-- %s status=%d\n", __func__, ret); return ret; } static void nfs41_call_sync_prepare(struct rpc_task *task, void *calldata) { struct nfs4_call_sync_data *data = calldata; struct nfs4_session *session = nfs4_get_session(data->seq_server); dprintk("--> %s data->seq_server %p\n", __func__, data->seq_server); nfs41_setup_sequence(session, data->seq_args, data->seq_res, task); } static void nfs41_call_sync_done(struct rpc_task *task, void *calldata) { struct nfs4_call_sync_data *data = calldata; nfs41_sequence_done(task, data->seq_res); } static const struct rpc_call_ops nfs41_call_sync_ops = { .rpc_call_prepare = nfs41_call_sync_prepare, .rpc_call_done = nfs41_call_sync_done, }; #else /* !CONFIG_NFS_V4_1 */ static int nfs4_setup_sequence(const struct nfs_server *server, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, struct rpc_task *task) { return nfs40_setup_sequence(server->nfs_client->cl_slot_tbl, args, res, task); } int nfs4_sequence_done(struct rpc_task *task, struct nfs4_sequence_res *res) { return nfs40_sequence_done(task, res); } EXPORT_SYMBOL_GPL(nfs4_sequence_done); #endif /* !CONFIG_NFS_V4_1 */ static void nfs40_call_sync_prepare(struct rpc_task *task, void *calldata) { struct nfs4_call_sync_data *data = calldata; nfs4_setup_sequence(data->seq_server, data->seq_args, data->seq_res, task); } static void nfs40_call_sync_done(struct rpc_task *task, void *calldata) { struct nfs4_call_sync_data *data = calldata; nfs4_sequence_done(task, data->seq_res); } static const struct rpc_call_ops nfs40_call_sync_ops = { .rpc_call_prepare = nfs40_call_sync_prepare, .rpc_call_done = nfs40_call_sync_done, }; static int nfs4_call_sync_sequence(struct rpc_clnt *clnt, struct nfs_server *server, struct rpc_message *msg, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res) { int ret; struct rpc_task *task; struct nfs_client *clp = server->nfs_client; struct nfs4_call_sync_data data = { .seq_server = server, .seq_args = args, .seq_res = res, }; struct rpc_task_setup task_setup = { .rpc_client = clnt, .rpc_message = msg, .callback_ops = clp->cl_mvops->call_sync_ops, .callback_data = &data }; task = rpc_run_task(&task_setup); if (IS_ERR(task)) ret = PTR_ERR(task); else { ret = task->tk_status; rpc_put_task(task); } return ret; } int nfs4_call_sync(struct rpc_clnt *clnt, struct nfs_server *server, struct rpc_message *msg, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, int cache_reply) { nfs4_init_sequence(args, res, cache_reply); return nfs4_call_sync_sequence(clnt, server, msg, args, res); } static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo) { struct nfs_inode *nfsi = NFS_I(dir); spin_lock(&dir->i_lock); nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA; if (!cinfo->atomic || cinfo->before != dir->i_version) nfs_force_lookup_revalidate(dir); dir->i_version = cinfo->after; nfsi->attr_gencount = nfs_inc_attr_generation_counter(); nfs_fscache_invalidate(dir); spin_unlock(&dir->i_lock); } struct nfs4_opendata { struct kref kref; struct nfs_openargs o_arg; struct nfs_openres o_res; struct nfs_open_confirmargs c_arg; struct nfs_open_confirmres c_res; struct nfs4_string owner_name; struct nfs4_string group_name; struct nfs4_label *a_label; struct nfs_fattr f_attr; struct nfs4_label *f_label; struct dentry *dir; struct dentry *dentry; struct nfs4_state_owner *owner; struct nfs4_state *state; struct iattr attrs; unsigned long timestamp; unsigned int rpc_done : 1; unsigned int file_created : 1; unsigned int is_recover : 1; int rpc_status; int cancelled; }; static bool nfs4_clear_cap_atomic_open_v1(struct nfs_server *server, int err, struct nfs4_exception *exception) { if (err != -EINVAL) return false; if (!(server->caps & NFS_CAP_ATOMIC_OPEN_V1)) return false; server->caps &= ~NFS_CAP_ATOMIC_OPEN_V1; exception->retry = 1; return true; } static u32 nfs4_map_atomic_open_share(struct nfs_server *server, fmode_t fmode, int openflags) { u32 res = 0; switch (fmode & (FMODE_READ | FMODE_WRITE)) { case FMODE_READ: res = NFS4_SHARE_ACCESS_READ; break; case FMODE_WRITE: res = NFS4_SHARE_ACCESS_WRITE; break; case FMODE_READ|FMODE_WRITE: res = NFS4_SHARE_ACCESS_BOTH; } if (!(server->caps & NFS_CAP_ATOMIC_OPEN_V1)) goto out; /* Want no delegation if we're using O_DIRECT */ if (openflags & O_DIRECT) res |= NFS4_SHARE_WANT_NO_DELEG; out: return res; } static enum open_claim_type4 nfs4_map_atomic_open_claim(struct nfs_server *server, enum open_claim_type4 claim) { if (server->caps & NFS_CAP_ATOMIC_OPEN_V1) return claim; switch (claim) { default: return claim; case NFS4_OPEN_CLAIM_FH: return NFS4_OPEN_CLAIM_NULL; case NFS4_OPEN_CLAIM_DELEG_CUR_FH: return NFS4_OPEN_CLAIM_DELEGATE_CUR; case NFS4_OPEN_CLAIM_DELEG_PREV_FH: return NFS4_OPEN_CLAIM_DELEGATE_PREV; } } static void nfs4_init_opendata_res(struct nfs4_opendata *p) { p->o_res.f_attr = &p->f_attr; p->o_res.f_label = p->f_label; p->o_res.seqid = p->o_arg.seqid; p->c_res.seqid = p->c_arg.seqid; p->o_res.server = p->o_arg.server; p->o_res.access_request = p->o_arg.access; nfs_fattr_init(&p->f_attr); nfs_fattr_init_names(&p->f_attr, &p->owner_name, &p->group_name); } static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry, struct nfs4_state_owner *sp, fmode_t fmode, int flags, const struct iattr *attrs, struct nfs4_label *label, enum open_claim_type4 claim, gfp_t gfp_mask) { struct dentry *parent = dget_parent(dentry); struct inode *dir = d_inode(parent); struct nfs_server *server = NFS_SERVER(dir); struct nfs_seqid *(*alloc_seqid)(struct nfs_seqid_counter *, gfp_t); struct nfs4_opendata *p; p = kzalloc(sizeof(*p), gfp_mask); if (p == NULL) goto err; p->f_label = nfs4_label_alloc(server, gfp_mask); if (IS_ERR(p->f_label)) goto err_free_p; p->a_label = nfs4_label_alloc(server, gfp_mask); if (IS_ERR(p->a_label)) goto err_free_f; alloc_seqid = server->nfs_client->cl_mvops->alloc_seqid; p->o_arg.seqid = alloc_seqid(&sp->so_seqid, gfp_mask); if (IS_ERR(p->o_arg.seqid)) goto err_free_label; nfs_sb_active(dentry->d_sb); p->dentry = dget(dentry); p->dir = parent; p->owner = sp; atomic_inc(&sp->so_count); p->o_arg.open_flags = flags; p->o_arg.fmode = fmode & (FMODE_READ|FMODE_WRITE); p->o_arg.share_access = nfs4_map_atomic_open_share(server, fmode, flags); /* don't put an ACCESS op in OPEN compound if O_EXCL, because ACCESS * will return permission denied for all bits until close */ if (!(flags & O_EXCL)) { /* ask server to check for all possible rights as results * are cached */ p->o_arg.access = NFS4_ACCESS_READ | NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_EXECUTE; } p->o_arg.clientid = server->nfs_client->cl_clientid; p->o_arg.id.create_time = ktime_to_ns(sp->so_seqid.create_time); p->o_arg.id.uniquifier = sp->so_seqid.owner_id; p->o_arg.name = &dentry->d_name; p->o_arg.server = server; p->o_arg.bitmask = nfs4_bitmask(server, label); p->o_arg.open_bitmap = &nfs4_fattr_bitmap[0]; p->o_arg.label = nfs4_label_copy(p->a_label, label); p->o_arg.claim = nfs4_map_atomic_open_claim(server, claim); switch (p->o_arg.claim) { case NFS4_OPEN_CLAIM_NULL: case NFS4_OPEN_CLAIM_DELEGATE_CUR: case NFS4_OPEN_CLAIM_DELEGATE_PREV: p->o_arg.fh = NFS_FH(dir); break; case NFS4_OPEN_CLAIM_PREVIOUS: case NFS4_OPEN_CLAIM_FH: case NFS4_OPEN_CLAIM_DELEG_CUR_FH: case NFS4_OPEN_CLAIM_DELEG_PREV_FH: p->o_arg.fh = NFS_FH(d_inode(dentry)); } if (attrs != NULL && attrs->ia_valid != 0) { __u32 verf[2]; p->o_arg.u.attrs = &p->attrs; memcpy(&p->attrs, attrs, sizeof(p->attrs)); verf[0] = jiffies; verf[1] = current->pid; memcpy(p->o_arg.u.verifier.data, verf, sizeof(p->o_arg.u.verifier.data)); } p->c_arg.fh = &p->o_res.fh; p->c_arg.stateid = &p->o_res.stateid; p->c_arg.seqid = p->o_arg.seqid; nfs4_init_opendata_res(p); kref_init(&p->kref); return p; err_free_label: nfs4_label_free(p->a_label); err_free_f: nfs4_label_free(p->f_label); err_free_p: kfree(p); err: dput(parent); return NULL; } static void nfs4_opendata_free(struct kref *kref) { struct nfs4_opendata *p = container_of(kref, struct nfs4_opendata, kref); struct super_block *sb = p->dentry->d_sb; nfs_free_seqid(p->o_arg.seqid); if (p->state != NULL) nfs4_put_open_state(p->state); nfs4_put_state_owner(p->owner); nfs4_label_free(p->a_label); nfs4_label_free(p->f_label); dput(p->dir); dput(p->dentry); nfs_sb_deactive(sb); nfs_fattr_free_names(&p->f_attr); kfree(p->f_attr.mdsthreshold); kfree(p); } static void nfs4_opendata_put(struct nfs4_opendata *p) { if (p != NULL) kref_put(&p->kref, nfs4_opendata_free); } static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task) { int ret; ret = rpc_wait_for_completion_task(task); return ret; } static bool nfs4_mode_match_open_stateid(struct nfs4_state *state, fmode_t fmode) { switch(fmode & (FMODE_READ|FMODE_WRITE)) { case FMODE_READ|FMODE_WRITE: return state->n_rdwr != 0; case FMODE_WRITE: return state->n_wronly != 0; case FMODE_READ: return state->n_rdonly != 0; } WARN_ON_ONCE(1); return false; } static int can_open_cached(struct nfs4_state *state, fmode_t mode, int open_mode) { int ret = 0; if (open_mode & (O_EXCL|O_TRUNC)) goto out; switch (mode & (FMODE_READ|FMODE_WRITE)) { case FMODE_READ: ret |= test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0 && state->n_rdonly != 0; break; case FMODE_WRITE: ret |= test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0 && state->n_wronly != 0; break; case FMODE_READ|FMODE_WRITE: ret |= test_bit(NFS_O_RDWR_STATE, &state->flags) != 0 && state->n_rdwr != 0; } out: return ret; } static int can_open_delegated(struct nfs_delegation *delegation, fmode_t fmode, enum open_claim_type4 claim) { if (delegation == NULL) return 0; if ((delegation->type & fmode) != fmode) return 0; if (test_bit(NFS_DELEGATION_RETURNING, &delegation->flags)) return 0; switch (claim) { case NFS4_OPEN_CLAIM_NULL: case NFS4_OPEN_CLAIM_FH: break; case NFS4_OPEN_CLAIM_PREVIOUS: if (!test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags)) break; default: return 0; } nfs_mark_delegation_referenced(delegation); return 1; } static void update_open_stateflags(struct nfs4_state *state, fmode_t fmode) { switch (fmode) { case FMODE_WRITE: state->n_wronly++; break; case FMODE_READ: state->n_rdonly++; break; case FMODE_READ|FMODE_WRITE: state->n_rdwr++; } nfs4_state_set_mode_locked(state, state->state | fmode); } static void nfs_test_and_clear_all_open_stateid(struct nfs4_state *state) { struct nfs_client *clp = state->owner->so_server->nfs_client; bool need_recover = false; if (test_and_clear_bit(NFS_O_RDONLY_STATE, &state->flags) && state->n_rdonly) need_recover = true; if (test_and_clear_bit(NFS_O_WRONLY_STATE, &state->flags) && state->n_wronly) need_recover = true; if (test_and_clear_bit(NFS_O_RDWR_STATE, &state->flags) && state->n_rdwr) need_recover = true; if (need_recover) nfs4_state_mark_reclaim_nograce(clp, state); } static bool nfs_need_update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid) { if (test_and_set_bit(NFS_OPEN_STATE, &state->flags) == 0) return true; if (!nfs4_stateid_match_other(stateid, &state->open_stateid)) { nfs_test_and_clear_all_open_stateid(state); return true; } if (nfs4_stateid_is_newer(stateid, &state->open_stateid)) return true; return false; } static void nfs_resync_open_stateid_locked(struct nfs4_state *state) { if (!(state->n_wronly || state->n_rdonly || state->n_rdwr)) return; if (state->n_wronly) set_bit(NFS_O_WRONLY_STATE, &state->flags); if (state->n_rdonly) set_bit(NFS_O_RDONLY_STATE, &state->flags); if (state->n_rdwr) set_bit(NFS_O_RDWR_STATE, &state->flags); set_bit(NFS_OPEN_STATE, &state->flags); } static void nfs_clear_open_stateid_locked(struct nfs4_state *state, nfs4_stateid *arg_stateid, nfs4_stateid *stateid, fmode_t fmode) { clear_bit(NFS_O_RDWR_STATE, &state->flags); switch (fmode & (FMODE_READ|FMODE_WRITE)) { case FMODE_WRITE: clear_bit(NFS_O_RDONLY_STATE, &state->flags); break; case FMODE_READ: clear_bit(NFS_O_WRONLY_STATE, &state->flags); break; case 0: clear_bit(NFS_O_RDONLY_STATE, &state->flags); clear_bit(NFS_O_WRONLY_STATE, &state->flags); clear_bit(NFS_OPEN_STATE, &state->flags); } if (stateid == NULL) return; /* Handle races with OPEN */ if (!nfs4_stateid_match_other(arg_stateid, &state->open_stateid) || (nfs4_stateid_match_other(stateid, &state->open_stateid) && !nfs4_stateid_is_newer(stateid, &state->open_stateid))) { nfs_resync_open_stateid_locked(state); return; } if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0) nfs4_stateid_copy(&state->stateid, stateid); nfs4_stateid_copy(&state->open_stateid, stateid); } static void nfs_clear_open_stateid(struct nfs4_state *state, nfs4_stateid *arg_stateid, nfs4_stateid *stateid, fmode_t fmode) { write_seqlock(&state->seqlock); nfs_clear_open_stateid_locked(state, arg_stateid, stateid, fmode); write_sequnlock(&state->seqlock); if (test_bit(NFS_STATE_RECLAIM_NOGRACE, &state->flags)) nfs4_schedule_state_manager(state->owner->so_server->nfs_client); } static void nfs_set_open_stateid_locked(struct nfs4_state *state, nfs4_stateid *stateid, fmode_t fmode) { switch (fmode) { case FMODE_READ: set_bit(NFS_O_RDONLY_STATE, &state->flags); break; case FMODE_WRITE: set_bit(NFS_O_WRONLY_STATE, &state->flags); break; case FMODE_READ|FMODE_WRITE: set_bit(NFS_O_RDWR_STATE, &state->flags); } if (!nfs_need_update_open_stateid(state, stateid)) return; if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0) nfs4_stateid_copy(&state->stateid, stateid); nfs4_stateid_copy(&state->open_stateid, stateid); } static void __update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, const nfs4_stateid *deleg_stateid, fmode_t fmode) { /* * Protect the call to nfs4_state_set_mode_locked and * serialise the stateid update */ spin_lock(&state->owner->so_lock); write_seqlock(&state->seqlock); if (deleg_stateid != NULL) { nfs4_stateid_copy(&state->stateid, deleg_stateid); set_bit(NFS_DELEGATED_STATE, &state->flags); } if (open_stateid != NULL) nfs_set_open_stateid_locked(state, open_stateid, fmode); write_sequnlock(&state->seqlock); update_open_stateflags(state, fmode); spin_unlock(&state->owner->so_lock); } static int update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, nfs4_stateid *delegation, fmode_t fmode) { struct nfs_inode *nfsi = NFS_I(state->inode); struct nfs_delegation *deleg_cur; int ret = 0; fmode &= (FMODE_READ|FMODE_WRITE); rcu_read_lock(); deleg_cur = rcu_dereference(nfsi->delegation); if (deleg_cur == NULL) goto no_delegation; spin_lock(&deleg_cur->lock); if (rcu_dereference(nfsi->delegation) != deleg_cur || test_bit(NFS_DELEGATION_RETURNING, &deleg_cur->flags) || (deleg_cur->type & fmode) != fmode) goto no_delegation_unlock; if (delegation == NULL) delegation = &deleg_cur->stateid; else if (!nfs4_stateid_match(&deleg_cur->stateid, delegation)) goto no_delegation_unlock; nfs_mark_delegation_referenced(deleg_cur); __update_open_stateid(state, open_stateid, &deleg_cur->stateid, fmode); ret = 1; no_delegation_unlock: spin_unlock(&deleg_cur->lock); no_delegation: rcu_read_unlock(); if (!ret && open_stateid != NULL) { __update_open_stateid(state, open_stateid, NULL, fmode); ret = 1; } if (test_bit(NFS_STATE_RECLAIM_NOGRACE, &state->flags)) nfs4_schedule_state_manager(state->owner->so_server->nfs_client); return ret; } static bool nfs4_update_lock_stateid(struct nfs4_lock_state *lsp, const nfs4_stateid *stateid) { struct nfs4_state *state = lsp->ls_state; bool ret = false; spin_lock(&state->state_lock); if (!nfs4_stateid_match_other(stateid, &lsp->ls_stateid)) goto out_noupdate; if (!nfs4_stateid_is_newer(stateid, &lsp->ls_stateid)) goto out_noupdate; nfs4_stateid_copy(&lsp->ls_stateid, stateid); ret = true; out_noupdate: spin_unlock(&state->state_lock); return ret; } static void nfs4_return_incompatible_delegation(struct inode *inode, fmode_t fmode) { struct nfs_delegation *delegation; rcu_read_lock(); delegation = rcu_dereference(NFS_I(inode)->delegation); if (delegation == NULL || (delegation->type & fmode) == fmode) { rcu_read_unlock(); return; } rcu_read_unlock(); nfs4_inode_return_delegation(inode); } static struct nfs4_state *nfs4_try_open_cached(struct nfs4_opendata *opendata) { struct nfs4_state *state = opendata->state; struct nfs_inode *nfsi = NFS_I(state->inode); struct nfs_delegation *delegation; int open_mode = opendata->o_arg.open_flags; fmode_t fmode = opendata->o_arg.fmode; enum open_claim_type4 claim = opendata->o_arg.claim; nfs4_stateid stateid; int ret = -EAGAIN; for (;;) { spin_lock(&state->owner->so_lock); if (can_open_cached(state, fmode, open_mode)) { update_open_stateflags(state, fmode); spin_unlock(&state->owner->so_lock); goto out_return_state; } spin_unlock(&state->owner->so_lock); rcu_read_lock(); delegation = rcu_dereference(nfsi->delegation); if (!can_open_delegated(delegation, fmode, claim)) { rcu_read_unlock(); break; } /* Save the delegation */ nfs4_stateid_copy(&stateid, &delegation->stateid); rcu_read_unlock(); nfs_release_seqid(opendata->o_arg.seqid); if (!opendata->is_recover) { ret = nfs_may_open(state->inode, state->owner->so_cred, open_mode); if (ret != 0) goto out; } ret = -EAGAIN; /* Try to update the stateid using the delegation */ if (update_open_stateid(state, NULL, &stateid, fmode)) goto out_return_state; } out: return ERR_PTR(ret); out_return_state: atomic_inc(&state->count); return state; } static void nfs4_opendata_check_deleg(struct nfs4_opendata *data, struct nfs4_state *state) { struct nfs_client *clp = NFS_SERVER(state->inode)->nfs_client; struct nfs_delegation *delegation; int delegation_flags = 0; rcu_read_lock(); delegation = rcu_dereference(NFS_I(state->inode)->delegation); if (delegation) delegation_flags = delegation->flags; rcu_read_unlock(); switch (data->o_arg.claim) { default: break; case NFS4_OPEN_CLAIM_DELEGATE_CUR: case NFS4_OPEN_CLAIM_DELEG_CUR_FH: pr_err_ratelimited("NFS: Broken NFSv4 server %s is " "returning a delegation for " "OPEN(CLAIM_DELEGATE_CUR)\n", clp->cl_hostname); return; } if ((delegation_flags & 1UL<inode, data->owner->so_cred, &data->o_res); else nfs_inode_reclaim_delegation(state->inode, data->owner->so_cred, &data->o_res); } /* * Check the inode attributes against the CLAIM_PREVIOUS returned attributes * and update the nfs4_state. */ static struct nfs4_state * _nfs4_opendata_reclaim_to_nfs4_state(struct nfs4_opendata *data) { struct inode *inode = data->state->inode; struct nfs4_state *state = data->state; int ret; if (!data->rpc_done) { if (data->rpc_status) { ret = data->rpc_status; goto err; } /* cached opens have already been processed */ goto update; } ret = nfs_refresh_inode(inode, &data->f_attr); if (ret) goto err; if (data->o_res.delegation_type != 0) nfs4_opendata_check_deleg(data, state); update: update_open_stateid(state, &data->o_res.stateid, NULL, data->o_arg.fmode); atomic_inc(&state->count); return state; err: return ERR_PTR(ret); } static struct nfs4_state * _nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data) { struct inode *inode; struct nfs4_state *state = NULL; int ret; if (!data->rpc_done) { state = nfs4_try_open_cached(data); trace_nfs4_cached_open(data->state); goto out; } ret = -EAGAIN; if (!(data->f_attr.valid & NFS_ATTR_FATTR)) goto err; inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr, data->f_label); ret = PTR_ERR(inode); if (IS_ERR(inode)) goto err; ret = -ENOMEM; state = nfs4_get_open_state(inode, data->owner); if (state == NULL) goto err_put_inode; if (data->o_res.delegation_type != 0) nfs4_opendata_check_deleg(data, state); update_open_stateid(state, &data->o_res.stateid, NULL, data->o_arg.fmode); iput(inode); out: nfs_release_seqid(data->o_arg.seqid); return state; err_put_inode: iput(inode); err: return ERR_PTR(ret); } static struct nfs4_state * nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data) { if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS) return _nfs4_opendata_reclaim_to_nfs4_state(data); return _nfs4_opendata_to_nfs4_state(data); } static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state) { struct nfs_inode *nfsi = NFS_I(state->inode); struct nfs_open_context *ctx; spin_lock(&state->inode->i_lock); list_for_each_entry(ctx, &nfsi->open_files, list) { if (ctx->state != state) continue; get_nfs_open_context(ctx); spin_unlock(&state->inode->i_lock); return ctx; } spin_unlock(&state->inode->i_lock); return ERR_PTR(-ENOENT); } static struct nfs4_opendata *nfs4_open_recoverdata_alloc(struct nfs_open_context *ctx, struct nfs4_state *state, enum open_claim_type4 claim) { struct nfs4_opendata *opendata; opendata = nfs4_opendata_alloc(ctx->dentry, state->owner, 0, 0, NULL, NULL, claim, GFP_NOFS); if (opendata == NULL) return ERR_PTR(-ENOMEM); opendata->state = state; atomic_inc(&state->count); return opendata; } static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, fmode_t fmode) { struct nfs4_state *newstate; int ret; if (!nfs4_mode_match_open_stateid(opendata->state, fmode)) return 0; opendata->o_arg.open_flags = 0; opendata->o_arg.fmode = fmode; opendata->o_arg.share_access = nfs4_map_atomic_open_share( NFS_SB(opendata->dentry->d_sb), fmode, 0); memset(&opendata->o_res, 0, sizeof(opendata->o_res)); memset(&opendata->c_res, 0, sizeof(opendata->c_res)); nfs4_init_opendata_res(opendata); ret = _nfs4_recover_proc_open(opendata); if (ret != 0) return ret; newstate = nfs4_opendata_to_nfs4_state(opendata); if (IS_ERR(newstate)) return PTR_ERR(newstate); if (newstate != opendata->state) ret = -ESTALE; nfs4_close_state(newstate, fmode); return ret; } static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state) { int ret; /* Don't trigger recovery in nfs_test_and_clear_all_open_stateid */ clear_bit(NFS_O_RDWR_STATE, &state->flags); clear_bit(NFS_O_WRONLY_STATE, &state->flags); clear_bit(NFS_O_RDONLY_STATE, &state->flags); /* memory barrier prior to reading state->n_* */ clear_bit(NFS_DELEGATED_STATE, &state->flags); clear_bit(NFS_OPEN_STATE, &state->flags); smp_rmb(); ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE); if (ret != 0) return ret; ret = nfs4_open_recover_helper(opendata, FMODE_WRITE); if (ret != 0) return ret; ret = nfs4_open_recover_helper(opendata, FMODE_READ); if (ret != 0) return ret; /* * We may have performed cached opens for all three recoveries. * Check if we need to update the current stateid. */ if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0 && !nfs4_stateid_match(&state->stateid, &state->open_stateid)) { write_seqlock(&state->seqlock); if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0) nfs4_stateid_copy(&state->stateid, &state->open_stateid); write_sequnlock(&state->seqlock); } return 0; } /* * OPEN_RECLAIM: * reclaim state on the server after a reboot. */ static int _nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state) { struct nfs_delegation *delegation; struct nfs4_opendata *opendata; fmode_t delegation_type = 0; int status; opendata = nfs4_open_recoverdata_alloc(ctx, state, NFS4_OPEN_CLAIM_PREVIOUS); if (IS_ERR(opendata)) return PTR_ERR(opendata); rcu_read_lock(); delegation = rcu_dereference(NFS_I(state->inode)->delegation); if (delegation != NULL && test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags) != 0) delegation_type = delegation->type; rcu_read_unlock(); opendata->o_arg.u.delegation_type = delegation_type; status = nfs4_open_recover(opendata, state); nfs4_opendata_put(opendata); return status; } static int nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { }; int err; do { err = _nfs4_do_open_reclaim(ctx, state); trace_nfs4_open_reclaim(ctx, 0, err); if (nfs4_clear_cap_atomic_open_v1(server, err, &exception)) continue; if (err != -NFS4ERR_DELAY) break; nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state) { struct nfs_open_context *ctx; int ret; ctx = nfs4_state_find_open_context(state); if (IS_ERR(ctx)) return -EAGAIN; ret = nfs4_do_open_reclaim(ctx, state); put_nfs_open_context(ctx); return ret; } static int nfs4_handle_delegation_recall_error(struct nfs_server *server, struct nfs4_state *state, const nfs4_stateid *stateid, int err) { switch (err) { default: printk(KERN_ERR "NFS: %s: unhandled error " "%d.\n", __func__, err); case 0: case -ENOENT: case -EAGAIN: case -ESTALE: break; case -NFS4ERR_BADSESSION: case -NFS4ERR_BADSLOT: case -NFS4ERR_BAD_HIGH_SLOT: case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION: case -NFS4ERR_DEADSESSION: set_bit(NFS_DELEGATED_STATE, &state->flags); nfs4_schedule_session_recovery(server->nfs_client->cl_session, err); return -EAGAIN; case -NFS4ERR_STALE_CLIENTID: case -NFS4ERR_STALE_STATEID: set_bit(NFS_DELEGATED_STATE, &state->flags); case -NFS4ERR_EXPIRED: /* Don't recall a delegation if it was lost */ nfs4_schedule_lease_recovery(server->nfs_client); return -EAGAIN; case -NFS4ERR_MOVED: nfs4_schedule_migration_recovery(server); return -EAGAIN; case -NFS4ERR_LEASE_MOVED: nfs4_schedule_lease_moved_recovery(server->nfs_client); return -EAGAIN; case -NFS4ERR_DELEG_REVOKED: case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_BAD_STATEID: case -NFS4ERR_OPENMODE: nfs_inode_find_state_and_recover(state->inode, stateid); nfs4_schedule_stateid_recovery(server, state); return -EAGAIN; case -NFS4ERR_DELAY: case -NFS4ERR_GRACE: set_bit(NFS_DELEGATED_STATE, &state->flags); ssleep(1); return -EAGAIN; case -ENOMEM: case -NFS4ERR_DENIED: /* kill_proc(fl->fl_pid, SIGLOST, 1); */ return 0; } return err; } int nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid, fmode_t type) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_opendata *opendata; int err = 0; opendata = nfs4_open_recoverdata_alloc(ctx, state, NFS4_OPEN_CLAIM_DELEG_CUR_FH); if (IS_ERR(opendata)) return PTR_ERR(opendata); nfs4_stateid_copy(&opendata->o_arg.u.delegation, stateid); write_seqlock(&state->seqlock); nfs4_stateid_copy(&state->stateid, &state->open_stateid); write_sequnlock(&state->seqlock); clear_bit(NFS_DELEGATED_STATE, &state->flags); switch (type & (FMODE_READ|FMODE_WRITE)) { case FMODE_READ|FMODE_WRITE: case FMODE_WRITE: err = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE); if (err) break; err = nfs4_open_recover_helper(opendata, FMODE_WRITE); if (err) break; case FMODE_READ: err = nfs4_open_recover_helper(opendata, FMODE_READ); } nfs4_opendata_put(opendata); return nfs4_handle_delegation_recall_error(server, state, stateid, err); } static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata) { struct nfs4_opendata *data = calldata; nfs40_setup_sequence(data->o_arg.server->nfs_client->cl_slot_tbl, &data->c_arg.seq_args, &data->c_res.seq_res, task); } static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata) { struct nfs4_opendata *data = calldata; nfs40_sequence_done(task, &data->c_res.seq_res); data->rpc_status = task->tk_status; if (data->rpc_status == 0) { nfs4_stateid_copy(&data->o_res.stateid, &data->c_res.stateid); nfs_confirm_seqid(&data->owner->so_seqid, 0); renew_lease(data->o_res.server, data->timestamp); data->rpc_done = 1; } } static void nfs4_open_confirm_release(void *calldata) { struct nfs4_opendata *data = calldata; struct nfs4_state *state = NULL; /* If this request hasn't been cancelled, do nothing */ if (data->cancelled == 0) goto out_free; /* In case of error, no cleanup! */ if (!data->rpc_done) goto out_free; state = nfs4_opendata_to_nfs4_state(data); if (!IS_ERR(state)) nfs4_close_state(state, data->o_arg.fmode); out_free: nfs4_opendata_put(data); } static const struct rpc_call_ops nfs4_open_confirm_ops = { .rpc_call_prepare = nfs4_open_confirm_prepare, .rpc_call_done = nfs4_open_confirm_done, .rpc_release = nfs4_open_confirm_release, }; /* * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata */ static int _nfs4_proc_open_confirm(struct nfs4_opendata *data) { struct nfs_server *server = NFS_SERVER(d_inode(data->dir)); struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM], .rpc_argp = &data->c_arg, .rpc_resp = &data->c_res, .rpc_cred = data->owner->so_cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs4_open_confirm_ops, .callback_data = data, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; int status; nfs4_init_sequence(&data->c_arg.seq_args, &data->c_res.seq_res, 1); kref_get(&data->kref); data->rpc_done = 0; data->rpc_status = 0; data->timestamp = jiffies; if (data->is_recover) nfs4_set_sequence_privileged(&data->c_arg.seq_args); task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); status = nfs4_wait_for_completion_rpc_task(task); if (status != 0) { data->cancelled = 1; smp_wmb(); } else status = data->rpc_status; rpc_put_task(task); return status; } static void nfs4_open_prepare(struct rpc_task *task, void *calldata) { struct nfs4_opendata *data = calldata; struct nfs4_state_owner *sp = data->owner; struct nfs_client *clp = sp->so_server->nfs_client; enum open_claim_type4 claim = data->o_arg.claim; if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0) goto out_wait; /* * Check if we still need to send an OPEN call, or if we can use * a delegation instead. */ if (data->state != NULL) { struct nfs_delegation *delegation; if (can_open_cached(data->state, data->o_arg.fmode, data->o_arg.open_flags)) goto out_no_action; rcu_read_lock(); delegation = rcu_dereference(NFS_I(data->state->inode)->delegation); if (can_open_delegated(delegation, data->o_arg.fmode, claim)) goto unlock_no_action; rcu_read_unlock(); } /* Update client id. */ data->o_arg.clientid = clp->cl_clientid; switch (claim) { default: break; case NFS4_OPEN_CLAIM_PREVIOUS: case NFS4_OPEN_CLAIM_DELEG_CUR_FH: case NFS4_OPEN_CLAIM_DELEG_PREV_FH: data->o_arg.open_bitmap = &nfs4_open_noattr_bitmap[0]; case NFS4_OPEN_CLAIM_FH: task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR]; nfs_copy_fh(&data->o_res.fh, data->o_arg.fh); } data->timestamp = jiffies; if (nfs4_setup_sequence(data->o_arg.server, &data->o_arg.seq_args, &data->o_res.seq_res, task) != 0) nfs_release_seqid(data->o_arg.seqid); /* Set the create mode (note dependency on the session type) */ data->o_arg.createmode = NFS4_CREATE_UNCHECKED; if (data->o_arg.open_flags & O_EXCL) { data->o_arg.createmode = NFS4_CREATE_EXCLUSIVE; if (nfs4_has_persistent_session(clp)) data->o_arg.createmode = NFS4_CREATE_GUARDED; else if (clp->cl_mvops->minor_version > 0) data->o_arg.createmode = NFS4_CREATE_EXCLUSIVE4_1; } return; unlock_no_action: trace_nfs4_cached_open(data->state); rcu_read_unlock(); out_no_action: task->tk_action = NULL; out_wait: nfs4_sequence_done(task, &data->o_res.seq_res); } static void nfs4_open_done(struct rpc_task *task, void *calldata) { struct nfs4_opendata *data = calldata; data->rpc_status = task->tk_status; if (!nfs4_sequence_done(task, &data->o_res.seq_res)) return; if (task->tk_status == 0) { if (data->o_res.f_attr->valid & NFS_ATTR_FATTR_TYPE) { switch (data->o_res.f_attr->mode & S_IFMT) { case S_IFREG: break; case S_IFLNK: data->rpc_status = -ELOOP; break; case S_IFDIR: data->rpc_status = -EISDIR; break; default: data->rpc_status = -ENOTDIR; } } renew_lease(data->o_res.server, data->timestamp); if (!(data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)) nfs_confirm_seqid(&data->owner->so_seqid, 0); } data->rpc_done = 1; } static void nfs4_open_release(void *calldata) { struct nfs4_opendata *data = calldata; struct nfs4_state *state = NULL; /* If this request hasn't been cancelled, do nothing */ if (data->cancelled == 0) goto out_free; /* In case of error, no cleanup! */ if (data->rpc_status != 0 || !data->rpc_done) goto out_free; /* In case we need an open_confirm, no cleanup! */ if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM) goto out_free; state = nfs4_opendata_to_nfs4_state(data); if (!IS_ERR(state)) nfs4_close_state(state, data->o_arg.fmode); out_free: nfs4_opendata_put(data); } static const struct rpc_call_ops nfs4_open_ops = { .rpc_call_prepare = nfs4_open_prepare, .rpc_call_done = nfs4_open_done, .rpc_release = nfs4_open_release, }; static int nfs4_run_open_task(struct nfs4_opendata *data, int isrecover) { struct inode *dir = d_inode(data->dir); struct nfs_server *server = NFS_SERVER(dir); struct nfs_openargs *o_arg = &data->o_arg; struct nfs_openres *o_res = &data->o_res; struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN], .rpc_argp = o_arg, .rpc_resp = o_res, .rpc_cred = data->owner->so_cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs4_open_ops, .callback_data = data, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; int status; nfs4_init_sequence(&o_arg->seq_args, &o_res->seq_res, 1); kref_get(&data->kref); data->rpc_done = 0; data->rpc_status = 0; data->cancelled = 0; data->is_recover = 0; if (isrecover) { nfs4_set_sequence_privileged(&o_arg->seq_args); data->is_recover = 1; } task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); status = nfs4_wait_for_completion_rpc_task(task); if (status != 0) { data->cancelled = 1; smp_wmb(); } else status = data->rpc_status; rpc_put_task(task); return status; } static int _nfs4_recover_proc_open(struct nfs4_opendata *data) { struct inode *dir = d_inode(data->dir); struct nfs_openres *o_res = &data->o_res; int status; status = nfs4_run_open_task(data, 1); if (status != 0 || !data->rpc_done) return status; nfs_fattr_map_and_free_names(NFS_SERVER(dir), &data->f_attr); if (o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) { status = _nfs4_proc_open_confirm(data); if (status != 0) return status; } return status; } /* * Additional permission checks in order to distinguish between an * open for read, and an open for execute. This works around the * fact that NFSv4 OPEN treats read and execute permissions as being * the same. * Note that in the non-execute case, we want to turn off permission * checking if we just created a new file (POSIX open() semantics). */ static int nfs4_opendata_access(struct rpc_cred *cred, struct nfs4_opendata *opendata, struct nfs4_state *state, fmode_t fmode, int openflags) { struct nfs_access_entry cache; u32 mask; /* access call failed or for some reason the server doesn't * support any access modes -- defer access call until later */ if (opendata->o_res.access_supported == 0) return 0; mask = 0; /* * Use openflags to check for exec, because fmode won't * always have FMODE_EXEC set when file open for exec. */ if (openflags & __FMODE_EXEC) { /* ONLY check for exec rights */ mask = MAY_EXEC; } else if ((fmode & FMODE_READ) && !opendata->file_created) mask = MAY_READ; cache.cred = cred; cache.jiffies = jiffies; nfs_access_set_mask(&cache, opendata->o_res.access_result); nfs_access_add_cache(state->inode, &cache); if ((mask & ~cache.mask & (MAY_READ | MAY_EXEC)) == 0) return 0; /* even though OPEN succeeded, access is denied. Close the file */ nfs4_close_state(state, fmode); return -EACCES; } /* * Note: On error, nfs4_proc_open will free the struct nfs4_opendata */ static int _nfs4_proc_open(struct nfs4_opendata *data) { struct inode *dir = d_inode(data->dir); struct nfs_server *server = NFS_SERVER(dir); struct nfs_openargs *o_arg = &data->o_arg; struct nfs_openres *o_res = &data->o_res; int status; status = nfs4_run_open_task(data, 0); if (!data->rpc_done) return status; if (status != 0) { if (status == -NFS4ERR_BADNAME && !(o_arg->open_flags & O_CREAT)) return -ENOENT; return status; } nfs_fattr_map_and_free_names(server, &data->f_attr); if (o_arg->open_flags & O_CREAT) { update_changeattr(dir, &o_res->cinfo); if (o_arg->open_flags & O_EXCL) data->file_created = 1; else if (o_res->cinfo.before != o_res->cinfo.after) data->file_created = 1; } if ((o_res->rflags & NFS4_OPEN_RESULT_LOCKTYPE_POSIX) == 0) server->caps &= ~NFS_CAP_POSIX_LOCK; if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) { status = _nfs4_proc_open_confirm(data); if (status != 0) return status; } if (!(o_res->f_attr->valid & NFS_ATTR_FATTR)) nfs4_proc_getattr(server, &o_res->fh, o_res->f_attr, o_res->f_label); return 0; } static int nfs4_recover_expired_lease(struct nfs_server *server) { return nfs4_client_recover_expired_lease(server->nfs_client); } /* * OPEN_EXPIRED: * reclaim state on the server after a network partition. * Assumes caller holds the appropriate lock */ static int _nfs4_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state) { struct nfs4_opendata *opendata; int ret; opendata = nfs4_open_recoverdata_alloc(ctx, state, NFS4_OPEN_CLAIM_FH); if (IS_ERR(opendata)) return PTR_ERR(opendata); ret = nfs4_open_recover(opendata, state); if (ret == -ESTALE) d_drop(ctx->dentry); nfs4_opendata_put(opendata); return ret; } static int nfs4_do_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { }; int err; do { err = _nfs4_open_expired(ctx, state); trace_nfs4_open_expired(ctx, 0, err); if (nfs4_clear_cap_atomic_open_v1(server, err, &exception)) continue; switch (err) { default: goto out; case -NFS4ERR_GRACE: case -NFS4ERR_DELAY: nfs4_handle_exception(server, err, &exception); err = 0; } } while (exception.retry); out: return err; } static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state) { struct nfs_open_context *ctx; int ret; ctx = nfs4_state_find_open_context(state); if (IS_ERR(ctx)) return -EAGAIN; ret = nfs4_do_open_expired(ctx, state); put_nfs_open_context(ctx); return ret; } static void nfs_finish_clear_delegation_stateid(struct nfs4_state *state) { nfs_remove_bad_delegation(state->inode); write_seqlock(&state->seqlock); nfs4_stateid_copy(&state->stateid, &state->open_stateid); write_sequnlock(&state->seqlock); clear_bit(NFS_DELEGATED_STATE, &state->flags); } static void nfs40_clear_delegation_stateid(struct nfs4_state *state) { if (rcu_access_pointer(NFS_I(state->inode)->delegation) != NULL) nfs_finish_clear_delegation_stateid(state); } static int nfs40_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state) { /* NFSv4.0 doesn't allow for delegation recovery on open expire */ nfs40_clear_delegation_stateid(state); return nfs4_open_expired(sp, state); } #if defined(CONFIG_NFS_V4_1) static void nfs41_check_delegation_stateid(struct nfs4_state *state) { struct nfs_server *server = NFS_SERVER(state->inode); nfs4_stateid stateid; struct nfs_delegation *delegation; struct rpc_cred *cred; int status; /* Get the delegation credential for use by test/free_stateid */ rcu_read_lock(); delegation = rcu_dereference(NFS_I(state->inode)->delegation); if (delegation == NULL) { rcu_read_unlock(); return; } nfs4_stateid_copy(&stateid, &delegation->stateid); cred = get_rpccred(delegation->cred); rcu_read_unlock(); status = nfs41_test_stateid(server, &stateid, cred); trace_nfs4_test_delegation_stateid(state, NULL, status); if (status != NFS_OK) { /* Free the stateid unless the server explicitly * informs us the stateid is unrecognized. */ if (status != -NFS4ERR_BAD_STATEID) nfs41_free_stateid(server, &stateid, cred); nfs_finish_clear_delegation_stateid(state); } put_rpccred(cred); } /** * nfs41_check_open_stateid - possibly free an open stateid * * @state: NFSv4 state for an inode * * Returns NFS_OK if recovery for this stateid is now finished. * Otherwise a negative NFS4ERR value is returned. */ static int nfs41_check_open_stateid(struct nfs4_state *state) { struct nfs_server *server = NFS_SERVER(state->inode); nfs4_stateid *stateid = &state->open_stateid; struct rpc_cred *cred = state->owner->so_cred; int status; /* If a state reset has been done, test_stateid is unneeded */ if ((test_bit(NFS_O_RDONLY_STATE, &state->flags) == 0) && (test_bit(NFS_O_WRONLY_STATE, &state->flags) == 0) && (test_bit(NFS_O_RDWR_STATE, &state->flags) == 0)) return -NFS4ERR_BAD_STATEID; status = nfs41_test_stateid(server, stateid, cred); trace_nfs4_test_open_stateid(state, NULL, status); if (status != NFS_OK) { /* Free the stateid unless the server explicitly * informs us the stateid is unrecognized. */ if (status != -NFS4ERR_BAD_STATEID) nfs41_free_stateid(server, stateid, cred); clear_bit(NFS_O_RDONLY_STATE, &state->flags); clear_bit(NFS_O_WRONLY_STATE, &state->flags); clear_bit(NFS_O_RDWR_STATE, &state->flags); clear_bit(NFS_OPEN_STATE, &state->flags); } return status; } static int nfs41_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state) { int status; nfs41_check_delegation_stateid(state); status = nfs41_check_open_stateid(state); if (status != NFS_OK) status = nfs4_open_expired(sp, state); return status; } #endif /* * on an EXCLUSIVE create, the server should send back a bitmask with FATTR4-* * fields corresponding to attributes that were used to store the verifier. * Make sure we clobber those fields in the later setattr call */ static inline void nfs4_exclusive_attrset(struct nfs4_opendata *opendata, struct iattr *sattr, struct nfs4_label **label) { const u32 *attrset = opendata->o_res.attrset; if ((attrset[1] & FATTR4_WORD1_TIME_ACCESS) && !(sattr->ia_valid & ATTR_ATIME_SET)) sattr->ia_valid |= ATTR_ATIME; if ((attrset[1] & FATTR4_WORD1_TIME_MODIFY) && !(sattr->ia_valid & ATTR_MTIME_SET)) sattr->ia_valid |= ATTR_MTIME; /* Except MODE, it seems harmless of setting twice. */ if ((attrset[1] & FATTR4_WORD1_MODE)) sattr->ia_valid &= ~ATTR_MODE; if (attrset[2] & FATTR4_WORD2_SECURITY_LABEL) *label = NULL; } static int _nfs4_open_and_get_state(struct nfs4_opendata *opendata, fmode_t fmode, int flags, struct nfs_open_context *ctx) { struct nfs4_state_owner *sp = opendata->owner; struct nfs_server *server = sp->so_server; struct dentry *dentry; struct nfs4_state *state; unsigned int seq; int ret; seq = raw_seqcount_begin(&sp->so_reclaim_seqcount); ret = _nfs4_proc_open(opendata); if (ret != 0) goto out; state = nfs4_opendata_to_nfs4_state(opendata); ret = PTR_ERR(state); if (IS_ERR(state)) goto out; if (server->caps & NFS_CAP_POSIX_LOCK) set_bit(NFS_STATE_POSIX_LOCKS, &state->flags); dentry = opendata->dentry; if (d_really_is_negative(dentry)) { struct dentry *alias; d_drop(dentry); alias = d_exact_alias(dentry, state->inode); if (!alias) alias = d_splice_alias(igrab(state->inode), dentry); /* d_splice_alias() can't fail here - it's a non-directory */ if (alias) { dput(ctx->dentry); ctx->dentry = dentry = alias; } nfs_set_verifier(dentry, nfs_save_change_attribute(d_inode(opendata->dir))); } ret = nfs4_opendata_access(sp->so_cred, opendata, state, fmode, flags); if (ret != 0) goto out; ctx->state = state; if (d_inode(dentry) == state->inode) { nfs_inode_attach_open_context(ctx); if (read_seqcount_retry(&sp->so_reclaim_seqcount, seq)) nfs4_schedule_stateid_recovery(server, state); } out: return ret; } /* * Returns a referenced nfs4_state */ static int _nfs4_do_open(struct inode *dir, struct nfs_open_context *ctx, int flags, struct iattr *sattr, struct nfs4_label *label, int *opened) { struct nfs4_state_owner *sp; struct nfs4_state *state = NULL; struct nfs_server *server = NFS_SERVER(dir); struct nfs4_opendata *opendata; struct dentry *dentry = ctx->dentry; struct rpc_cred *cred = ctx->cred; struct nfs4_threshold **ctx_th = &ctx->mdsthreshold; fmode_t fmode = ctx->mode & (FMODE_READ|FMODE_WRITE|FMODE_EXEC); enum open_claim_type4 claim = NFS4_OPEN_CLAIM_NULL; struct nfs4_label *olabel = NULL; int status; /* Protect against reboot recovery conflicts */ status = -ENOMEM; sp = nfs4_get_state_owner(server, cred, GFP_KERNEL); if (sp == NULL) { dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n"); goto out_err; } status = nfs4_recover_expired_lease(server); if (status != 0) goto err_put_state_owner; if (d_really_is_positive(dentry)) nfs4_return_incompatible_delegation(d_inode(dentry), fmode); status = -ENOMEM; if (d_really_is_positive(dentry)) claim = NFS4_OPEN_CLAIM_FH; opendata = nfs4_opendata_alloc(dentry, sp, fmode, flags, sattr, label, claim, GFP_KERNEL); if (opendata == NULL) goto err_put_state_owner; if (label) { olabel = nfs4_label_alloc(server, GFP_KERNEL); if (IS_ERR(olabel)) { status = PTR_ERR(olabel); goto err_opendata_put; } } if (server->attr_bitmask[2] & FATTR4_WORD2_MDSTHRESHOLD) { if (!opendata->f_attr.mdsthreshold) { opendata->f_attr.mdsthreshold = pnfs_mdsthreshold_alloc(); if (!opendata->f_attr.mdsthreshold) goto err_free_label; } opendata->o_arg.open_bitmap = &nfs4_pnfs_open_bitmap[0]; } if (d_really_is_positive(dentry)) opendata->state = nfs4_get_open_state(d_inode(dentry), sp); status = _nfs4_open_and_get_state(opendata, fmode, flags, ctx); if (status != 0) goto err_free_label; state = ctx->state; if ((opendata->o_arg.open_flags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL) && (opendata->o_arg.createmode != NFS4_CREATE_GUARDED)) { nfs4_exclusive_attrset(opendata, sattr, &label); /* * send create attributes which was not set by open * with an extra setattr. */ if (sattr->ia_valid & NFS4_VALID_ATTRS) { nfs_fattr_init(opendata->o_res.f_attr); status = nfs4_do_setattr(state->inode, cred, opendata->o_res.f_attr, sattr, state, label, olabel); if (status == 0) { nfs_setattr_update_inode(state->inode, sattr, opendata->o_res.f_attr); nfs_setsecurity(state->inode, opendata->o_res.f_attr, olabel); } } } if (opened && opendata->file_created) *opened |= FILE_CREATED; if (pnfs_use_threshold(ctx_th, opendata->f_attr.mdsthreshold, server)) { *ctx_th = opendata->f_attr.mdsthreshold; opendata->f_attr.mdsthreshold = NULL; } nfs4_label_free(olabel); nfs4_opendata_put(opendata); nfs4_put_state_owner(sp); return 0; err_free_label: nfs4_label_free(olabel); err_opendata_put: nfs4_opendata_put(opendata); err_put_state_owner: nfs4_put_state_owner(sp); out_err: return status; } static struct nfs4_state *nfs4_do_open(struct inode *dir, struct nfs_open_context *ctx, int flags, struct iattr *sattr, struct nfs4_label *label, int *opened) { struct nfs_server *server = NFS_SERVER(dir); struct nfs4_exception exception = { }; struct nfs4_state *res; int status; do { status = _nfs4_do_open(dir, ctx, flags, sattr, label, opened); res = ctx->state; trace_nfs4_open_file(ctx, flags, status); if (status == 0) break; /* NOTE: BAD_SEQID means the server and client disagree about the * book-keeping w.r.t. state-changing operations * (OPEN/CLOSE/LOCK/LOCKU...) * It is actually a sign of a bug on the client or on the server. * * If we receive a BAD_SEQID error in the particular case of * doing an OPEN, we assume that nfs_increment_open_seqid() will * have unhashed the old state_owner for us, and that we can * therefore safely retry using a new one. We should still warn * the user though... */ if (status == -NFS4ERR_BAD_SEQID) { pr_warn_ratelimited("NFS: v4 server %s " " returned a bad sequence-id error!\n", NFS_SERVER(dir)->nfs_client->cl_hostname); exception.retry = 1; continue; } /* * BAD_STATEID on OPEN means that the server cancelled our * state before it received the OPEN_CONFIRM. * Recover by retrying the request as per the discussion * on Page 181 of RFC3530. */ if (status == -NFS4ERR_BAD_STATEID) { exception.retry = 1; continue; } if (status == -EAGAIN) { /* We must have found a delegation */ exception.retry = 1; continue; } if (nfs4_clear_cap_atomic_open_v1(server, status, &exception)) continue; res = ERR_PTR(nfs4_handle_exception(server, status, &exception)); } while (exception.retry); return res; } static int _nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred, struct nfs_fattr *fattr, struct iattr *sattr, struct nfs4_state *state, struct nfs4_label *ilabel, struct nfs4_label *olabel) { struct nfs_server *server = NFS_SERVER(inode); struct nfs_setattrargs arg = { .fh = NFS_FH(inode), .iap = sattr, .server = server, .bitmask = server->attr_bitmask, .label = ilabel, }; struct nfs_setattrres res = { .fattr = fattr, .label = olabel, .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = cred, }; struct rpc_cred *delegation_cred = NULL; unsigned long timestamp = jiffies; fmode_t fmode; bool truncate; int status; arg.bitmask = nfs4_bitmask(server, ilabel); if (ilabel) arg.bitmask = nfs4_bitmask(server, olabel); nfs_fattr_init(fattr); /* Servers should only apply open mode checks for file size changes */ truncate = (sattr->ia_valid & ATTR_SIZE) ? true : false; fmode = truncate ? FMODE_WRITE : FMODE_READ; if (nfs4_copy_delegation_stateid(inode, fmode, &arg.stateid, &delegation_cred)) { /* Use that stateid */ } else if (truncate && state != NULL) { struct nfs_lockowner lockowner = { .l_owner = current->files, .l_pid = current->tgid, }; if (!nfs4_valid_open_stateid(state)) return -EBADF; if (nfs4_select_rw_stateid(state, FMODE_WRITE, &lockowner, &arg.stateid, &delegation_cred) == -EIO) return -EBADF; } else nfs4_stateid_copy(&arg.stateid, &zero_stateid); if (delegation_cred) msg.rpc_cred = delegation_cred; status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1); put_rpccred(delegation_cred); if (status == 0 && state != NULL) renew_lease(server, timestamp); trace_nfs4_setattr(inode, &arg.stateid, status); return status; } static int nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred, struct nfs_fattr *fattr, struct iattr *sattr, struct nfs4_state *state, struct nfs4_label *ilabel, struct nfs4_label *olabel) { struct nfs_server *server = NFS_SERVER(inode); struct nfs4_exception exception = { .state = state, .inode = inode, }; int err; do { err = _nfs4_do_setattr(inode, cred, fattr, sattr, state, ilabel, olabel); switch (err) { case -NFS4ERR_OPENMODE: if (!(sattr->ia_valid & ATTR_SIZE)) { pr_warn_once("NFSv4: server %s is incorrectly " "applying open mode checks to " "a SETATTR that is not " "changing file size.\n", server->nfs_client->cl_hostname); } if (state && !(state->state & FMODE_WRITE)) { err = -EBADF; if (sattr->ia_valid & ATTR_OPEN) err = -EACCES; goto out; } } err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); out: return err; } static bool nfs4_wait_on_layoutreturn(struct inode *inode, struct rpc_task *task) { if (inode == NULL || !nfs_have_layout(inode)) return false; return pnfs_wait_on_layoutreturn(inode, task); } struct nfs4_closedata { struct inode *inode; struct nfs4_state *state; struct nfs_closeargs arg; struct nfs_closeres res; struct nfs_fattr fattr; unsigned long timestamp; bool roc; u32 roc_barrier; }; static void nfs4_free_closedata(void *data) { struct nfs4_closedata *calldata = data; struct nfs4_state_owner *sp = calldata->state->owner; struct super_block *sb = calldata->state->inode->i_sb; if (calldata->roc) pnfs_roc_release(calldata->state->inode); nfs4_put_open_state(calldata->state); nfs_free_seqid(calldata->arg.seqid); nfs4_put_state_owner(sp); nfs_sb_deactive(sb); kfree(calldata); } static void nfs4_close_done(struct rpc_task *task, void *data) { struct nfs4_closedata *calldata = data; struct nfs4_state *state = calldata->state; struct nfs_server *server = NFS_SERVER(calldata->inode); nfs4_stateid *res_stateid = NULL; dprintk("%s: begin!\n", __func__); if (!nfs4_sequence_done(task, &calldata->res.seq_res)) return; trace_nfs4_close(state, &calldata->arg, &calldata->res, task->tk_status); /* hmm. we are done with the inode, and in the process of freeing * the state_owner. we keep this around to process errors */ switch (task->tk_status) { case 0: res_stateid = &calldata->res.stateid; if (calldata->roc) pnfs_roc_set_barrier(state->inode, calldata->roc_barrier); renew_lease(server, calldata->timestamp); break; case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_STALE_STATEID: case -NFS4ERR_OLD_STATEID: case -NFS4ERR_BAD_STATEID: case -NFS4ERR_EXPIRED: if (!nfs4_stateid_match(&calldata->arg.stateid, &state->open_stateid)) { rpc_restart_call_prepare(task); goto out_release; } if (calldata->arg.fmode == 0) break; default: if (nfs4_async_handle_error(task, server, state, NULL) == -EAGAIN) { rpc_restart_call_prepare(task); goto out_release; } } nfs_clear_open_stateid(state, &calldata->arg.stateid, res_stateid, calldata->arg.fmode); out_release: nfs_release_seqid(calldata->arg.seqid); nfs_refresh_inode(calldata->inode, calldata->res.fattr); dprintk("%s: done, ret = %d!\n", __func__, task->tk_status); } static void nfs4_close_prepare(struct rpc_task *task, void *data) { struct nfs4_closedata *calldata = data; struct nfs4_state *state = calldata->state; struct inode *inode = calldata->inode; bool is_rdonly, is_wronly, is_rdwr; int call_close = 0; dprintk("%s: begin!\n", __func__); if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0) goto out_wait; task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE]; spin_lock(&state->owner->so_lock); is_rdwr = test_bit(NFS_O_RDWR_STATE, &state->flags); is_rdonly = test_bit(NFS_O_RDONLY_STATE, &state->flags); is_wronly = test_bit(NFS_O_WRONLY_STATE, &state->flags); nfs4_stateid_copy(&calldata->arg.stateid, &state->open_stateid); /* Calculate the change in open mode */ calldata->arg.fmode = 0; if (state->n_rdwr == 0) { if (state->n_rdonly == 0) call_close |= is_rdonly; else if (is_rdonly) calldata->arg.fmode |= FMODE_READ; if (state->n_wronly == 0) call_close |= is_wronly; else if (is_wronly) calldata->arg.fmode |= FMODE_WRITE; if (calldata->arg.fmode != (FMODE_READ|FMODE_WRITE)) call_close |= is_rdwr; } else if (is_rdwr) calldata->arg.fmode |= FMODE_READ|FMODE_WRITE; if (!nfs4_valid_open_stateid(state)) call_close = 0; spin_unlock(&state->owner->so_lock); if (!call_close) { /* Note: exit _without_ calling nfs4_close_done */ goto out_no_action; } if (nfs4_wait_on_layoutreturn(inode, task)) { nfs_release_seqid(calldata->arg.seqid); goto out_wait; } if (calldata->arg.fmode == 0) task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE]; if (calldata->roc) pnfs_roc_get_barrier(inode, &calldata->roc_barrier); calldata->arg.share_access = nfs4_map_atomic_open_share(NFS_SERVER(inode), calldata->arg.fmode, 0); nfs_fattr_init(calldata->res.fattr); calldata->timestamp = jiffies; if (nfs4_setup_sequence(NFS_SERVER(inode), &calldata->arg.seq_args, &calldata->res.seq_res, task) != 0) nfs_release_seqid(calldata->arg.seqid); dprintk("%s: done!\n", __func__); return; out_no_action: task->tk_action = NULL; out_wait: nfs4_sequence_done(task, &calldata->res.seq_res); } static const struct rpc_call_ops nfs4_close_ops = { .rpc_call_prepare = nfs4_close_prepare, .rpc_call_done = nfs4_close_done, .rpc_release = nfs4_free_closedata, }; static bool nfs4_roc(struct inode *inode) { if (!nfs_have_layout(inode)) return false; return pnfs_roc(inode); } /* * It is possible for data to be read/written from a mem-mapped file * after the sys_close call (which hits the vfs layer as a flush). * This means that we can't safely call nfsv4 close on a file until * the inode is cleared. This in turn means that we are not good * NFSv4 citizens - we do not indicate to the server to update the file's * share state even when we are done with one of the three share * stateid's in the inode. * * NOTE: Caller must be holding the sp->so_owner semaphore! */ int nfs4_do_close(struct nfs4_state *state, gfp_t gfp_mask, int wait) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs_seqid *(*alloc_seqid)(struct nfs_seqid_counter *, gfp_t); struct nfs4_closedata *calldata; struct nfs4_state_owner *sp = state->owner; struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE], .rpc_cred = state->owner->so_cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs4_close_ops, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; int status = -ENOMEM; nfs4_state_protect(server->nfs_client, NFS_SP4_MACH_CRED_CLEANUP, &task_setup_data.rpc_client, &msg); calldata = kzalloc(sizeof(*calldata), gfp_mask); if (calldata == NULL) goto out; nfs4_init_sequence(&calldata->arg.seq_args, &calldata->res.seq_res, 1); calldata->inode = state->inode; calldata->state = state; calldata->arg.fh = NFS_FH(state->inode); /* Serialization for the sequence id */ alloc_seqid = server->nfs_client->cl_mvops->alloc_seqid; calldata->arg.seqid = alloc_seqid(&state->owner->so_seqid, gfp_mask); if (IS_ERR(calldata->arg.seqid)) goto out_free_calldata; calldata->arg.fmode = 0; calldata->arg.bitmask = server->cache_consistency_bitmask; calldata->res.fattr = &calldata->fattr; calldata->res.seqid = calldata->arg.seqid; calldata->res.server = server; calldata->roc = nfs4_roc(state->inode); nfs_sb_active(calldata->inode->i_sb); msg.rpc_argp = &calldata->arg; msg.rpc_resp = &calldata->res; task_setup_data.callback_data = calldata; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); status = 0; if (wait) status = rpc_wait_for_completion_task(task); rpc_put_task(task); return status; out_free_calldata: kfree(calldata); out: nfs4_put_open_state(state); nfs4_put_state_owner(sp); return status; } static struct inode * nfs4_atomic_open(struct inode *dir, struct nfs_open_context *ctx, int open_flags, struct iattr *attr, int *opened) { struct nfs4_state *state; struct nfs4_label l = {0, 0, 0, NULL}, *label = NULL; label = nfs4_label_init_security(dir, ctx->dentry, attr, &l); /* Protect against concurrent sillydeletes */ state = nfs4_do_open(dir, ctx, open_flags, attr, label, opened); nfs4_label_release_security(label); if (IS_ERR(state)) return ERR_CAST(state); return state->inode; } static void nfs4_close_context(struct nfs_open_context *ctx, int is_sync) { if (ctx->state == NULL) return; if (is_sync) nfs4_close_sync(ctx->state, ctx->mode); else nfs4_close_state(ctx->state, ctx->mode); } #define FATTR4_WORD1_NFS40_MASK (2*FATTR4_WORD1_MOUNTED_ON_FILEID - 1UL) #define FATTR4_WORD2_NFS41_MASK (2*FATTR4_WORD2_SUPPATTR_EXCLCREAT - 1UL) #define FATTR4_WORD2_NFS42_MASK (2*FATTR4_WORD2_SECURITY_LABEL - 1UL) static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle) { u32 bitmask[3] = {}, minorversion = server->nfs_client->cl_minorversion; struct nfs4_server_caps_arg args = { .fhandle = fhandle, .bitmask = bitmask, }; struct nfs4_server_caps_res res = {}; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS], .rpc_argp = &args, .rpc_resp = &res, }; int status; bitmask[0] = FATTR4_WORD0_SUPPORTED_ATTRS | FATTR4_WORD0_FH_EXPIRE_TYPE | FATTR4_WORD0_LINK_SUPPORT | FATTR4_WORD0_SYMLINK_SUPPORT | FATTR4_WORD0_ACLSUPPORT; if (minorversion) bitmask[2] = FATTR4_WORD2_SUPPATTR_EXCLCREAT; status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); if (status == 0) { /* Sanity check the server answers */ switch (minorversion) { case 0: res.attr_bitmask[1] &= FATTR4_WORD1_NFS40_MASK; res.attr_bitmask[2] = 0; break; case 1: res.attr_bitmask[2] &= FATTR4_WORD2_NFS41_MASK; break; case 2: res.attr_bitmask[2] &= FATTR4_WORD2_NFS42_MASK; } memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask)); server->caps &= ~(NFS_CAP_ACLS|NFS_CAP_HARDLINKS| NFS_CAP_SYMLINKS|NFS_CAP_FILEID| NFS_CAP_MODE|NFS_CAP_NLINK|NFS_CAP_OWNER| NFS_CAP_OWNER_GROUP|NFS_CAP_ATIME| NFS_CAP_CTIME|NFS_CAP_MTIME| NFS_CAP_SECURITY_LABEL); if (res.attr_bitmask[0] & FATTR4_WORD0_ACL && res.acl_bitmask & ACL4_SUPPORT_ALLOW_ACL) server->caps |= NFS_CAP_ACLS; if (res.has_links != 0) server->caps |= NFS_CAP_HARDLINKS; if (res.has_symlinks != 0) server->caps |= NFS_CAP_SYMLINKS; if (res.attr_bitmask[0] & FATTR4_WORD0_FILEID) server->caps |= NFS_CAP_FILEID; if (res.attr_bitmask[1] & FATTR4_WORD1_MODE) server->caps |= NFS_CAP_MODE; if (res.attr_bitmask[1] & FATTR4_WORD1_NUMLINKS) server->caps |= NFS_CAP_NLINK; if (res.attr_bitmask[1] & FATTR4_WORD1_OWNER) server->caps |= NFS_CAP_OWNER; if (res.attr_bitmask[1] & FATTR4_WORD1_OWNER_GROUP) server->caps |= NFS_CAP_OWNER_GROUP; if (res.attr_bitmask[1] & FATTR4_WORD1_TIME_ACCESS) server->caps |= NFS_CAP_ATIME; if (res.attr_bitmask[1] & FATTR4_WORD1_TIME_METADATA) server->caps |= NFS_CAP_CTIME; if (res.attr_bitmask[1] & FATTR4_WORD1_TIME_MODIFY) server->caps |= NFS_CAP_MTIME; #ifdef CONFIG_NFS_V4_SECURITY_LABEL if (res.attr_bitmask[2] & FATTR4_WORD2_SECURITY_LABEL) server->caps |= NFS_CAP_SECURITY_LABEL; #endif memcpy(server->attr_bitmask_nl, res.attr_bitmask, sizeof(server->attr_bitmask)); server->attr_bitmask_nl[2] &= ~FATTR4_WORD2_SECURITY_LABEL; memcpy(server->cache_consistency_bitmask, res.attr_bitmask, sizeof(server->cache_consistency_bitmask)); server->cache_consistency_bitmask[0] &= FATTR4_WORD0_CHANGE|FATTR4_WORD0_SIZE; server->cache_consistency_bitmask[1] &= FATTR4_WORD1_TIME_METADATA|FATTR4_WORD1_TIME_MODIFY; server->cache_consistency_bitmask[2] = 0; memcpy(server->exclcreat_bitmask, res.exclcreat_bitmask, sizeof(server->exclcreat_bitmask)); server->acl_bitmask = res.acl_bitmask; server->fh_expire_type = res.fh_expire_type; } return status; } int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_server_capabilities(server, fhandle), &exception); } while (exception.retry); return err; } static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { u32 bitmask[3]; struct nfs4_lookup_root_arg args = { .bitmask = bitmask, }; struct nfs4_lookup_res res = { .server = server, .fattr = info->fattr, .fh = fhandle, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT], .rpc_argp = &args, .rpc_resp = &res, }; bitmask[0] = nfs4_fattr_bitmap[0]; bitmask[1] = nfs4_fattr_bitmap[1]; /* * Process the label in the upcoming getfattr */ bitmask[2] = nfs4_fattr_bitmap[2] & ~FATTR4_WORD2_SECURITY_LABEL; nfs_fattr_init(info->fattr); return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); } static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct nfs4_exception exception = { }; int err; do { err = _nfs4_lookup_root(server, fhandle, info); trace_nfs4_lookup_root(server, fhandle, info->fattr, err); switch (err) { case 0: case -NFS4ERR_WRONGSEC: goto out; default: err = nfs4_handle_exception(server, err, &exception); } } while (exception.retry); out: return err; } static int nfs4_lookup_root_sec(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info, rpc_authflavor_t flavor) { struct rpc_auth_create_args auth_args = { .pseudoflavor = flavor, }; struct rpc_auth *auth; int ret; auth = rpcauth_create(&auth_args, server->client); if (IS_ERR(auth)) { ret = -EACCES; goto out; } ret = nfs4_lookup_root(server, fhandle, info); out: return ret; } /* * Retry pseudoroot lookup with various security flavors. We do this when: * * NFSv4.0: the PUTROOTFH operation returns NFS4ERR_WRONGSEC * NFSv4.1: the server does not support the SECINFO_NO_NAME operation * * Returns zero on success, or a negative NFS4ERR value, or a * negative errno value. */ static int nfs4_find_root_sec(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { /* Per 3530bis 15.33.5 */ static const rpc_authflavor_t flav_array[] = { RPC_AUTH_GSS_KRB5P, RPC_AUTH_GSS_KRB5I, RPC_AUTH_GSS_KRB5, RPC_AUTH_UNIX, /* courtesy */ RPC_AUTH_NULL, }; int status = -EPERM; size_t i; if (server->auth_info.flavor_len > 0) { /* try each flavor specified by user */ for (i = 0; i < server->auth_info.flavor_len; i++) { status = nfs4_lookup_root_sec(server, fhandle, info, server->auth_info.flavors[i]); if (status == -NFS4ERR_WRONGSEC || status == -EACCES) continue; break; } } else { /* no flavors specified by user, try default list */ for (i = 0; i < ARRAY_SIZE(flav_array); i++) { status = nfs4_lookup_root_sec(server, fhandle, info, flav_array[i]); if (status == -NFS4ERR_WRONGSEC || status == -EACCES) continue; break; } } /* * -EACCESS could mean that the user doesn't have correct permissions * to access the mount. It could also mean that we tried to mount * with a gss auth flavor, but rpc.gssd isn't running. Either way, * existing mount programs don't handle -EACCES very well so it should * be mapped to -EPERM instead. */ if (status == -EACCES) status = -EPERM; return status; } static int nfs4_do_find_root_sec(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { int mv = server->nfs_client->cl_minorversion; return nfs_v4_minor_ops[mv]->find_root_sec(server, fhandle, info); } /** * nfs4_proc_get_rootfh - get file handle for server's pseudoroot * @server: initialized nfs_server handle * @fhandle: we fill in the pseudo-fs root file handle * @info: we fill in an FSINFO struct * @auth_probe: probe the auth flavours * * Returns zero on success, or a negative errno. */ int nfs4_proc_get_rootfh(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info, bool auth_probe) { int status = 0; if (!auth_probe) status = nfs4_lookup_root(server, fhandle, info); if (auth_probe || status == NFS4ERR_WRONGSEC) status = nfs4_do_find_root_sec(server, fhandle, info); if (status == 0) status = nfs4_server_capabilities(server, fhandle); if (status == 0) status = nfs4_do_fsinfo(server, fhandle, info); return nfs4_map_errors(status); } static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *mntfh, struct nfs_fsinfo *info) { int error; struct nfs_fattr *fattr = info->fattr; struct nfs4_label *label = NULL; error = nfs4_server_capabilities(server, mntfh); if (error < 0) { dprintk("nfs4_get_root: getcaps error = %d\n", -error); return error; } label = nfs4_label_alloc(server, GFP_KERNEL); if (IS_ERR(label)) return PTR_ERR(label); error = nfs4_proc_getattr(server, mntfh, fattr, label); if (error < 0) { dprintk("nfs4_get_root: getattr error = %d\n", -error); goto err_free_label; } if (fattr->valid & NFS_ATTR_FATTR_FSID && !nfs_fsid_equal(&server->fsid, &fattr->fsid)) memcpy(&server->fsid, &fattr->fsid, sizeof(server->fsid)); err_free_label: nfs4_label_free(label); return error; } /* * Get locations and (maybe) other attributes of a referral. * Note that we'll actually follow the referral later when * we detect fsid mismatch in inode revalidation */ static int nfs4_get_referral(struct rpc_clnt *client, struct inode *dir, const struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle) { int status = -ENOMEM; struct page *page = NULL; struct nfs4_fs_locations *locations = NULL; page = alloc_page(GFP_KERNEL); if (page == NULL) goto out; locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL); if (locations == NULL) goto out; status = nfs4_proc_fs_locations(client, dir, name, locations, page); if (status != 0) goto out; /* * If the fsid didn't change, this is a migration event, not a * referral. Cause us to drop into the exception handler, which * will kick off migration recovery. */ if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) { dprintk("%s: server did not return a different fsid for" " a referral at %s\n", __func__, name->name); status = -NFS4ERR_MOVED; goto out; } /* Fixup attributes for the nfs_lookup() call to nfs_fhget() */ nfs_fixup_referral_attributes(&locations->fattr); /* replace the lookup nfs_fattr with the locations nfs_fattr */ memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr)); memset(fhandle, 0, sizeof(struct nfs_fh)); out: if (page) __free_page(page); kfree(locations); return status; } static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr, struct nfs4_label *label) { struct nfs4_getattr_arg args = { .fh = fhandle, .bitmask = server->attr_bitmask, }; struct nfs4_getattr_res res = { .fattr = fattr, .label = label, .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR], .rpc_argp = &args, .rpc_resp = &res, }; args.bitmask = nfs4_bitmask(server, label); nfs_fattr_init(fattr); return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); } static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr, struct nfs4_label *label) { struct nfs4_exception exception = { }; int err; do { err = _nfs4_proc_getattr(server, fhandle, fattr, label); trace_nfs4_getattr(server, fhandle, fattr, err); err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } /* * The file is not closed if it is opened due to the a request to change * the size of the file. The open call will not be needed once the * VFS layer lookup-intents are implemented. * * Close is called when the inode is destroyed. * If we haven't opened the file for O_WRONLY, we * need to in the size_change case to obtain a stateid. * * Got race? * Because OPEN is always done by name in nfsv4, it is * possible that we opened a different file by the same * name. We can recognize this race condition, but we * can't do anything about it besides returning an error. * * This will be fixed with VFS changes (lookup-intent). */ static int nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr, struct iattr *sattr) { struct inode *inode = d_inode(dentry); struct rpc_cred *cred = NULL; struct nfs4_state *state = NULL; struct nfs4_label *label = NULL; int status; if (pnfs_ld_layoutret_on_setattr(inode) && sattr->ia_valid & ATTR_SIZE && sattr->ia_size < i_size_read(inode)) pnfs_commit_and_return_layout(inode); nfs_fattr_init(fattr); /* Deal with open(O_TRUNC) */ if (sattr->ia_valid & ATTR_OPEN) sattr->ia_valid &= ~(ATTR_MTIME|ATTR_CTIME); /* Optimization: if the end result is no change, don't RPC */ if ((sattr->ia_valid & ~(ATTR_FILE|ATTR_OPEN)) == 0) return 0; /* Search for an existing open(O_WRITE) file */ if (sattr->ia_valid & ATTR_FILE) { struct nfs_open_context *ctx; ctx = nfs_file_open_context(sattr->ia_file); if (ctx) { cred = ctx->cred; state = ctx->state; } } label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); if (IS_ERR(label)) return PTR_ERR(label); status = nfs4_do_setattr(inode, cred, fattr, sattr, state, NULL, label); if (status == 0) { nfs_setattr_update_inode(inode, sattr, fattr); nfs_setsecurity(inode, fattr, label); } nfs4_label_free(label); return status; } static int _nfs4_proc_lookup(struct rpc_clnt *clnt, struct inode *dir, const struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr, struct nfs4_label *label) { struct nfs_server *server = NFS_SERVER(dir); int status; struct nfs4_lookup_arg args = { .bitmask = server->attr_bitmask, .dir_fh = NFS_FH(dir), .name = name, }; struct nfs4_lookup_res res = { .server = server, .fattr = fattr, .label = label, .fh = fhandle, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP], .rpc_argp = &args, .rpc_resp = &res, }; args.bitmask = nfs4_bitmask(server, label); nfs_fattr_init(fattr); dprintk("NFS call lookup %s\n", name->name); status = nfs4_call_sync(clnt, server, &msg, &args.seq_args, &res.seq_res, 0); dprintk("NFS reply lookup: %d\n", status); return status; } static void nfs_fixup_secinfo_attributes(struct nfs_fattr *fattr) { fattr->valid |= NFS_ATTR_FATTR_TYPE | NFS_ATTR_FATTR_MODE | NFS_ATTR_FATTR_NLINK | NFS_ATTR_FATTR_MOUNTPOINT; fattr->mode = S_IFDIR | S_IRUGO | S_IXUGO; fattr->nlink = 2; } static int nfs4_proc_lookup_common(struct rpc_clnt **clnt, struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr, struct nfs4_label *label) { struct nfs4_exception exception = { }; struct rpc_clnt *client = *clnt; int err; do { err = _nfs4_proc_lookup(client, dir, name, fhandle, fattr, label); trace_nfs4_lookup(dir, name, err); switch (err) { case -NFS4ERR_BADNAME: err = -ENOENT; goto out; case -NFS4ERR_MOVED: err = nfs4_get_referral(client, dir, name, fattr, fhandle); if (err == -NFS4ERR_MOVED) err = nfs4_handle_exception(NFS_SERVER(dir), err, &exception); goto out; case -NFS4ERR_WRONGSEC: err = -EPERM; if (client != *clnt) goto out; client = nfs4_negotiate_security(client, dir, name); if (IS_ERR(client)) return PTR_ERR(client); exception.retry = 1; break; default: err = nfs4_handle_exception(NFS_SERVER(dir), err, &exception); } } while (exception.retry); out: if (err == 0) *clnt = client; else if (client != *clnt) rpc_shutdown_client(client); return err; } static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr, struct nfs4_label *label) { int status; struct rpc_clnt *client = NFS_CLIENT(dir); status = nfs4_proc_lookup_common(&client, dir, name, fhandle, fattr, label); if (client != NFS_CLIENT(dir)) { rpc_shutdown_client(client); nfs_fixup_secinfo_attributes(fattr); } return status; } struct rpc_clnt * nfs4_proc_lookup_mountpoint(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct rpc_clnt *client = NFS_CLIENT(dir); int status; status = nfs4_proc_lookup_common(&client, dir, name, fhandle, fattr, NULL); if (status < 0) return ERR_PTR(status); return (client == NFS_CLIENT(dir)) ? rpc_clone_client(client) : client; } static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry) { struct nfs_server *server = NFS_SERVER(inode); struct nfs4_accessargs args = { .fh = NFS_FH(inode), .bitmask = server->cache_consistency_bitmask, }; struct nfs4_accessres res = { .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = entry->cred, }; int mode = entry->mask; int status = 0; /* * Determine which access bits we want to ask for... */ if (mode & MAY_READ) args.access |= NFS4_ACCESS_READ; if (S_ISDIR(inode->i_mode)) { if (mode & MAY_WRITE) args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE; if (mode & MAY_EXEC) args.access |= NFS4_ACCESS_LOOKUP; } else { if (mode & MAY_WRITE) args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND; if (mode & MAY_EXEC) args.access |= NFS4_ACCESS_EXECUTE; } res.fattr = nfs_alloc_fattr(); if (res.fattr == NULL) return -ENOMEM; status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); if (!status) { nfs_access_set_mask(entry, res.access); nfs_refresh_inode(inode, res.fattr); } nfs_free_fattr(res.fattr); return status; } static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry) { struct nfs4_exception exception = { }; int err; do { err = _nfs4_proc_access(inode, entry); trace_nfs4_access(inode, err); err = nfs4_handle_exception(NFS_SERVER(inode), err, &exception); } while (exception.retry); return err; } /* * TODO: For the time being, we don't try to get any attributes * along with any of the zero-copy operations READ, READDIR, * READLINK, WRITE. * * In the case of the first three, we want to put the GETATTR * after the read-type operation -- this is because it is hard * to predict the length of a GETATTR response in v4, and thus * align the READ data correctly. This means that the GETATTR * may end up partially falling into the page cache, and we should * shift it into the 'tail' of the xdr_buf before processing. * To do this efficiently, we need to know the total length * of data received, which doesn't seem to be available outside * of the RPC layer. * * In the case of WRITE, we also want to put the GETATTR after * the operation -- in this case because we want to make sure * we get the post-operation mtime and size. * * Both of these changes to the XDR layer would in fact be quite * minor, but I decided to leave them for a subsequent patch. */ static int _nfs4_proc_readlink(struct inode *inode, struct page *page, unsigned int pgbase, unsigned int pglen) { struct nfs4_readlink args = { .fh = NFS_FH(inode), .pgbase = pgbase, .pglen = pglen, .pages = &page, }; struct nfs4_readlink_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK], .rpc_argp = &args, .rpc_resp = &res, }; return nfs4_call_sync(NFS_SERVER(inode)->client, NFS_SERVER(inode), &msg, &args.seq_args, &res.seq_res, 0); } static int nfs4_proc_readlink(struct inode *inode, struct page *page, unsigned int pgbase, unsigned int pglen) { struct nfs4_exception exception = { }; int err; do { err = _nfs4_proc_readlink(inode, page, pgbase, pglen); trace_nfs4_readlink(inode, err); err = nfs4_handle_exception(NFS_SERVER(inode), err, &exception); } while (exception.retry); return err; } /* * This is just for mknod. open(O_CREAT) will always do ->open_context(). */ static int nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr, int flags) { struct nfs4_label l, *ilabel = NULL; struct nfs_open_context *ctx; struct nfs4_state *state; int status = 0; ctx = alloc_nfs_open_context(dentry, FMODE_READ); if (IS_ERR(ctx)) return PTR_ERR(ctx); ilabel = nfs4_label_init_security(dir, dentry, sattr, &l); sattr->ia_mode &= ~current_umask(); state = nfs4_do_open(dir, ctx, flags, sattr, ilabel, NULL); if (IS_ERR(state)) { status = PTR_ERR(state); goto out; } out: nfs4_label_release_security(ilabel); put_nfs_open_context(ctx); return status; } static int _nfs4_proc_remove(struct inode *dir, struct qstr *name) { struct nfs_server *server = NFS_SERVER(dir); struct nfs_removeargs args = { .fh = NFS_FH(dir), .name = *name, }; struct nfs_removeres res = { .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE], .rpc_argp = &args, .rpc_resp = &res, }; int status; status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 1); if (status == 0) update_changeattr(dir, &res.cinfo); return status; } static int nfs4_proc_remove(struct inode *dir, struct qstr *name) { struct nfs4_exception exception = { }; int err; do { err = _nfs4_proc_remove(dir, name); trace_nfs4_remove(dir, name, err); err = nfs4_handle_exception(NFS_SERVER(dir), err, &exception); } while (exception.retry); return err; } static void nfs4_proc_unlink_setup(struct rpc_message *msg, struct inode *dir) { struct nfs_server *server = NFS_SERVER(dir); struct nfs_removeargs *args = msg->rpc_argp; struct nfs_removeres *res = msg->rpc_resp; res->server = server; msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE]; nfs4_init_sequence(&args->seq_args, &res->seq_res, 1); nfs_fattr_init(res->dir_attr); } static void nfs4_proc_unlink_rpc_prepare(struct rpc_task *task, struct nfs_unlinkdata *data) { nfs4_setup_sequence(NFS_SB(data->dentry->d_sb), &data->args.seq_args, &data->res.seq_res, task); } static int nfs4_proc_unlink_done(struct rpc_task *task, struct inode *dir) { struct nfs_unlinkdata *data = task->tk_calldata; struct nfs_removeres *res = &data->res; if (!nfs4_sequence_done(task, &res->seq_res)) return 0; if (nfs4_async_handle_error(task, res->server, NULL, &data->timeout) == -EAGAIN) return 0; update_changeattr(dir, &res->cinfo); return 1; } static void nfs4_proc_rename_setup(struct rpc_message *msg, struct inode *dir) { struct nfs_server *server = NFS_SERVER(dir); struct nfs_renameargs *arg = msg->rpc_argp; struct nfs_renameres *res = msg->rpc_resp; msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME]; res->server = server; nfs4_init_sequence(&arg->seq_args, &res->seq_res, 1); } static void nfs4_proc_rename_rpc_prepare(struct rpc_task *task, struct nfs_renamedata *data) { nfs4_setup_sequence(NFS_SERVER(data->old_dir), &data->args.seq_args, &data->res.seq_res, task); } static int nfs4_proc_rename_done(struct rpc_task *task, struct inode *old_dir, struct inode *new_dir) { struct nfs_renamedata *data = task->tk_calldata; struct nfs_renameres *res = &data->res; if (!nfs4_sequence_done(task, &res->seq_res)) return 0; if (nfs4_async_handle_error(task, res->server, NULL, &data->timeout) == -EAGAIN) return 0; update_changeattr(old_dir, &res->old_cinfo); update_changeattr(new_dir, &res->new_cinfo); return 1; } static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs_server *server = NFS_SERVER(inode); struct nfs4_link_arg arg = { .fh = NFS_FH(inode), .dir_fh = NFS_FH(dir), .name = name, .bitmask = server->attr_bitmask, }; struct nfs4_link_res res = { .server = server, .label = NULL, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK], .rpc_argp = &arg, .rpc_resp = &res, }; int status = -ENOMEM; res.fattr = nfs_alloc_fattr(); if (res.fattr == NULL) goto out; res.label = nfs4_label_alloc(server, GFP_KERNEL); if (IS_ERR(res.label)) { status = PTR_ERR(res.label); goto out; } arg.bitmask = nfs4_bitmask(server, res.label); status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1); if (!status) { update_changeattr(dir, &res.cinfo); status = nfs_post_op_update_inode(inode, res.fattr); if (!status) nfs_setsecurity(inode, res.fattr, res.label); } nfs4_label_free(res.label); out: nfs_free_fattr(res.fattr); return status; } static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(inode), _nfs4_proc_link(inode, dir, name), &exception); } while (exception.retry); return err; } struct nfs4_createdata { struct rpc_message msg; struct nfs4_create_arg arg; struct nfs4_create_res res; struct nfs_fh fh; struct nfs_fattr fattr; struct nfs4_label *label; }; static struct nfs4_createdata *nfs4_alloc_createdata(struct inode *dir, struct qstr *name, struct iattr *sattr, u32 ftype) { struct nfs4_createdata *data; data = kzalloc(sizeof(*data), GFP_KERNEL); if (data != NULL) { struct nfs_server *server = NFS_SERVER(dir); data->label = nfs4_label_alloc(server, GFP_KERNEL); if (IS_ERR(data->label)) goto out_free; data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE]; data->msg.rpc_argp = &data->arg; data->msg.rpc_resp = &data->res; data->arg.dir_fh = NFS_FH(dir); data->arg.server = server; data->arg.name = name; data->arg.attrs = sattr; data->arg.ftype = ftype; data->arg.bitmask = nfs4_bitmask(server, data->label); data->res.server = server; data->res.fh = &data->fh; data->res.fattr = &data->fattr; data->res.label = data->label; nfs_fattr_init(data->res.fattr); } return data; out_free: kfree(data); return NULL; } static int nfs4_do_create(struct inode *dir, struct dentry *dentry, struct nfs4_createdata *data) { int status = nfs4_call_sync(NFS_SERVER(dir)->client, NFS_SERVER(dir), &data->msg, &data->arg.seq_args, &data->res.seq_res, 1); if (status == 0) { update_changeattr(dir, &data->res.dir_cinfo); status = nfs_instantiate(dentry, data->res.fh, data->res.fattr, data->res.label); } return status; } static void nfs4_free_createdata(struct nfs4_createdata *data) { nfs4_label_free(data->label); kfree(data); } static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page, unsigned int len, struct iattr *sattr, struct nfs4_label *label) { struct nfs4_createdata *data; int status = -ENAMETOOLONG; if (len > NFS4_MAXPATHLEN) goto out; status = -ENOMEM; data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4LNK); if (data == NULL) goto out; data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK]; data->arg.u.symlink.pages = &page; data->arg.u.symlink.len = len; data->arg.label = label; status = nfs4_do_create(dir, dentry, data); nfs4_free_createdata(data); out: return status; } static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page, unsigned int len, struct iattr *sattr) { struct nfs4_exception exception = { }; struct nfs4_label l, *label = NULL; int err; label = nfs4_label_init_security(dir, dentry, sattr, &l); do { err = _nfs4_proc_symlink(dir, dentry, page, len, sattr, label); trace_nfs4_symlink(dir, &dentry->d_name, err); err = nfs4_handle_exception(NFS_SERVER(dir), err, &exception); } while (exception.retry); nfs4_label_release_security(label); return err; } static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr, struct nfs4_label *label) { struct nfs4_createdata *data; int status = -ENOMEM; data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4DIR); if (data == NULL) goto out; data->arg.label = label; status = nfs4_do_create(dir, dentry, data); nfs4_free_createdata(data); out: return status; } static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs4_exception exception = { }; struct nfs4_label l, *label = NULL; int err; label = nfs4_label_init_security(dir, dentry, sattr, &l); sattr->ia_mode &= ~current_umask(); do { err = _nfs4_proc_mkdir(dir, dentry, sattr, label); trace_nfs4_mkdir(dir, &dentry->d_name, err); err = nfs4_handle_exception(NFS_SERVER(dir), err, &exception); } while (exception.retry); nfs4_label_release_security(label); return err; } static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page **pages, unsigned int count, int plus) { struct inode *dir = d_inode(dentry); struct nfs4_readdir_arg args = { .fh = NFS_FH(dir), .pages = pages, .pgbase = 0, .count = count, .bitmask = NFS_SERVER(d_inode(dentry))->attr_bitmask, .plus = plus, }; struct nfs4_readdir_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = cred, }; int status; dprintk("%s: dentry = %pd2, cookie = %Lu\n", __func__, dentry, (unsigned long long)cookie); nfs4_setup_readdir(cookie, NFS_I(dir)->cookieverf, dentry, &args); res.pgbase = args.pgbase; status = nfs4_call_sync(NFS_SERVER(dir)->client, NFS_SERVER(dir), &msg, &args.seq_args, &res.seq_res, 0); if (status >= 0) { memcpy(NFS_I(dir)->cookieverf, res.verifier.data, NFS4_VERIFIER_SIZE); status += args.pgbase; } nfs_invalidate_atime(dir); dprintk("%s: returns %d\n", __func__, status); return status; } static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page **pages, unsigned int count, int plus) { struct nfs4_exception exception = { }; int err; do { err = _nfs4_proc_readdir(dentry, cred, cookie, pages, count, plus); trace_nfs4_readdir(d_inode(dentry), err); err = nfs4_handle_exception(NFS_SERVER(d_inode(dentry)), err, &exception); } while (exception.retry); return err; } static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr, struct nfs4_label *label, dev_t rdev) { struct nfs4_createdata *data; int mode = sattr->ia_mode; int status = -ENOMEM; data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4SOCK); if (data == NULL) goto out; if (S_ISFIFO(mode)) data->arg.ftype = NF4FIFO; else if (S_ISBLK(mode)) { data->arg.ftype = NF4BLK; data->arg.u.device.specdata1 = MAJOR(rdev); data->arg.u.device.specdata2 = MINOR(rdev); } else if (S_ISCHR(mode)) { data->arg.ftype = NF4CHR; data->arg.u.device.specdata1 = MAJOR(rdev); data->arg.u.device.specdata2 = MINOR(rdev); } else if (!S_ISSOCK(mode)) { status = -EINVAL; goto out_free; } data->arg.label = label; status = nfs4_do_create(dir, dentry, data); out_free: nfs4_free_createdata(data); out: return status; } static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr, dev_t rdev) { struct nfs4_exception exception = { }; struct nfs4_label l, *label = NULL; int err; label = nfs4_label_init_security(dir, dentry, sattr, &l); sattr->ia_mode &= ~current_umask(); do { err = _nfs4_proc_mknod(dir, dentry, sattr, label, rdev); trace_nfs4_mknod(dir, &dentry->d_name, err); err = nfs4_handle_exception(NFS_SERVER(dir), err, &exception); } while (exception.retry); nfs4_label_release_security(label); return err; } static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat) { struct nfs4_statfs_arg args = { .fh = fhandle, .bitmask = server->attr_bitmask, }; struct nfs4_statfs_res res = { .fsstat = fsstat, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS], .rpc_argp = &args, .rpc_resp = &res, }; nfs_fattr_init(fsstat->fattr); return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); } static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_proc_statfs(server, fhandle, fsstat), &exception); } while (exception.retry); return err; } static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) { struct nfs4_fsinfo_arg args = { .fh = fhandle, .bitmask = server->attr_bitmask, }; struct nfs4_fsinfo_res res = { .fsinfo = fsinfo, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO], .rpc_argp = &args, .rpc_resp = &res, }; return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); } static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) { struct nfs4_exception exception = { }; unsigned long now = jiffies; int err; do { err = _nfs4_do_fsinfo(server, fhandle, fsinfo); trace_nfs4_fsinfo(server, fhandle, fsinfo->fattr, err); if (err == 0) { struct nfs_client *clp = server->nfs_client; spin_lock(&clp->cl_lock); clp->cl_lease_time = fsinfo->lease_time * HZ; clp->cl_last_renewal = now; spin_unlock(&clp->cl_lock); break; } err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) { int error; nfs_fattr_init(fsinfo->fattr); error = nfs4_do_fsinfo(server, fhandle, fsinfo); if (error == 0) { /* block layout checks this! */ server->pnfs_blksize = fsinfo->blksize; set_pnfs_layoutdriver(server, fhandle, fsinfo->layouttype); } return error; } static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *pathconf) { struct nfs4_pathconf_arg args = { .fh = fhandle, .bitmask = server->attr_bitmask, }; struct nfs4_pathconf_res res = { .pathconf = pathconf, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF], .rpc_argp = &args, .rpc_resp = &res, }; /* None of the pathconf attributes are mandatory to implement */ if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) { memset(pathconf, 0, sizeof(*pathconf)); return 0; } nfs_fattr_init(pathconf->fattr); return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); } static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *pathconf) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_proc_pathconf(server, fhandle, pathconf), &exception); } while (exception.retry); return err; } int nfs4_set_rw_stateid(nfs4_stateid *stateid, const struct nfs_open_context *ctx, const struct nfs_lock_context *l_ctx, fmode_t fmode) { const struct nfs_lockowner *lockowner = NULL; if (l_ctx != NULL) lockowner = &l_ctx->lockowner; return nfs4_select_rw_stateid(ctx->state, fmode, lockowner, stateid, NULL); } EXPORT_SYMBOL_GPL(nfs4_set_rw_stateid); static bool nfs4_stateid_is_current(nfs4_stateid *stateid, const struct nfs_open_context *ctx, const struct nfs_lock_context *l_ctx, fmode_t fmode) { nfs4_stateid current_stateid; /* If the current stateid represents a lost lock, then exit */ if (nfs4_set_rw_stateid(¤t_stateid, ctx, l_ctx, fmode) == -EIO) return true; return nfs4_stateid_match(stateid, ¤t_stateid); } static bool nfs4_error_stateid_expired(int err) { switch (err) { case -NFS4ERR_DELEG_REVOKED: case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_BAD_STATEID: case -NFS4ERR_STALE_STATEID: case -NFS4ERR_OLD_STATEID: case -NFS4ERR_OPENMODE: case -NFS4ERR_EXPIRED: return true; } return false; } void __nfs4_read_done_cb(struct nfs_pgio_header *hdr) { nfs_invalidate_atime(hdr->inode); } static int nfs4_read_done_cb(struct rpc_task *task, struct nfs_pgio_header *hdr) { struct nfs_server *server = NFS_SERVER(hdr->inode); trace_nfs4_read(hdr, task->tk_status); if (nfs4_async_handle_error(task, server, hdr->args.context->state, NULL) == -EAGAIN) { rpc_restart_call_prepare(task); return -EAGAIN; } __nfs4_read_done_cb(hdr); if (task->tk_status > 0) renew_lease(server, hdr->timestamp); return 0; } static bool nfs4_read_stateid_changed(struct rpc_task *task, struct nfs_pgio_args *args) { if (!nfs4_error_stateid_expired(task->tk_status) || nfs4_stateid_is_current(&args->stateid, args->context, args->lock_context, FMODE_READ)) return false; rpc_restart_call_prepare(task); return true; } static int nfs4_read_done(struct rpc_task *task, struct nfs_pgio_header *hdr) { dprintk("--> %s\n", __func__); if (!nfs4_sequence_done(task, &hdr->res.seq_res)) return -EAGAIN; if (nfs4_read_stateid_changed(task, &hdr->args)) return -EAGAIN; return hdr->pgio_done_cb ? hdr->pgio_done_cb(task, hdr) : nfs4_read_done_cb(task, hdr); } static void nfs4_proc_read_setup(struct nfs_pgio_header *hdr, struct rpc_message *msg) { hdr->timestamp = jiffies; if (!hdr->pgio_done_cb) hdr->pgio_done_cb = nfs4_read_done_cb; msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ]; nfs4_init_sequence(&hdr->args.seq_args, &hdr->res.seq_res, 0); } static int nfs4_proc_pgio_rpc_prepare(struct rpc_task *task, struct nfs_pgio_header *hdr) { if (nfs4_setup_sequence(NFS_SERVER(hdr->inode), &hdr->args.seq_args, &hdr->res.seq_res, task)) return 0; if (nfs4_set_rw_stateid(&hdr->args.stateid, hdr->args.context, hdr->args.lock_context, hdr->rw_ops->rw_mode) == -EIO) return -EIO; if (unlikely(test_bit(NFS_CONTEXT_BAD, &hdr->args.context->flags))) return -EIO; return 0; } static int nfs4_write_done_cb(struct rpc_task *task, struct nfs_pgio_header *hdr) { struct inode *inode = hdr->inode; trace_nfs4_write(hdr, task->tk_status); if (nfs4_async_handle_error(task, NFS_SERVER(inode), hdr->args.context->state, NULL) == -EAGAIN) { rpc_restart_call_prepare(task); return -EAGAIN; } if (task->tk_status >= 0) { renew_lease(NFS_SERVER(inode), hdr->timestamp); nfs_writeback_update_inode(hdr); } return 0; } static bool nfs4_write_stateid_changed(struct rpc_task *task, struct nfs_pgio_args *args) { if (!nfs4_error_stateid_expired(task->tk_status) || nfs4_stateid_is_current(&args->stateid, args->context, args->lock_context, FMODE_WRITE)) return false; rpc_restart_call_prepare(task); return true; } static int nfs4_write_done(struct rpc_task *task, struct nfs_pgio_header *hdr) { if (!nfs4_sequence_done(task, &hdr->res.seq_res)) return -EAGAIN; if (nfs4_write_stateid_changed(task, &hdr->args)) return -EAGAIN; return hdr->pgio_done_cb ? hdr->pgio_done_cb(task, hdr) : nfs4_write_done_cb(task, hdr); } static bool nfs4_write_need_cache_consistency_data(struct nfs_pgio_header *hdr) { /* Don't request attributes for pNFS or O_DIRECT writes */ if (hdr->ds_clp != NULL || hdr->dreq != NULL) return false; /* Otherwise, request attributes if and only if we don't hold * a delegation */ return nfs4_have_delegation(hdr->inode, FMODE_READ) == 0; } static void nfs4_proc_write_setup(struct nfs_pgio_header *hdr, struct rpc_message *msg) { struct nfs_server *server = NFS_SERVER(hdr->inode); if (!nfs4_write_need_cache_consistency_data(hdr)) { hdr->args.bitmask = NULL; hdr->res.fattr = NULL; } else hdr->args.bitmask = server->cache_consistency_bitmask; if (!hdr->pgio_done_cb) hdr->pgio_done_cb = nfs4_write_done_cb; hdr->res.server = server; hdr->timestamp = jiffies; msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE]; nfs4_init_sequence(&hdr->args.seq_args, &hdr->res.seq_res, 1); } static void nfs4_proc_commit_rpc_prepare(struct rpc_task *task, struct nfs_commit_data *data) { nfs4_setup_sequence(NFS_SERVER(data->inode), &data->args.seq_args, &data->res.seq_res, task); } static int nfs4_commit_done_cb(struct rpc_task *task, struct nfs_commit_data *data) { struct inode *inode = data->inode; trace_nfs4_commit(data, task->tk_status); if (nfs4_async_handle_error(task, NFS_SERVER(inode), NULL, NULL) == -EAGAIN) { rpc_restart_call_prepare(task); return -EAGAIN; } return 0; } static int nfs4_commit_done(struct rpc_task *task, struct nfs_commit_data *data) { if (!nfs4_sequence_done(task, &data->res.seq_res)) return -EAGAIN; return data->commit_done_cb(task, data); } static void nfs4_proc_commit_setup(struct nfs_commit_data *data, struct rpc_message *msg) { struct nfs_server *server = NFS_SERVER(data->inode); if (data->commit_done_cb == NULL) data->commit_done_cb = nfs4_commit_done_cb; data->res.server = server; msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT]; nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 1); } struct nfs4_renewdata { struct nfs_client *client; unsigned long timestamp; }; /* * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special * standalone procedure for queueing an asynchronous RENEW. */ static void nfs4_renew_release(void *calldata) { struct nfs4_renewdata *data = calldata; struct nfs_client *clp = data->client; if (atomic_read(&clp->cl_count) > 1) nfs4_schedule_state_renewal(clp); nfs_put_client(clp); kfree(data); } static void nfs4_renew_done(struct rpc_task *task, void *calldata) { struct nfs4_renewdata *data = calldata; struct nfs_client *clp = data->client; unsigned long timestamp = data->timestamp; trace_nfs4_renew_async(clp, task->tk_status); switch (task->tk_status) { case 0: break; case -NFS4ERR_LEASE_MOVED: nfs4_schedule_lease_moved_recovery(clp); break; default: /* Unless we're shutting down, schedule state recovery! */ if (test_bit(NFS_CS_RENEWD, &clp->cl_res_state) == 0) return; if (task->tk_status != NFS4ERR_CB_PATH_DOWN) { nfs4_schedule_lease_recovery(clp); return; } nfs4_schedule_path_down_recovery(clp); } do_renew_lease(clp, timestamp); } static const struct rpc_call_ops nfs4_renew_ops = { .rpc_call_done = nfs4_renew_done, .rpc_release = nfs4_renew_release, }; static int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred, unsigned renew_flags) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW], .rpc_argp = clp, .rpc_cred = cred, }; struct nfs4_renewdata *data; if (renew_flags == 0) return 0; if (!atomic_inc_not_zero(&clp->cl_count)) return -EIO; data = kmalloc(sizeof(*data), GFP_NOFS); if (data == NULL) return -ENOMEM; data->client = clp; data->timestamp = jiffies; return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT, &nfs4_renew_ops, data); } static int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW], .rpc_argp = clp, .rpc_cred = cred, }; unsigned long now = jiffies; int status; status = rpc_call_sync(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT); if (status < 0) return status; do_renew_lease(clp, now); return 0; } static inline int nfs4_server_supports_acls(struct nfs_server *server) { return server->caps & NFS_CAP_ACLS; } /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_SIZE, and that * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_SIZE) bytes on * the stack. */ #define NFS4ACL_MAXPAGES DIV_ROUND_UP(XATTR_SIZE_MAX, PAGE_SIZE) static int buf_to_pages_noslab(const void *buf, size_t buflen, struct page **pages) { struct page *newpage, **spages; int rc = 0; size_t len; spages = pages; do { len = min_t(size_t, PAGE_SIZE, buflen); newpage = alloc_page(GFP_KERNEL); if (newpage == NULL) goto unwind; memcpy(page_address(newpage), buf, len); buf += len; buflen -= len; *pages++ = newpage; rc++; } while (buflen != 0); return rc; unwind: for(; rc > 0; rc--) __free_page(spages[rc-1]); return -ENOMEM; } struct nfs4_cached_acl { int cached; size_t len; char data[0]; }; static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl) { struct nfs_inode *nfsi = NFS_I(inode); spin_lock(&inode->i_lock); kfree(nfsi->nfs4_acl); nfsi->nfs4_acl = acl; spin_unlock(&inode->i_lock); } static void nfs4_zap_acl_attr(struct inode *inode) { nfs4_set_cached_acl(inode, NULL); } static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen) { struct nfs_inode *nfsi = NFS_I(inode); struct nfs4_cached_acl *acl; int ret = -ENOENT; spin_lock(&inode->i_lock); acl = nfsi->nfs4_acl; if (acl == NULL) goto out; if (buf == NULL) /* user is just asking for length */ goto out_len; if (acl->cached == 0) goto out; ret = -ERANGE; /* see getxattr(2) man page */ if (acl->len > buflen) goto out; memcpy(buf, acl->data, acl->len); out_len: ret = acl->len; out: spin_unlock(&inode->i_lock); return ret; } static void nfs4_write_cached_acl(struct inode *inode, struct page **pages, size_t pgbase, size_t acl_len) { struct nfs4_cached_acl *acl; size_t buflen = sizeof(*acl) + acl_len; if (buflen <= PAGE_SIZE) { acl = kmalloc(buflen, GFP_KERNEL); if (acl == NULL) goto out; acl->cached = 1; _copy_from_pages(acl->data, pages, pgbase, acl_len); } else { acl = kmalloc(sizeof(*acl), GFP_KERNEL); if (acl == NULL) goto out; acl->cached = 0; } acl->len = acl_len; out: nfs4_set_cached_acl(inode, acl); } /* * The getxattr API returns the required buffer length when called with a * NULL buf. The NFSv4 acl tool then calls getxattr again after allocating * the required buf. On a NULL buf, we send a page of data to the server * guessing that the ACL request can be serviced by a page. If so, we cache * up to the page of ACL data, and the 2nd call to getxattr is serviced by * the cache. If not so, we throw away the page, and cache the required * length. The next getxattr call will then produce another round trip to * the server, this time with the input buf of the required size. */ static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen) { struct page *pages[NFS4ACL_MAXPAGES] = {NULL, }; struct nfs_getaclargs args = { .fh = NFS_FH(inode), .acl_pages = pages, .acl_len = buflen, }; struct nfs_getaclres res = { .acl_len = buflen, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL], .rpc_argp = &args, .rpc_resp = &res, }; unsigned int npages = DIV_ROUND_UP(buflen, PAGE_SIZE); int ret = -ENOMEM, i; /* As long as we're doing a round trip to the server anyway, * let's be prepared for a page of acl data. */ if (npages == 0) npages = 1; if (npages > ARRAY_SIZE(pages)) return -ERANGE; for (i = 0; i < npages; i++) { pages[i] = alloc_page(GFP_KERNEL); if (!pages[i]) goto out_free; } /* for decoding across pages */ res.acl_scratch = alloc_page(GFP_KERNEL); if (!res.acl_scratch) goto out_free; args.acl_len = npages * PAGE_SIZE; dprintk("%s buf %p buflen %zu npages %d args.acl_len %zu\n", __func__, buf, buflen, npages, args.acl_len); ret = nfs4_call_sync(NFS_SERVER(inode)->client, NFS_SERVER(inode), &msg, &args.seq_args, &res.seq_res, 0); if (ret) goto out_free; /* Handle the case where the passed-in buffer is too short */ if (res.acl_flags & NFS4_ACL_TRUNC) { /* Did the user only issue a request for the acl length? */ if (buf == NULL) goto out_ok; ret = -ERANGE; goto out_free; } nfs4_write_cached_acl(inode, pages, res.acl_data_offset, res.acl_len); if (buf) { if (res.acl_len > buflen) { ret = -ERANGE; goto out_free; } _copy_from_pages(buf, pages, res.acl_data_offset, res.acl_len); } out_ok: ret = res.acl_len; out_free: for (i = 0; i < npages; i++) if (pages[i]) __free_page(pages[i]); if (res.acl_scratch) __free_page(res.acl_scratch); return ret; } static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen) { struct nfs4_exception exception = { }; ssize_t ret; do { ret = __nfs4_get_acl_uncached(inode, buf, buflen); trace_nfs4_get_acl(inode, ret); if (ret >= 0) break; ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception); } while (exception.retry); return ret; } static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen) { struct nfs_server *server = NFS_SERVER(inode); int ret; if (!nfs4_server_supports_acls(server)) return -EOPNOTSUPP; ret = nfs_revalidate_inode(server, inode); if (ret < 0) return ret; if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_ACL) nfs_zap_acl_cache(inode); ret = nfs4_read_cached_acl(inode, buf, buflen); if (ret != -ENOENT) /* -ENOENT is returned if there is no ACL or if there is an ACL * but no cached acl data, just the acl length */ return ret; return nfs4_get_acl_uncached(inode, buf, buflen); } static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen) { struct nfs_server *server = NFS_SERVER(inode); struct page *pages[NFS4ACL_MAXPAGES]; struct nfs_setaclargs arg = { .fh = NFS_FH(inode), .acl_pages = pages, .acl_len = buflen, }; struct nfs_setaclres res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL], .rpc_argp = &arg, .rpc_resp = &res, }; unsigned int npages = DIV_ROUND_UP(buflen, PAGE_SIZE); int ret, i; if (!nfs4_server_supports_acls(server)) return -EOPNOTSUPP; if (npages > ARRAY_SIZE(pages)) return -ERANGE; i = buf_to_pages_noslab(buf, buflen, arg.acl_pages); if (i < 0) return i; nfs4_inode_return_delegation(inode); ret = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1); /* * Free each page after tx, so the only ref left is * held by the network stack */ for (; i > 0; i--) put_page(pages[i-1]); /* * Acl update can result in inode attribute update. * so mark the attribute cache invalid. */ spin_lock(&inode->i_lock); NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; spin_unlock(&inode->i_lock); nfs_access_zap_cache(inode); nfs_zap_acl_cache(inode); return ret; } static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen) { struct nfs4_exception exception = { }; int err; do { err = __nfs4_proc_set_acl(inode, buf, buflen); trace_nfs4_set_acl(inode, err); err = nfs4_handle_exception(NFS_SERVER(inode), err, &exception); } while (exception.retry); return err; } #ifdef CONFIG_NFS_V4_SECURITY_LABEL static int _nfs4_get_security_label(struct inode *inode, void *buf, size_t buflen) { struct nfs_server *server = NFS_SERVER(inode); struct nfs_fattr fattr; struct nfs4_label label = {0, 0, buflen, buf}; u32 bitmask[3] = { 0, 0, FATTR4_WORD2_SECURITY_LABEL }; struct nfs4_getattr_arg arg = { .fh = NFS_FH(inode), .bitmask = bitmask, }; struct nfs4_getattr_res res = { .fattr = &fattr, .label = &label, .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR], .rpc_argp = &arg, .rpc_resp = &res, }; int ret; nfs_fattr_init(&fattr); ret = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 0); if (ret) return ret; if (!(fattr.valid & NFS_ATTR_FATTR_V4_SECURITY_LABEL)) return -ENOENT; if (buflen < label.len) return -ERANGE; return 0; } static int nfs4_get_security_label(struct inode *inode, void *buf, size_t buflen) { struct nfs4_exception exception = { }; int err; if (!nfs_server_capable(inode, NFS_CAP_SECURITY_LABEL)) return -EOPNOTSUPP; do { err = _nfs4_get_security_label(inode, buf, buflen); trace_nfs4_get_security_label(inode, err); err = nfs4_handle_exception(NFS_SERVER(inode), err, &exception); } while (exception.retry); return err; } static int _nfs4_do_set_security_label(struct inode *inode, struct nfs4_label *ilabel, struct nfs_fattr *fattr, struct nfs4_label *olabel) { struct iattr sattr = {0}; struct nfs_server *server = NFS_SERVER(inode); const u32 bitmask[3] = { 0, 0, FATTR4_WORD2_SECURITY_LABEL }; struct nfs_setattrargs arg = { .fh = NFS_FH(inode), .iap = &sattr, .server = server, .bitmask = bitmask, .label = ilabel, }; struct nfs_setattrres res = { .fattr = fattr, .label = olabel, .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR], .rpc_argp = &arg, .rpc_resp = &res, }; int status; nfs4_stateid_copy(&arg.stateid, &zero_stateid); status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1); if (status) dprintk("%s failed: %d\n", __func__, status); return status; } static int nfs4_do_set_security_label(struct inode *inode, struct nfs4_label *ilabel, struct nfs_fattr *fattr, struct nfs4_label *olabel) { struct nfs4_exception exception = { }; int err; do { err = _nfs4_do_set_security_label(inode, ilabel, fattr, olabel); trace_nfs4_set_security_label(inode, err); err = nfs4_handle_exception(NFS_SERVER(inode), err, &exception); } while (exception.retry); return err; } static int nfs4_set_security_label(struct inode *inode, const void *buf, size_t buflen) { struct nfs4_label ilabel, *olabel = NULL; struct nfs_fattr fattr; struct rpc_cred *cred; int status; if (!nfs_server_capable(inode, NFS_CAP_SECURITY_LABEL)) return -EOPNOTSUPP; nfs_fattr_init(&fattr); ilabel.pi = 0; ilabel.lfs = 0; ilabel.label = (char *)buf; ilabel.len = buflen; cred = rpc_lookup_cred(); if (IS_ERR(cred)) return PTR_ERR(cred); olabel = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); if (IS_ERR(olabel)) { status = -PTR_ERR(olabel); goto out; } status = nfs4_do_set_security_label(inode, &ilabel, &fattr, olabel); if (status == 0) nfs_setsecurity(inode, &fattr, olabel); nfs4_label_free(olabel); out: put_rpccred(cred); return status; } #endif /* CONFIG_NFS_V4_SECURITY_LABEL */ static void nfs4_init_boot_verifier(const struct nfs_client *clp, nfs4_verifier *bootverf) { __be32 verf[2]; if (test_bit(NFS4CLNT_PURGE_STATE, &clp->cl_state)) { /* An impossible timestamp guarantees this value * will never match a generated boot time. */ verf[0] = 0; verf[1] = cpu_to_be32(NSEC_PER_SEC + 1); } else { struct nfs_net *nn = net_generic(clp->cl_net, nfs_net_id); verf[0] = cpu_to_be32(nn->boot_time.tv_sec); verf[1] = cpu_to_be32(nn->boot_time.tv_nsec); } memcpy(bootverf->data, verf, sizeof(bootverf->data)); } static int nfs4_init_nonuniform_client_string(struct nfs_client *clp) { size_t len; char *str; if (clp->cl_owner_id != NULL) return 0; rcu_read_lock(); len = 14 + strlen(clp->cl_ipaddr) + 1 + strlen(rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_ADDR)) + 1 + strlen(rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_PROTO)) + 1; rcu_read_unlock(); if (len > NFS4_OPAQUE_LIMIT + 1) return -EINVAL; /* * Since this string is allocated at mount time, and held until the * nfs_client is destroyed, we can use GFP_KERNEL here w/o worrying * about a memory-reclaim deadlock. */ str = kmalloc(len, GFP_KERNEL); if (!str) return -ENOMEM; rcu_read_lock(); scnprintf(str, len, "Linux NFSv4.0 %s/%s %s", clp->cl_ipaddr, rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_ADDR), rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_PROTO)); rcu_read_unlock(); clp->cl_owner_id = str; return 0; } static int nfs4_init_uniquifier_client_string(struct nfs_client *clp) { size_t len; char *str; len = 10 + 10 + 1 + 10 + 1 + strlen(nfs4_client_id_uniquifier) + 1 + strlen(clp->cl_rpcclient->cl_nodename) + 1; if (len > NFS4_OPAQUE_LIMIT + 1) return -EINVAL; /* * Since this string is allocated at mount time, and held until the * nfs_client is destroyed, we can use GFP_KERNEL here w/o worrying * about a memory-reclaim deadlock. */ str = kmalloc(len, GFP_KERNEL); if (!str) return -ENOMEM; scnprintf(str, len, "Linux NFSv%u.%u %s/%s", clp->rpc_ops->version, clp->cl_minorversion, nfs4_client_id_uniquifier, clp->cl_rpcclient->cl_nodename); clp->cl_owner_id = str; return 0; } static int nfs4_init_uniform_client_string(struct nfs_client *clp) { size_t len; char *str; if (clp->cl_owner_id != NULL) return 0; if (nfs4_client_id_uniquifier[0] != '\0') return nfs4_init_uniquifier_client_string(clp); len = 10 + 10 + 1 + 10 + 1 + strlen(clp->cl_rpcclient->cl_nodename) + 1; if (len > NFS4_OPAQUE_LIMIT + 1) return -EINVAL; /* * Since this string is allocated at mount time, and held until the * nfs_client is destroyed, we can use GFP_KERNEL here w/o worrying * about a memory-reclaim deadlock. */ str = kmalloc(len, GFP_KERNEL); if (!str) return -ENOMEM; scnprintf(str, len, "Linux NFSv%u.%u %s", clp->rpc_ops->version, clp->cl_minorversion, clp->cl_rpcclient->cl_nodename); clp->cl_owner_id = str; return 0; } /* * nfs4_callback_up_net() starts only "tcp" and "tcp6" callback * services. Advertise one based on the address family of the * clientaddr. */ static unsigned int nfs4_init_callback_netid(const struct nfs_client *clp, char *buf, size_t len) { if (strchr(clp->cl_ipaddr, ':') != NULL) return scnprintf(buf, len, "tcp6"); else return scnprintf(buf, len, "tcp"); } static void nfs4_setclientid_done(struct rpc_task *task, void *calldata) { struct nfs4_setclientid *sc = calldata; if (task->tk_status == 0) sc->sc_cred = get_rpccred(task->tk_rqstp->rq_cred); } static const struct rpc_call_ops nfs4_setclientid_ops = { .rpc_call_done = nfs4_setclientid_done, }; /** * nfs4_proc_setclientid - Negotiate client ID * @clp: state data structure * @program: RPC program for NFSv4 callback service * @port: IP port number for NFS4 callback service * @cred: RPC credential to use for this call * @res: where to place the result * * Returns zero, a negative errno, or a negative NFS4ERR status code. */ int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred, struct nfs4_setclientid_res *res) { nfs4_verifier sc_verifier; struct nfs4_setclientid setclientid = { .sc_verifier = &sc_verifier, .sc_prog = program, .sc_clnt = clp, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID], .rpc_argp = &setclientid, .rpc_resp = res, .rpc_cred = cred, }; struct rpc_task *task; struct rpc_task_setup task_setup_data = { .rpc_client = clp->cl_rpcclient, .rpc_message = &msg, .callback_ops = &nfs4_setclientid_ops, .callback_data = &setclientid, .flags = RPC_TASK_TIMEOUT, }; int status; /* nfs_client_id4 */ nfs4_init_boot_verifier(clp, &sc_verifier); if (test_bit(NFS_CS_MIGRATION, &clp->cl_flags)) status = nfs4_init_uniform_client_string(clp); else status = nfs4_init_nonuniform_client_string(clp); if (status) goto out; /* cb_client4 */ setclientid.sc_netid_len = nfs4_init_callback_netid(clp, setclientid.sc_netid, sizeof(setclientid.sc_netid)); setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr, sizeof(setclientid.sc_uaddr), "%s.%u.%u", clp->cl_ipaddr, port >> 8, port & 255); dprintk("NFS call setclientid auth=%s, '%s'\n", clp->cl_rpcclient->cl_auth->au_ops->au_name, clp->cl_owner_id); task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) { status = PTR_ERR(task); goto out; } status = task->tk_status; if (setclientid.sc_cred) { clp->cl_acceptor = rpcauth_stringify_acceptor(setclientid.sc_cred); put_rpccred(setclientid.sc_cred); } rpc_put_task(task); out: trace_nfs4_setclientid(clp, status); dprintk("NFS reply setclientid: %d\n", status); return status; } /** * nfs4_proc_setclientid_confirm - Confirm client ID * @clp: state data structure * @res: result of a previous SETCLIENTID * @cred: RPC credential to use for this call * * Returns zero, a negative errno, or a negative NFS4ERR status code. */ int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct nfs4_setclientid_res *arg, struct rpc_cred *cred) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM], .rpc_argp = arg, .rpc_cred = cred, }; int status; dprintk("NFS call setclientid_confirm auth=%s, (client ID %llx)\n", clp->cl_rpcclient->cl_auth->au_ops->au_name, clp->cl_clientid); status = rpc_call_sync(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT); trace_nfs4_setclientid_confirm(clp, status); dprintk("NFS reply setclientid_confirm: %d\n", status); return status; } struct nfs4_delegreturndata { struct nfs4_delegreturnargs args; struct nfs4_delegreturnres res; struct nfs_fh fh; nfs4_stateid stateid; unsigned long timestamp; struct nfs_fattr fattr; int rpc_status; struct inode *inode; bool roc; u32 roc_barrier; }; static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata) { struct nfs4_delegreturndata *data = calldata; if (!nfs4_sequence_done(task, &data->res.seq_res)) return; trace_nfs4_delegreturn_exit(&data->args, &data->res, task->tk_status); switch (task->tk_status) { case 0: renew_lease(data->res.server, data->timestamp); case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_DELEG_REVOKED: case -NFS4ERR_BAD_STATEID: case -NFS4ERR_OLD_STATEID: case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: task->tk_status = 0; if (data->roc) pnfs_roc_set_barrier(data->inode, data->roc_barrier); break; default: if (nfs4_async_handle_error(task, data->res.server, NULL, NULL) == -EAGAIN) { rpc_restart_call_prepare(task); return; } } data->rpc_status = task->tk_status; } static void nfs4_delegreturn_release(void *calldata) { struct nfs4_delegreturndata *data = calldata; struct inode *inode = data->inode; if (inode) { if (data->roc) pnfs_roc_release(inode); nfs_iput_and_deactive(inode); } kfree(calldata); } static void nfs4_delegreturn_prepare(struct rpc_task *task, void *data) { struct nfs4_delegreturndata *d_data; d_data = (struct nfs4_delegreturndata *)data; if (nfs4_wait_on_layoutreturn(d_data->inode, task)) return; if (d_data->roc) pnfs_roc_get_barrier(d_data->inode, &d_data->roc_barrier); nfs4_setup_sequence(d_data->res.server, &d_data->args.seq_args, &d_data->res.seq_res, task); } static const struct rpc_call_ops nfs4_delegreturn_ops = { .rpc_call_prepare = nfs4_delegreturn_prepare, .rpc_call_done = nfs4_delegreturn_done, .rpc_release = nfs4_delegreturn_release, }; static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync) { struct nfs4_delegreturndata *data; struct nfs_server *server = NFS_SERVER(inode); struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN], .rpc_cred = cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs4_delegreturn_ops, .flags = RPC_TASK_ASYNC, }; int status = 0; data = kzalloc(sizeof(*data), GFP_NOFS); if (data == NULL) return -ENOMEM; nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 1); nfs4_state_protect(server->nfs_client, NFS_SP4_MACH_CRED_CLEANUP, &task_setup_data.rpc_client, &msg); data->args.fhandle = &data->fh; data->args.stateid = &data->stateid; data->args.bitmask = server->cache_consistency_bitmask; nfs_copy_fh(&data->fh, NFS_FH(inode)); nfs4_stateid_copy(&data->stateid, stateid); data->res.fattr = &data->fattr; data->res.server = server; nfs_fattr_init(data->res.fattr); data->timestamp = jiffies; data->rpc_status = 0; data->inode = nfs_igrab_and_active(inode); if (data->inode) data->roc = nfs4_roc(inode); task_setup_data.callback_data = data; msg.rpc_argp = &data->args; msg.rpc_resp = &data->res; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); if (!issync) goto out; status = nfs4_wait_for_completion_rpc_task(task); if (status != 0) goto out; status = data->rpc_status; if (status == 0) nfs_post_op_update_inode_force_wcc(inode, &data->fattr); else nfs_refresh_inode(inode, &data->fattr); out: rpc_put_task(task); return status; } int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync) { struct nfs_server *server = NFS_SERVER(inode); struct nfs4_exception exception = { }; int err; do { err = _nfs4_proc_delegreturn(inode, cred, stateid, issync); trace_nfs4_delegreturn(inode, stateid, err); switch (err) { case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: case 0: return 0; } err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } #define NFS4_LOCK_MINTIMEOUT (1 * HZ) #define NFS4_LOCK_MAXTIMEOUT (30 * HZ) /* * sleep, with exponential backoff, and retry the LOCK operation. */ static unsigned long nfs4_set_lock_task_retry(unsigned long timeout) { freezable_schedule_timeout_killable_unsafe(timeout); timeout <<= 1; if (timeout > NFS4_LOCK_MAXTIMEOUT) return NFS4_LOCK_MAXTIMEOUT; return timeout; } static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request) { struct inode *inode = state->inode; struct nfs_server *server = NFS_SERVER(inode); struct nfs_client *clp = server->nfs_client; struct nfs_lockt_args arg = { .fh = NFS_FH(inode), .fl = request, }; struct nfs_lockt_res res = { .denied = request, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = state->owner->so_cred, }; struct nfs4_lock_state *lsp; int status; arg.lock_owner.clientid = clp->cl_clientid; status = nfs4_set_lock_state(state, request); if (status != 0) goto out; lsp = request->fl_u.nfs4_fl.owner; arg.lock_owner.id = lsp->ls_seqid.owner_id; arg.lock_owner.s_dev = server->s_dev; status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1); switch (status) { case 0: request->fl_type = F_UNLCK; break; case -NFS4ERR_DENIED: status = 0; } request->fl_ops->fl_release_private(request); request->fl_ops = NULL; out: return status; } static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request) { struct nfs4_exception exception = { }; int err; do { err = _nfs4_proc_getlk(state, cmd, request); trace_nfs4_get_lock(request, state, cmd, err); err = nfs4_handle_exception(NFS_SERVER(state->inode), err, &exception); } while (exception.retry); return err; } static int do_vfs_lock(struct inode *inode, struct file_lock *fl) { return locks_lock_inode_wait(inode, fl); } struct nfs4_unlockdata { struct nfs_locku_args arg; struct nfs_locku_res res; struct nfs4_lock_state *lsp; struct nfs_open_context *ctx; struct file_lock fl; struct nfs_server *server; unsigned long timestamp; }; static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl, struct nfs_open_context *ctx, struct nfs4_lock_state *lsp, struct nfs_seqid *seqid) { struct nfs4_unlockdata *p; struct inode *inode = lsp->ls_state->inode; p = kzalloc(sizeof(*p), GFP_NOFS); if (p == NULL) return NULL; p->arg.fh = NFS_FH(inode); p->arg.fl = &p->fl; p->arg.seqid = seqid; p->res.seqid = seqid; p->lsp = lsp; atomic_inc(&lsp->ls_count); /* Ensure we don't close file until we're done freeing locks! */ p->ctx = get_nfs_open_context(ctx); memcpy(&p->fl, fl, sizeof(p->fl)); p->server = NFS_SERVER(inode); return p; } static void nfs4_locku_release_calldata(void *data) { struct nfs4_unlockdata *calldata = data; nfs_free_seqid(calldata->arg.seqid); nfs4_put_lock_state(calldata->lsp); put_nfs_open_context(calldata->ctx); kfree(calldata); } static void nfs4_locku_done(struct rpc_task *task, void *data) { struct nfs4_unlockdata *calldata = data; if (!nfs4_sequence_done(task, &calldata->res.seq_res)) return; switch (task->tk_status) { case 0: renew_lease(calldata->server, calldata->timestamp); do_vfs_lock(calldata->lsp->ls_state->inode, &calldata->fl); if (nfs4_update_lock_stateid(calldata->lsp, &calldata->res.stateid)) break; case -NFS4ERR_BAD_STATEID: case -NFS4ERR_OLD_STATEID: case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: if (!nfs4_stateid_match(&calldata->arg.stateid, &calldata->lsp->ls_stateid)) rpc_restart_call_prepare(task); break; default: if (nfs4_async_handle_error(task, calldata->server, NULL, NULL) == -EAGAIN) rpc_restart_call_prepare(task); } nfs_release_seqid(calldata->arg.seqid); } static void nfs4_locku_prepare(struct rpc_task *task, void *data) { struct nfs4_unlockdata *calldata = data; if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0) goto out_wait; nfs4_stateid_copy(&calldata->arg.stateid, &calldata->lsp->ls_stateid); if (test_bit(NFS_LOCK_INITIALIZED, &calldata->lsp->ls_flags) == 0) { /* Note: exit _without_ running nfs4_locku_done */ goto out_no_action; } calldata->timestamp = jiffies; if (nfs4_setup_sequence(calldata->server, &calldata->arg.seq_args, &calldata->res.seq_res, task) != 0) nfs_release_seqid(calldata->arg.seqid); return; out_no_action: task->tk_action = NULL; out_wait: nfs4_sequence_done(task, &calldata->res.seq_res); } static const struct rpc_call_ops nfs4_locku_ops = { .rpc_call_prepare = nfs4_locku_prepare, .rpc_call_done = nfs4_locku_done, .rpc_release = nfs4_locku_release_calldata, }; static struct rpc_task *nfs4_do_unlck(struct file_lock *fl, struct nfs_open_context *ctx, struct nfs4_lock_state *lsp, struct nfs_seqid *seqid) { struct nfs4_unlockdata *data; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU], .rpc_cred = ctx->cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = NFS_CLIENT(lsp->ls_state->inode), .rpc_message = &msg, .callback_ops = &nfs4_locku_ops, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; nfs4_state_protect(NFS_SERVER(lsp->ls_state->inode)->nfs_client, NFS_SP4_MACH_CRED_CLEANUP, &task_setup_data.rpc_client, &msg); /* Ensure this is an unlock - when canceling a lock, the * canceled lock is passed in, and it won't be an unlock. */ fl->fl_type = F_UNLCK; data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid); if (data == NULL) { nfs_free_seqid(seqid); return ERR_PTR(-ENOMEM); } nfs4_init_sequence(&data->arg.seq_args, &data->res.seq_res, 1); msg.rpc_argp = &data->arg; msg.rpc_resp = &data->res; task_setup_data.callback_data = data; return rpc_run_task(&task_setup_data); } static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request) { struct inode *inode = state->inode; struct nfs4_state_owner *sp = state->owner; struct nfs_inode *nfsi = NFS_I(inode); struct nfs_seqid *seqid; struct nfs4_lock_state *lsp; struct rpc_task *task; struct nfs_seqid *(*alloc_seqid)(struct nfs_seqid_counter *, gfp_t); int status = 0; unsigned char fl_flags = request->fl_flags; status = nfs4_set_lock_state(state, request); /* Unlock _before_ we do the RPC call */ request->fl_flags |= FL_EXISTS; /* Exclude nfs_delegation_claim_locks() */ mutex_lock(&sp->so_delegreturn_mutex); /* Exclude nfs4_reclaim_open_stateid() - note nesting! */ down_read(&nfsi->rwsem); if (do_vfs_lock(inode, request) == -ENOENT) { up_read(&nfsi->rwsem); mutex_unlock(&sp->so_delegreturn_mutex); goto out; } up_read(&nfsi->rwsem); mutex_unlock(&sp->so_delegreturn_mutex); if (status != 0) goto out; /* Is this a delegated lock? */ lsp = request->fl_u.nfs4_fl.owner; if (test_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags) == 0) goto out; alloc_seqid = NFS_SERVER(inode)->nfs_client->cl_mvops->alloc_seqid; seqid = alloc_seqid(&lsp->ls_seqid, GFP_KERNEL); status = -ENOMEM; if (IS_ERR(seqid)) goto out; task = nfs4_do_unlck(request, nfs_file_open_context(request->fl_file), lsp, seqid); status = PTR_ERR(task); if (IS_ERR(task)) goto out; status = nfs4_wait_for_completion_rpc_task(task); rpc_put_task(task); out: request->fl_flags = fl_flags; trace_nfs4_unlock(request, state, F_SETLK, status); return status; } struct nfs4_lockdata { struct nfs_lock_args arg; struct nfs_lock_res res; struct nfs4_lock_state *lsp; struct nfs_open_context *ctx; struct file_lock fl; unsigned long timestamp; int rpc_status; int cancelled; struct nfs_server *server; }; static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl, struct nfs_open_context *ctx, struct nfs4_lock_state *lsp, gfp_t gfp_mask) { struct nfs4_lockdata *p; struct inode *inode = lsp->ls_state->inode; struct nfs_server *server = NFS_SERVER(inode); struct nfs_seqid *(*alloc_seqid)(struct nfs_seqid_counter *, gfp_t); p = kzalloc(sizeof(*p), gfp_mask); if (p == NULL) return NULL; p->arg.fh = NFS_FH(inode); p->arg.fl = &p->fl; p->arg.open_seqid = nfs_alloc_seqid(&lsp->ls_state->owner->so_seqid, gfp_mask); if (IS_ERR(p->arg.open_seqid)) goto out_free; alloc_seqid = server->nfs_client->cl_mvops->alloc_seqid; p->arg.lock_seqid = alloc_seqid(&lsp->ls_seqid, gfp_mask); if (IS_ERR(p->arg.lock_seqid)) goto out_free_seqid; p->arg.lock_owner.clientid = server->nfs_client->cl_clientid; p->arg.lock_owner.id = lsp->ls_seqid.owner_id; p->arg.lock_owner.s_dev = server->s_dev; p->res.lock_seqid = p->arg.lock_seqid; p->lsp = lsp; p->server = server; atomic_inc(&lsp->ls_count); p->ctx = get_nfs_open_context(ctx); get_file(fl->fl_file); memcpy(&p->fl, fl, sizeof(p->fl)); return p; out_free_seqid: nfs_free_seqid(p->arg.open_seqid); out_free: kfree(p); return NULL; } static void nfs4_lock_prepare(struct rpc_task *task, void *calldata) { struct nfs4_lockdata *data = calldata; struct nfs4_state *state = data->lsp->ls_state; dprintk("%s: begin!\n", __func__); if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0) goto out_wait; /* Do we need to do an open_to_lock_owner? */ if (!test_bit(NFS_LOCK_INITIALIZED, &data->lsp->ls_flags)) { if (nfs_wait_on_sequence(data->arg.open_seqid, task) != 0) { goto out_release_lock_seqid; } nfs4_stateid_copy(&data->arg.open_stateid, &state->open_stateid); data->arg.new_lock_owner = 1; data->res.open_seqid = data->arg.open_seqid; } else { data->arg.new_lock_owner = 0; nfs4_stateid_copy(&data->arg.lock_stateid, &data->lsp->ls_stateid); } if (!nfs4_valid_open_stateid(state)) { data->rpc_status = -EBADF; task->tk_action = NULL; goto out_release_open_seqid; } data->timestamp = jiffies; if (nfs4_setup_sequence(data->server, &data->arg.seq_args, &data->res.seq_res, task) == 0) return; out_release_open_seqid: nfs_release_seqid(data->arg.open_seqid); out_release_lock_seqid: nfs_release_seqid(data->arg.lock_seqid); out_wait: nfs4_sequence_done(task, &data->res.seq_res); dprintk("%s: done!, ret = %d\n", __func__, data->rpc_status); } static void nfs4_lock_done(struct rpc_task *task, void *calldata) { struct nfs4_lockdata *data = calldata; struct nfs4_lock_state *lsp = data->lsp; dprintk("%s: begin!\n", __func__); if (!nfs4_sequence_done(task, &data->res.seq_res)) return; data->rpc_status = task->tk_status; switch (task->tk_status) { case 0: renew_lease(NFS_SERVER(d_inode(data->ctx->dentry)), data->timestamp); if (data->arg.new_lock) { data->fl.fl_flags &= ~(FL_SLEEP | FL_ACCESS); if (do_vfs_lock(lsp->ls_state->inode, &data->fl) < 0) { rpc_restart_call_prepare(task); break; } } if (data->arg.new_lock_owner != 0) { nfs_confirm_seqid(&lsp->ls_seqid, 0); nfs4_stateid_copy(&lsp->ls_stateid, &data->res.stateid); set_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags); } else if (!nfs4_update_lock_stateid(lsp, &data->res.stateid)) rpc_restart_call_prepare(task); break; case -NFS4ERR_BAD_STATEID: case -NFS4ERR_OLD_STATEID: case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: if (data->arg.new_lock_owner != 0) { if (!nfs4_stateid_match(&data->arg.open_stateid, &lsp->ls_state->open_stateid)) rpc_restart_call_prepare(task); } else if (!nfs4_stateid_match(&data->arg.lock_stateid, &lsp->ls_stateid)) rpc_restart_call_prepare(task); } dprintk("%s: done, ret = %d!\n", __func__, data->rpc_status); } static void nfs4_lock_release(void *calldata) { struct nfs4_lockdata *data = calldata; dprintk("%s: begin!\n", __func__); nfs_free_seqid(data->arg.open_seqid); if (data->cancelled != 0) { struct rpc_task *task; task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp, data->arg.lock_seqid); if (!IS_ERR(task)) rpc_put_task_async(task); dprintk("%s: cancelling lock!\n", __func__); } else nfs_free_seqid(data->arg.lock_seqid); nfs4_put_lock_state(data->lsp); put_nfs_open_context(data->ctx); fput(data->fl.fl_file); kfree(data); dprintk("%s: done!\n", __func__); } static const struct rpc_call_ops nfs4_lock_ops = { .rpc_call_prepare = nfs4_lock_prepare, .rpc_call_done = nfs4_lock_done, .rpc_release = nfs4_lock_release, }; static void nfs4_handle_setlk_error(struct nfs_server *server, struct nfs4_lock_state *lsp, int new_lock_owner, int error) { switch (error) { case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_BAD_STATEID: lsp->ls_seqid.flags &= ~NFS_SEQID_CONFIRMED; if (new_lock_owner != 0 || test_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags) != 0) nfs4_schedule_stateid_recovery(server, lsp->ls_state); break; case -NFS4ERR_STALE_STATEID: lsp->ls_seqid.flags &= ~NFS_SEQID_CONFIRMED; case -NFS4ERR_EXPIRED: nfs4_schedule_lease_recovery(server->nfs_client); }; } static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int recovery_type) { struct nfs4_lockdata *data; struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK], .rpc_cred = state->owner->so_cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = NFS_CLIENT(state->inode), .rpc_message = &msg, .callback_ops = &nfs4_lock_ops, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; int ret; dprintk("%s: begin!\n", __func__); data = nfs4_alloc_lockdata(fl, nfs_file_open_context(fl->fl_file), fl->fl_u.nfs4_fl.owner, recovery_type == NFS_LOCK_NEW ? GFP_KERNEL : GFP_NOFS); if (data == NULL) return -ENOMEM; if (IS_SETLKW(cmd)) data->arg.block = 1; nfs4_init_sequence(&data->arg.seq_args, &data->res.seq_res, 1); msg.rpc_argp = &data->arg; msg.rpc_resp = &data->res; task_setup_data.callback_data = data; if (recovery_type > NFS_LOCK_NEW) { if (recovery_type == NFS_LOCK_RECLAIM) data->arg.reclaim = NFS_LOCK_RECLAIM; nfs4_set_sequence_privileged(&data->arg.seq_args); } else data->arg.new_lock = 1; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); ret = nfs4_wait_for_completion_rpc_task(task); if (ret == 0) { ret = data->rpc_status; if (ret) nfs4_handle_setlk_error(data->server, data->lsp, data->arg.new_lock_owner, ret); } else data->cancelled = 1; rpc_put_task(task); dprintk("%s: done, ret = %d!\n", __func__, ret); trace_nfs4_set_lock(fl, state, &data->res.stateid, cmd, ret); return ret; } static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { .inode = state->inode, }; int err; do { /* Cache the lock if possible... */ if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0) return 0; err = _nfs4_do_setlk(state, F_SETLK, request, NFS_LOCK_RECLAIM); if (err != -NFS4ERR_DELAY) break; nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { .inode = state->inode, }; int err; err = nfs4_set_lock_state(state, request); if (err != 0) return err; if (!recover_lost_locks) { set_bit(NFS_LOCK_LOST, &request->fl_u.nfs4_fl.owner->ls_flags); return 0; } do { if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0) return 0; err = _nfs4_do_setlk(state, F_SETLK, request, NFS_LOCK_EXPIRED); switch (err) { default: goto out; case -NFS4ERR_GRACE: case -NFS4ERR_DELAY: nfs4_handle_exception(server, err, &exception); err = 0; } } while (exception.retry); out: return err; } #if defined(CONFIG_NFS_V4_1) /** * nfs41_check_expired_locks - possibly free a lock stateid * * @state: NFSv4 state for an inode * * Returns NFS_OK if recovery for this stateid is now finished. * Otherwise a negative NFS4ERR value is returned. */ static int nfs41_check_expired_locks(struct nfs4_state *state) { int status, ret = -NFS4ERR_BAD_STATEID; struct nfs4_lock_state *lsp; struct nfs_server *server = NFS_SERVER(state->inode); list_for_each_entry(lsp, &state->lock_states, ls_locks) { if (test_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags)) { struct rpc_cred *cred = lsp->ls_state->owner->so_cred; status = nfs41_test_stateid(server, &lsp->ls_stateid, cred); trace_nfs4_test_lock_stateid(state, lsp, status); if (status != NFS_OK) { /* Free the stateid unless the server * informs us the stateid is unrecognized. */ if (status != -NFS4ERR_BAD_STATEID) nfs41_free_stateid(server, &lsp->ls_stateid, cred); clear_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags); ret = status; } } }; return ret; } static int nfs41_lock_expired(struct nfs4_state *state, struct file_lock *request) { int status = NFS_OK; if (test_bit(LK_STATE_IN_USE, &state->flags)) status = nfs41_check_expired_locks(state); if (status != NFS_OK) status = nfs4_lock_expired(state, request); return status; } #endif static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request) { struct nfs_inode *nfsi = NFS_I(state->inode); struct nfs4_state_owner *sp = state->owner; unsigned char fl_flags = request->fl_flags; int status = -ENOLCK; if ((fl_flags & FL_POSIX) && !test_bit(NFS_STATE_POSIX_LOCKS, &state->flags)) goto out; /* Is this a delegated open? */ status = nfs4_set_lock_state(state, request); if (status != 0) goto out; request->fl_flags |= FL_ACCESS; status = do_vfs_lock(state->inode, request); if (status < 0) goto out; mutex_lock(&sp->so_delegreturn_mutex); down_read(&nfsi->rwsem); if (test_bit(NFS_DELEGATED_STATE, &state->flags)) { /* Yes: cache locks! */ /* ...but avoid races with delegation recall... */ request->fl_flags = fl_flags & ~FL_SLEEP; status = do_vfs_lock(state->inode, request); up_read(&nfsi->rwsem); mutex_unlock(&sp->so_delegreturn_mutex); goto out; } up_read(&nfsi->rwsem); mutex_unlock(&sp->so_delegreturn_mutex); status = _nfs4_do_setlk(state, cmd, request, NFS_LOCK_NEW); out: request->fl_flags = fl_flags; return status; } static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request) { struct nfs4_exception exception = { .state = state, .inode = state->inode, }; int err; do { err = _nfs4_proc_setlk(state, cmd, request); if (err == -NFS4ERR_DENIED) err = -EAGAIN; err = nfs4_handle_exception(NFS_SERVER(state->inode), err, &exception); } while (exception.retry); return err; } static int nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request) { struct nfs_open_context *ctx; struct nfs4_state *state; unsigned long timeout = NFS4_LOCK_MINTIMEOUT; int status; /* verify open state */ ctx = nfs_file_open_context(filp); state = ctx->state; if (request->fl_start < 0 || request->fl_end < 0) return -EINVAL; if (IS_GETLK(cmd)) { if (state != NULL) return nfs4_proc_getlk(state, F_GETLK, request); return 0; } if (!(IS_SETLK(cmd) || IS_SETLKW(cmd))) return -EINVAL; if (request->fl_type == F_UNLCK) { if (state != NULL) return nfs4_proc_unlck(state, cmd, request); return 0; } if (state == NULL) return -ENOLCK; /* * Don't rely on the VFS having checked the file open mode, * since it won't do this for flock() locks. */ switch (request->fl_type) { case F_RDLCK: if (!(filp->f_mode & FMODE_READ)) return -EBADF; break; case F_WRLCK: if (!(filp->f_mode & FMODE_WRITE)) return -EBADF; } do { status = nfs4_proc_setlk(state, cmd, request); if ((status != -EAGAIN) || IS_SETLK(cmd)) break; timeout = nfs4_set_lock_task_retry(timeout); status = -ERESTARTSYS; if (signalled()) break; } while(status < 0); return status; } int nfs4_lock_delegation_recall(struct file_lock *fl, struct nfs4_state *state, const nfs4_stateid *stateid) { struct nfs_server *server = NFS_SERVER(state->inode); int err; err = nfs4_set_lock_state(state, fl); if (err != 0) return err; err = _nfs4_do_setlk(state, F_SETLK, fl, NFS_LOCK_NEW); return nfs4_handle_delegation_recall_error(server, state, stateid, err); } struct nfs_release_lockowner_data { struct nfs4_lock_state *lsp; struct nfs_server *server; struct nfs_release_lockowner_args args; struct nfs_release_lockowner_res res; unsigned long timestamp; }; static void nfs4_release_lockowner_prepare(struct rpc_task *task, void *calldata) { struct nfs_release_lockowner_data *data = calldata; struct nfs_server *server = data->server; nfs40_setup_sequence(server->nfs_client->cl_slot_tbl, &data->args.seq_args, &data->res.seq_res, task); data->args.lock_owner.clientid = server->nfs_client->cl_clientid; data->timestamp = jiffies; } static void nfs4_release_lockowner_done(struct rpc_task *task, void *calldata) { struct nfs_release_lockowner_data *data = calldata; struct nfs_server *server = data->server; nfs40_sequence_done(task, &data->res.seq_res); switch (task->tk_status) { case 0: renew_lease(server, data->timestamp); break; case -NFS4ERR_STALE_CLIENTID: case -NFS4ERR_EXPIRED: nfs4_schedule_lease_recovery(server->nfs_client); break; case -NFS4ERR_LEASE_MOVED: case -NFS4ERR_DELAY: if (nfs4_async_handle_error(task, server, NULL, NULL) == -EAGAIN) rpc_restart_call_prepare(task); } } static void nfs4_release_lockowner_release(void *calldata) { struct nfs_release_lockowner_data *data = calldata; nfs4_free_lock_state(data->server, data->lsp); kfree(calldata); } static const struct rpc_call_ops nfs4_release_lockowner_ops = { .rpc_call_prepare = nfs4_release_lockowner_prepare, .rpc_call_done = nfs4_release_lockowner_done, .rpc_release = nfs4_release_lockowner_release, }; static void nfs4_release_lockowner(struct nfs_server *server, struct nfs4_lock_state *lsp) { struct nfs_release_lockowner_data *data; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RELEASE_LOCKOWNER], }; if (server->nfs_client->cl_mvops->minor_version != 0) return; data = kmalloc(sizeof(*data), GFP_NOFS); if (!data) return; data->lsp = lsp; data->server = server; data->args.lock_owner.clientid = server->nfs_client->cl_clientid; data->args.lock_owner.id = lsp->ls_seqid.owner_id; data->args.lock_owner.s_dev = server->s_dev; msg.rpc_argp = &data->args; msg.rpc_resp = &data->res; nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 0); rpc_call_async(server->client, &msg, 0, &nfs4_release_lockowner_ops, data); } #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl" static int nfs4_xattr_set_nfs4_acl(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *key, const void *buf, size_t buflen, int flags) { return nfs4_proc_set_acl(inode, buf, buflen); } static int nfs4_xattr_get_nfs4_acl(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *key, void *buf, size_t buflen) { return nfs4_proc_get_acl(inode, buf, buflen); } static bool nfs4_xattr_list_nfs4_acl(struct dentry *dentry) { return nfs4_server_supports_acls(NFS_SERVER(d_inode(dentry))); } #ifdef CONFIG_NFS_V4_SECURITY_LABEL static int nfs4_xattr_set_nfs4_label(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *key, const void *buf, size_t buflen, int flags) { if (security_ismaclabel(key)) return nfs4_set_security_label(inode, buf, buflen); return -EOPNOTSUPP; } static int nfs4_xattr_get_nfs4_label(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *key, void *buf, size_t buflen) { if (security_ismaclabel(key)) return nfs4_get_security_label(inode, buf, buflen); return -EOPNOTSUPP; } static ssize_t nfs4_listxattr_nfs4_label(struct inode *inode, char *list, size_t list_len) { int len = 0; if (nfs_server_capable(inode, NFS_CAP_SECURITY_LABEL)) { len = security_inode_listsecurity(inode, list, list_len); if (list_len && len > list_len) return -ERANGE; } return len; } static const struct xattr_handler nfs4_xattr_nfs4_label_handler = { .prefix = XATTR_SECURITY_PREFIX, .get = nfs4_xattr_get_nfs4_label, .set = nfs4_xattr_set_nfs4_label, }; #else static ssize_t nfs4_listxattr_nfs4_label(struct inode *inode, char *list, size_t list_len) { return 0; } #endif /* * nfs_fhget will use either the mounted_on_fileid or the fileid */ static void nfs_fixup_referral_attributes(struct nfs_fattr *fattr) { if (!(((fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) || (fattr->valid & NFS_ATTR_FATTR_FILEID)) && (fattr->valid & NFS_ATTR_FATTR_FSID) && (fattr->valid & NFS_ATTR_FATTR_V4_LOCATIONS))) return; fattr->valid |= NFS_ATTR_FATTR_TYPE | NFS_ATTR_FATTR_MODE | NFS_ATTR_FATTR_NLINK | NFS_ATTR_FATTR_V4_REFERRAL; fattr->mode = S_IFDIR | S_IRUGO | S_IXUGO; fattr->nlink = 2; } static int _nfs4_proc_fs_locations(struct rpc_clnt *client, struct inode *dir, const struct qstr *name, struct nfs4_fs_locations *fs_locations, struct page *page) { struct nfs_server *server = NFS_SERVER(dir); u32 bitmask[3] = { [0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS, }; struct nfs4_fs_locations_arg args = { .dir_fh = NFS_FH(dir), .name = name, .page = page, .bitmask = bitmask, }; struct nfs4_fs_locations_res res = { .fs_locations = fs_locations, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS], .rpc_argp = &args, .rpc_resp = &res, }; int status; dprintk("%s: start\n", __func__); /* Ask for the fileid of the absent filesystem if mounted_on_fileid * is not supported */ if (NFS_SERVER(dir)->attr_bitmask[1] & FATTR4_WORD1_MOUNTED_ON_FILEID) bitmask[1] |= FATTR4_WORD1_MOUNTED_ON_FILEID; else bitmask[0] |= FATTR4_WORD0_FILEID; nfs_fattr_init(&fs_locations->fattr); fs_locations->server = server; fs_locations->nlocations = 0; status = nfs4_call_sync(client, server, &msg, &args.seq_args, &res.seq_res, 0); dprintk("%s: returned status = %d\n", __func__, status); return status; } int nfs4_proc_fs_locations(struct rpc_clnt *client, struct inode *dir, const struct qstr *name, struct nfs4_fs_locations *fs_locations, struct page *page) { struct nfs4_exception exception = { }; int err; do { err = _nfs4_proc_fs_locations(client, dir, name, fs_locations, page); trace_nfs4_get_fs_locations(dir, name, err); err = nfs4_handle_exception(NFS_SERVER(dir), err, &exception); } while (exception.retry); return err; } /* * This operation also signals the server that this client is * performing migration recovery. The server can stop returning * NFS4ERR_LEASE_MOVED to this client. A RENEW operation is * appended to this compound to identify the client ID which is * performing recovery. */ static int _nfs40_proc_get_locations(struct inode *inode, struct nfs4_fs_locations *locations, struct page *page, struct rpc_cred *cred) { struct nfs_server *server = NFS_SERVER(inode); struct rpc_clnt *clnt = server->client; u32 bitmask[2] = { [0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS, }; struct nfs4_fs_locations_arg args = { .clientid = server->nfs_client->cl_clientid, .fh = NFS_FH(inode), .page = page, .bitmask = bitmask, .migration = 1, /* skip LOOKUP */ .renew = 1, /* append RENEW */ }; struct nfs4_fs_locations_res res = { .fs_locations = locations, .migration = 1, .renew = 1, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = cred, }; unsigned long now = jiffies; int status; nfs_fattr_init(&locations->fattr); locations->server = server; locations->nlocations = 0; nfs4_init_sequence(&args.seq_args, &res.seq_res, 0); nfs4_set_sequence_privileged(&args.seq_args); status = nfs4_call_sync_sequence(clnt, server, &msg, &args.seq_args, &res.seq_res); if (status) return status; renew_lease(server, now); return 0; } #ifdef CONFIG_NFS_V4_1 /* * This operation also signals the server that this client is * performing migration recovery. The server can stop asserting * SEQ4_STATUS_LEASE_MOVED for this client. The client ID * performing this operation is identified in the SEQUENCE * operation in this compound. * * When the client supports GETATTR(fs_locations_info), it can * be plumbed in here. */ static int _nfs41_proc_get_locations(struct inode *inode, struct nfs4_fs_locations *locations, struct page *page, struct rpc_cred *cred) { struct nfs_server *server = NFS_SERVER(inode); struct rpc_clnt *clnt = server->client; u32 bitmask[2] = { [0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS, }; struct nfs4_fs_locations_arg args = { .fh = NFS_FH(inode), .page = page, .bitmask = bitmask, .migration = 1, /* skip LOOKUP */ }; struct nfs4_fs_locations_res res = { .fs_locations = locations, .migration = 1, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = cred, }; int status; nfs_fattr_init(&locations->fattr); locations->server = server; locations->nlocations = 0; nfs4_init_sequence(&args.seq_args, &res.seq_res, 0); nfs4_set_sequence_privileged(&args.seq_args); status = nfs4_call_sync_sequence(clnt, server, &msg, &args.seq_args, &res.seq_res); if (status == NFS4_OK && res.seq_res.sr_status_flags & SEQ4_STATUS_LEASE_MOVED) status = -NFS4ERR_LEASE_MOVED; return status; } #endif /* CONFIG_NFS_V4_1 */ /** * nfs4_proc_get_locations - discover locations for a migrated FSID * @inode: inode on FSID that is migrating * @locations: result of query * @page: buffer * @cred: credential to use for this operation * * Returns NFS4_OK on success, a negative NFS4ERR status code if the * operation failed, or a negative errno if a local error occurred. * * On success, "locations" is filled in, but if the server has * no locations information, NFS_ATTR_FATTR_V4_LOCATIONS is not * asserted. * * -NFS4ERR_LEASE_MOVED is returned if the server still has leases * from this client that require migration recovery. */ int nfs4_proc_get_locations(struct inode *inode, struct nfs4_fs_locations *locations, struct page *page, struct rpc_cred *cred) { struct nfs_server *server = NFS_SERVER(inode); struct nfs_client *clp = server->nfs_client; const struct nfs4_mig_recovery_ops *ops = clp->cl_mvops->mig_recovery_ops; struct nfs4_exception exception = { }; int status; dprintk("%s: FSID %llx:%llx on \"%s\"\n", __func__, (unsigned long long)server->fsid.major, (unsigned long long)server->fsid.minor, clp->cl_hostname); nfs_display_fhandle(NFS_FH(inode), __func__); do { status = ops->get_locations(inode, locations, page, cred); if (status != -NFS4ERR_DELAY) break; nfs4_handle_exception(server, status, &exception); } while (exception.retry); return status; } /* * This operation also signals the server that this client is * performing "lease moved" recovery. The server can stop * returning NFS4ERR_LEASE_MOVED to this client. A RENEW operation * is appended to this compound to identify the client ID which is * performing recovery. */ static int _nfs40_proc_fsid_present(struct inode *inode, struct rpc_cred *cred) { struct nfs_server *server = NFS_SERVER(inode); struct nfs_client *clp = NFS_SERVER(inode)->nfs_client; struct rpc_clnt *clnt = server->client; struct nfs4_fsid_present_arg args = { .fh = NFS_FH(inode), .clientid = clp->cl_clientid, .renew = 1, /* append RENEW */ }; struct nfs4_fsid_present_res res = { .renew = 1, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSID_PRESENT], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = cred, }; unsigned long now = jiffies; int status; res.fh = nfs_alloc_fhandle(); if (res.fh == NULL) return -ENOMEM; nfs4_init_sequence(&args.seq_args, &res.seq_res, 0); nfs4_set_sequence_privileged(&args.seq_args); status = nfs4_call_sync_sequence(clnt, server, &msg, &args.seq_args, &res.seq_res); nfs_free_fhandle(res.fh); if (status) return status; do_renew_lease(clp, now); return 0; } #ifdef CONFIG_NFS_V4_1 /* * This operation also signals the server that this client is * performing "lease moved" recovery. The server can stop asserting * SEQ4_STATUS_LEASE_MOVED for this client. The client ID performing * this operation is identified in the SEQUENCE operation in this * compound. */ static int _nfs41_proc_fsid_present(struct inode *inode, struct rpc_cred *cred) { struct nfs_server *server = NFS_SERVER(inode); struct rpc_clnt *clnt = server->client; struct nfs4_fsid_present_arg args = { .fh = NFS_FH(inode), }; struct nfs4_fsid_present_res res = { }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSID_PRESENT], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = cred, }; int status; res.fh = nfs_alloc_fhandle(); if (res.fh == NULL) return -ENOMEM; nfs4_init_sequence(&args.seq_args, &res.seq_res, 0); nfs4_set_sequence_privileged(&args.seq_args); status = nfs4_call_sync_sequence(clnt, server, &msg, &args.seq_args, &res.seq_res); nfs_free_fhandle(res.fh); if (status == NFS4_OK && res.seq_res.sr_status_flags & SEQ4_STATUS_LEASE_MOVED) status = -NFS4ERR_LEASE_MOVED; return status; } #endif /* CONFIG_NFS_V4_1 */ /** * nfs4_proc_fsid_present - Is this FSID present or absent on server? * @inode: inode on FSID to check * @cred: credential to use for this operation * * Server indicates whether the FSID is present, moved, or not * recognized. This operation is necessary to clear a LEASE_MOVED * condition for this client ID. * * Returns NFS4_OK if the FSID is present on this server, * -NFS4ERR_MOVED if the FSID is no longer present, a negative * NFS4ERR code if some error occurred on the server, or a * negative errno if a local failure occurred. */ int nfs4_proc_fsid_present(struct inode *inode, struct rpc_cred *cred) { struct nfs_server *server = NFS_SERVER(inode); struct nfs_client *clp = server->nfs_client; const struct nfs4_mig_recovery_ops *ops = clp->cl_mvops->mig_recovery_ops; struct nfs4_exception exception = { }; int status; dprintk("%s: FSID %llx:%llx on \"%s\"\n", __func__, (unsigned long long)server->fsid.major, (unsigned long long)server->fsid.minor, clp->cl_hostname); nfs_display_fhandle(NFS_FH(inode), __func__); do { status = ops->fsid_present(inode, cred); if (status != -NFS4ERR_DELAY) break; nfs4_handle_exception(server, status, &exception); } while (exception.retry); return status; } /** * If 'use_integrity' is true and the state managment nfs_client * cl_rpcclient is using krb5i/p, use the integrity protected cl_rpcclient * and the machine credential as per RFC3530bis and RFC5661 Security * Considerations sections. Otherwise, just use the user cred with the * filesystem's rpc_client. */ static int _nfs4_proc_secinfo(struct inode *dir, const struct qstr *name, struct nfs4_secinfo_flavors *flavors, bool use_integrity) { int status; struct nfs4_secinfo_arg args = { .dir_fh = NFS_FH(dir), .name = name, }; struct nfs4_secinfo_res res = { .flavors = flavors, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SECINFO], .rpc_argp = &args, .rpc_resp = &res, }; struct rpc_clnt *clnt = NFS_SERVER(dir)->client; struct rpc_cred *cred = NULL; if (use_integrity) { clnt = NFS_SERVER(dir)->nfs_client->cl_rpcclient; cred = nfs4_get_clid_cred(NFS_SERVER(dir)->nfs_client); msg.rpc_cred = cred; } dprintk("NFS call secinfo %s\n", name->name); nfs4_state_protect(NFS_SERVER(dir)->nfs_client, NFS_SP4_MACH_CRED_SECINFO, &clnt, &msg); status = nfs4_call_sync(clnt, NFS_SERVER(dir), &msg, &args.seq_args, &res.seq_res, 0); dprintk("NFS reply secinfo: %d\n", status); if (cred) put_rpccred(cred); return status; } int nfs4_proc_secinfo(struct inode *dir, const struct qstr *name, struct nfs4_secinfo_flavors *flavors) { struct nfs4_exception exception = { }; int err; do { err = -NFS4ERR_WRONGSEC; /* try to use integrity protection with machine cred */ if (_nfs4_is_integrity_protected(NFS_SERVER(dir)->nfs_client)) err = _nfs4_proc_secinfo(dir, name, flavors, true); /* * if unable to use integrity protection, or SECINFO with * integrity protection returns NFS4ERR_WRONGSEC (which is * disallowed by spec, but exists in deployed servers) use * the current filesystem's rpc_client and the user cred. */ if (err == -NFS4ERR_WRONGSEC) err = _nfs4_proc_secinfo(dir, name, flavors, false); trace_nfs4_secinfo(dir, name, err); err = nfs4_handle_exception(NFS_SERVER(dir), err, &exception); } while (exception.retry); return err; } #ifdef CONFIG_NFS_V4_1 /* * Check the exchange flags returned by the server for invalid flags, having * both PNFS and NON_PNFS flags set, and not having one of NON_PNFS, PNFS, or * DS flags set. */ static int nfs4_check_cl_exchange_flags(u32 flags) { if (flags & ~EXCHGID4_FLAG_MASK_R) goto out_inval; if ((flags & EXCHGID4_FLAG_USE_PNFS_MDS) && (flags & EXCHGID4_FLAG_USE_NON_PNFS)) goto out_inval; if (!(flags & (EXCHGID4_FLAG_MASK_PNFS))) goto out_inval; return NFS_OK; out_inval: return -NFS4ERR_INVAL; } static bool nfs41_same_server_scope(struct nfs41_server_scope *a, struct nfs41_server_scope *b) { if (a->server_scope_sz == b->server_scope_sz && memcmp(a->server_scope, b->server_scope, a->server_scope_sz) == 0) return true; return false; } static void nfs4_bind_one_conn_to_session_done(struct rpc_task *task, void *calldata) { } static const struct rpc_call_ops nfs4_bind_one_conn_to_session_ops = { .rpc_call_done = &nfs4_bind_one_conn_to_session_done, }; /* * nfs4_proc_bind_one_conn_to_session() * * The 4.1 client currently uses the same TCP connection for the * fore and backchannel. */ static int nfs4_proc_bind_one_conn_to_session(struct rpc_clnt *clnt, struct rpc_xprt *xprt, struct nfs_client *clp, struct rpc_cred *cred) { int status; struct nfs41_bind_conn_to_session_args args = { .client = clp, .dir = NFS4_CDFC4_FORE_OR_BOTH, }; struct nfs41_bind_conn_to_session_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_BIND_CONN_TO_SESSION], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = clnt, .rpc_xprt = xprt, .callback_ops = &nfs4_bind_one_conn_to_session_ops, .rpc_message = &msg, .flags = RPC_TASK_TIMEOUT, }; struct rpc_task *task; dprintk("--> %s\n", __func__); nfs4_copy_sessionid(&args.sessionid, &clp->cl_session->sess_id); if (!(clp->cl_session->flags & SESSION4_BACK_CHAN)) args.dir = NFS4_CDFC4_FORE; /* Do not set the backchannel flag unless this is clnt->cl_xprt */ if (xprt != rcu_access_pointer(clnt->cl_xprt)) args.dir = NFS4_CDFC4_FORE; task = rpc_run_task(&task_setup_data); if (!IS_ERR(task)) { status = task->tk_status; rpc_put_task(task); } else status = PTR_ERR(task); trace_nfs4_bind_conn_to_session(clp, status); if (status == 0) { if (memcmp(res.sessionid.data, clp->cl_session->sess_id.data, NFS4_MAX_SESSIONID_LEN)) { dprintk("NFS: %s: Session ID mismatch\n", __func__); status = -EIO; goto out; } if ((res.dir & args.dir) != res.dir || res.dir == 0) { dprintk("NFS: %s: Unexpected direction from server\n", __func__); status = -EIO; goto out; } if (res.use_conn_in_rdma_mode != args.use_conn_in_rdma_mode) { dprintk("NFS: %s: Server returned RDMA mode = true\n", __func__); status = -EIO; goto out; } } out: dprintk("<-- %s status= %d\n", __func__, status); return status; } struct rpc_bind_conn_calldata { struct nfs_client *clp; struct rpc_cred *cred; }; static int nfs4_proc_bind_conn_to_session_callback(struct rpc_clnt *clnt, struct rpc_xprt *xprt, void *calldata) { struct rpc_bind_conn_calldata *p = calldata; return nfs4_proc_bind_one_conn_to_session(clnt, xprt, p->clp, p->cred); } int nfs4_proc_bind_conn_to_session(struct nfs_client *clp, struct rpc_cred *cred) { struct rpc_bind_conn_calldata data = { .clp = clp, .cred = cred, }; return rpc_clnt_iterate_for_each_xprt(clp->cl_rpcclient, nfs4_proc_bind_conn_to_session_callback, &data); } /* * Minimum set of SP4_MACH_CRED operations from RFC 5661 in the enforce map * and operations we'd like to see to enable certain features in the allow map */ static const struct nfs41_state_protection nfs4_sp4_mach_cred_request = { .how = SP4_MACH_CRED, .enforce.u.words = { [1] = 1 << (OP_BIND_CONN_TO_SESSION - 32) | 1 << (OP_EXCHANGE_ID - 32) | 1 << (OP_CREATE_SESSION - 32) | 1 << (OP_DESTROY_SESSION - 32) | 1 << (OP_DESTROY_CLIENTID - 32) }, .allow.u.words = { [0] = 1 << (OP_CLOSE) | 1 << (OP_OPEN_DOWNGRADE) | 1 << (OP_LOCKU) | 1 << (OP_DELEGRETURN) | 1 << (OP_COMMIT), [1] = 1 << (OP_SECINFO - 32) | 1 << (OP_SECINFO_NO_NAME - 32) | 1 << (OP_LAYOUTRETURN - 32) | 1 << (OP_TEST_STATEID - 32) | 1 << (OP_FREE_STATEID - 32) | 1 << (OP_WRITE - 32) } }; /* * Select the state protection mode for client `clp' given the server results * from exchange_id in `sp'. * * Returns 0 on success, negative errno otherwise. */ static int nfs4_sp4_select_mode(struct nfs_client *clp, struct nfs41_state_protection *sp) { static const u32 supported_enforce[NFS4_OP_MAP_NUM_WORDS] = { [1] = 1 << (OP_BIND_CONN_TO_SESSION - 32) | 1 << (OP_EXCHANGE_ID - 32) | 1 << (OP_CREATE_SESSION - 32) | 1 << (OP_DESTROY_SESSION - 32) | 1 << (OP_DESTROY_CLIENTID - 32) }; unsigned int i; if (sp->how == SP4_MACH_CRED) { /* Print state protect result */ dfprintk(MOUNT, "Server SP4_MACH_CRED support:\n"); for (i = 0; i <= LAST_NFS4_OP; i++) { if (test_bit(i, sp->enforce.u.longs)) dfprintk(MOUNT, " enforce op %d\n", i); if (test_bit(i, sp->allow.u.longs)) dfprintk(MOUNT, " allow op %d\n", i); } /* make sure nothing is on enforce list that isn't supported */ for (i = 0; i < NFS4_OP_MAP_NUM_WORDS; i++) { if (sp->enforce.u.words[i] & ~supported_enforce[i]) { dfprintk(MOUNT, "sp4_mach_cred: disabled\n"); return -EINVAL; } } /* * Minimal mode - state operations are allowed to use machine * credential. Note this already happens by default, so the * client doesn't have to do anything more than the negotiation. * * NOTE: we don't care if EXCHANGE_ID is in the list - * we're already using the machine cred for exchange_id * and will never use a different cred. */ if (test_bit(OP_BIND_CONN_TO_SESSION, sp->enforce.u.longs) && test_bit(OP_CREATE_SESSION, sp->enforce.u.longs) && test_bit(OP_DESTROY_SESSION, sp->enforce.u.longs) && test_bit(OP_DESTROY_CLIENTID, sp->enforce.u.longs)) { dfprintk(MOUNT, "sp4_mach_cred:\n"); dfprintk(MOUNT, " minimal mode enabled\n"); set_bit(NFS_SP4_MACH_CRED_MINIMAL, &clp->cl_sp4_flags); } else { dfprintk(MOUNT, "sp4_mach_cred: disabled\n"); return -EINVAL; } if (test_bit(OP_CLOSE, sp->allow.u.longs) && test_bit(OP_OPEN_DOWNGRADE, sp->allow.u.longs) && test_bit(OP_DELEGRETURN, sp->allow.u.longs) && test_bit(OP_LOCKU, sp->allow.u.longs)) { dfprintk(MOUNT, " cleanup mode enabled\n"); set_bit(NFS_SP4_MACH_CRED_CLEANUP, &clp->cl_sp4_flags); } if (test_bit(OP_LAYOUTRETURN, sp->allow.u.longs)) { dfprintk(MOUNT, " pnfs cleanup mode enabled\n"); set_bit(NFS_SP4_MACH_CRED_PNFS_CLEANUP, &clp->cl_sp4_flags); } if (test_bit(OP_SECINFO, sp->allow.u.longs) && test_bit(OP_SECINFO_NO_NAME, sp->allow.u.longs)) { dfprintk(MOUNT, " secinfo mode enabled\n"); set_bit(NFS_SP4_MACH_CRED_SECINFO, &clp->cl_sp4_flags); } if (test_bit(OP_TEST_STATEID, sp->allow.u.longs) && test_bit(OP_FREE_STATEID, sp->allow.u.longs)) { dfprintk(MOUNT, " stateid mode enabled\n"); set_bit(NFS_SP4_MACH_CRED_STATEID, &clp->cl_sp4_flags); } if (test_bit(OP_WRITE, sp->allow.u.longs)) { dfprintk(MOUNT, " write mode enabled\n"); set_bit(NFS_SP4_MACH_CRED_WRITE, &clp->cl_sp4_flags); } if (test_bit(OP_COMMIT, sp->allow.u.longs)) { dfprintk(MOUNT, " commit mode enabled\n"); set_bit(NFS_SP4_MACH_CRED_COMMIT, &clp->cl_sp4_flags); } } return 0; } /* * _nfs4_proc_exchange_id() * * Wrapper for EXCHANGE_ID operation. */ static int _nfs4_proc_exchange_id(struct nfs_client *clp, struct rpc_cred *cred, u32 sp4_how) { nfs4_verifier verifier; struct nfs41_exchange_id_args args = { .verifier = &verifier, .client = clp, #ifdef CONFIG_NFS_V4_1_MIGRATION .flags = EXCHGID4_FLAG_SUPP_MOVED_REFER | EXCHGID4_FLAG_BIND_PRINC_STATEID | EXCHGID4_FLAG_SUPP_MOVED_MIGR, #else .flags = EXCHGID4_FLAG_SUPP_MOVED_REFER | EXCHGID4_FLAG_BIND_PRINC_STATEID, #endif }; struct nfs41_exchange_id_res res = { 0 }; int status; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_EXCHANGE_ID], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = cred, }; nfs4_init_boot_verifier(clp, &verifier); status = nfs4_init_uniform_client_string(clp); if (status) goto out; dprintk("NFS call exchange_id auth=%s, '%s'\n", clp->cl_rpcclient->cl_auth->au_ops->au_name, clp->cl_owner_id); res.server_owner = kzalloc(sizeof(struct nfs41_server_owner), GFP_NOFS); if (unlikely(res.server_owner == NULL)) { status = -ENOMEM; goto out; } res.server_scope = kzalloc(sizeof(struct nfs41_server_scope), GFP_NOFS); if (unlikely(res.server_scope == NULL)) { status = -ENOMEM; goto out_server_owner; } res.impl_id = kzalloc(sizeof(struct nfs41_impl_id), GFP_NOFS); if (unlikely(res.impl_id == NULL)) { status = -ENOMEM; goto out_server_scope; } switch (sp4_how) { case SP4_NONE: args.state_protect.how = SP4_NONE; break; case SP4_MACH_CRED: args.state_protect = nfs4_sp4_mach_cred_request; break; default: /* unsupported! */ WARN_ON_ONCE(1); status = -EINVAL; goto out_impl_id; } status = rpc_call_sync(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT); trace_nfs4_exchange_id(clp, status); if (status == 0) status = nfs4_check_cl_exchange_flags(res.flags); if (status == 0) status = nfs4_sp4_select_mode(clp, &res.state_protect); if (status == 0) { clp->cl_clientid = res.clientid; clp->cl_exchange_flags = res.flags; /* Client ID is not confirmed */ if (!(res.flags & EXCHGID4_FLAG_CONFIRMED_R)) { clear_bit(NFS4_SESSION_ESTABLISHED, &clp->cl_session->session_state); clp->cl_seqid = res.seqid; } kfree(clp->cl_serverowner); clp->cl_serverowner = res.server_owner; res.server_owner = NULL; /* use the most recent implementation id */ kfree(clp->cl_implid); clp->cl_implid = res.impl_id; res.impl_id = NULL; if (clp->cl_serverscope != NULL && !nfs41_same_server_scope(clp->cl_serverscope, res.server_scope)) { dprintk("%s: server_scope mismatch detected\n", __func__); set_bit(NFS4CLNT_SERVER_SCOPE_MISMATCH, &clp->cl_state); kfree(clp->cl_serverscope); clp->cl_serverscope = NULL; } if (clp->cl_serverscope == NULL) { clp->cl_serverscope = res.server_scope; res.server_scope = NULL; } } out_impl_id: kfree(res.impl_id); out_server_scope: kfree(res.server_scope); out_server_owner: kfree(res.server_owner); out: if (clp->cl_implid != NULL) dprintk("NFS reply exchange_id: Server Implementation ID: " "domain: %s, name: %s, date: %llu,%u\n", clp->cl_implid->domain, clp->cl_implid->name, clp->cl_implid->date.seconds, clp->cl_implid->date.nseconds); dprintk("NFS reply exchange_id: %d\n", status); return status; } /* * nfs4_proc_exchange_id() * * Returns zero, a negative errno, or a negative NFS4ERR status code. * * Since the clientid has expired, all compounds using sessions * associated with the stale clientid will be returning * NFS4ERR_BADSESSION in the sequence operation, and will therefore * be in some phase of session reset. * * Will attempt to negotiate SP4_MACH_CRED if krb5i / krb5p auth is used. */ int nfs4_proc_exchange_id(struct nfs_client *clp, struct rpc_cred *cred) { rpc_authflavor_t authflavor = clp->cl_rpcclient->cl_auth->au_flavor; int status; /* try SP4_MACH_CRED if krb5i/p */ if (authflavor == RPC_AUTH_GSS_KRB5I || authflavor == RPC_AUTH_GSS_KRB5P) { status = _nfs4_proc_exchange_id(clp, cred, SP4_MACH_CRED); if (!status) return 0; } /* try SP4_NONE */ return _nfs4_proc_exchange_id(clp, cred, SP4_NONE); } static int _nfs4_proc_destroy_clientid(struct nfs_client *clp, struct rpc_cred *cred) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DESTROY_CLIENTID], .rpc_argp = clp, .rpc_cred = cred, }; int status; status = rpc_call_sync(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT); trace_nfs4_destroy_clientid(clp, status); if (status) dprintk("NFS: Got error %d from the server %s on " "DESTROY_CLIENTID.", status, clp->cl_hostname); return status; } static int nfs4_proc_destroy_clientid(struct nfs_client *clp, struct rpc_cred *cred) { unsigned int loop; int ret; for (loop = NFS4_MAX_LOOP_ON_RECOVER; loop != 0; loop--) { ret = _nfs4_proc_destroy_clientid(clp, cred); switch (ret) { case -NFS4ERR_DELAY: case -NFS4ERR_CLIENTID_BUSY: ssleep(1); break; default: return ret; } } return 0; } int nfs4_destroy_clientid(struct nfs_client *clp) { struct rpc_cred *cred; int ret = 0; if (clp->cl_mvops->minor_version < 1) goto out; if (clp->cl_exchange_flags == 0) goto out; if (clp->cl_preserve_clid) goto out; cred = nfs4_get_clid_cred(clp); ret = nfs4_proc_destroy_clientid(clp, cred); if (cred) put_rpccred(cred); switch (ret) { case 0: case -NFS4ERR_STALE_CLIENTID: clp->cl_exchange_flags = 0; } out: return ret; } struct nfs4_get_lease_time_data { struct nfs4_get_lease_time_args *args; struct nfs4_get_lease_time_res *res; struct nfs_client *clp; }; static void nfs4_get_lease_time_prepare(struct rpc_task *task, void *calldata) { struct nfs4_get_lease_time_data *data = (struct nfs4_get_lease_time_data *)calldata; dprintk("--> %s\n", __func__); /* just setup sequence, do not trigger session recovery since we're invoked within one */ nfs41_setup_sequence(data->clp->cl_session, &data->args->la_seq_args, &data->res->lr_seq_res, task); dprintk("<-- %s\n", __func__); } /* * Called from nfs4_state_manager thread for session setup, so don't recover * from sequence operation or clientid errors. */ static void nfs4_get_lease_time_done(struct rpc_task *task, void *calldata) { struct nfs4_get_lease_time_data *data = (struct nfs4_get_lease_time_data *)calldata; dprintk("--> %s\n", __func__); if (!nfs41_sequence_done(task, &data->res->lr_seq_res)) return; switch (task->tk_status) { case -NFS4ERR_DELAY: case -NFS4ERR_GRACE: dprintk("%s Retry: tk_status %d\n", __func__, task->tk_status); rpc_delay(task, NFS4_POLL_RETRY_MIN); task->tk_status = 0; /* fall through */ case -NFS4ERR_RETRY_UNCACHED_REP: rpc_restart_call_prepare(task); return; } dprintk("<-- %s\n", __func__); } static const struct rpc_call_ops nfs4_get_lease_time_ops = { .rpc_call_prepare = nfs4_get_lease_time_prepare, .rpc_call_done = nfs4_get_lease_time_done, }; int nfs4_proc_get_lease_time(struct nfs_client *clp, struct nfs_fsinfo *fsinfo) { struct rpc_task *task; struct nfs4_get_lease_time_args args; struct nfs4_get_lease_time_res res = { .lr_fsinfo = fsinfo, }; struct nfs4_get_lease_time_data data = { .args = &args, .res = &res, .clp = clp, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GET_LEASE_TIME], .rpc_argp = &args, .rpc_resp = &res, }; struct rpc_task_setup task_setup = { .rpc_client = clp->cl_rpcclient, .rpc_message = &msg, .callback_ops = &nfs4_get_lease_time_ops, .callback_data = &data, .flags = RPC_TASK_TIMEOUT, }; int status; nfs4_init_sequence(&args.la_seq_args, &res.lr_seq_res, 0); nfs4_set_sequence_privileged(&args.la_seq_args); dprintk("--> %s\n", __func__); task = rpc_run_task(&task_setup); if (IS_ERR(task)) status = PTR_ERR(task); else { status = task->tk_status; rpc_put_task(task); } dprintk("<-- %s return %d\n", __func__, status); return status; } /* * Initialize the values to be used by the client in CREATE_SESSION * If nfs4_init_session set the fore channel request and response sizes, * use them. * * Set the back channel max_resp_sz_cached to zero to force the client to * always set csa_cachethis to FALSE because the current implementation * of the back channel DRC only supports caching the CB_SEQUENCE operation. */ static void nfs4_init_channel_attrs(struct nfs41_create_session_args *args, struct rpc_clnt *clnt) { unsigned int max_rqst_sz, max_resp_sz; unsigned int max_bc_payload = rpc_max_bc_payload(clnt); max_rqst_sz = NFS_MAX_FILE_IO_SIZE + nfs41_maxwrite_overhead; max_resp_sz = NFS_MAX_FILE_IO_SIZE + nfs41_maxread_overhead; /* Fore channel attributes */ args->fc_attrs.max_rqst_sz = max_rqst_sz; args->fc_attrs.max_resp_sz = max_resp_sz; args->fc_attrs.max_ops = NFS4_MAX_OPS; args->fc_attrs.max_reqs = max_session_slots; dprintk("%s: Fore Channel : max_rqst_sz=%u max_resp_sz=%u " "max_ops=%u max_reqs=%u\n", __func__, args->fc_attrs.max_rqst_sz, args->fc_attrs.max_resp_sz, args->fc_attrs.max_ops, args->fc_attrs.max_reqs); /* Back channel attributes */ args->bc_attrs.max_rqst_sz = max_bc_payload; args->bc_attrs.max_resp_sz = max_bc_payload; args->bc_attrs.max_resp_sz_cached = 0; args->bc_attrs.max_ops = NFS4_MAX_BACK_CHANNEL_OPS; args->bc_attrs.max_reqs = NFS41_BC_MAX_CALLBACKS; dprintk("%s: Back Channel : max_rqst_sz=%u max_resp_sz=%u " "max_resp_sz_cached=%u max_ops=%u max_reqs=%u\n", __func__, args->bc_attrs.max_rqst_sz, args->bc_attrs.max_resp_sz, args->bc_attrs.max_resp_sz_cached, args->bc_attrs.max_ops, args->bc_attrs.max_reqs); } static int nfs4_verify_fore_channel_attrs(struct nfs41_create_session_args *args, struct nfs41_create_session_res *res) { struct nfs4_channel_attrs *sent = &args->fc_attrs; struct nfs4_channel_attrs *rcvd = &res->fc_attrs; if (rcvd->max_resp_sz > sent->max_resp_sz) return -EINVAL; /* * Our requested max_ops is the minimum we need; we're not * prepared to break up compounds into smaller pieces than that. * So, no point even trying to continue if the server won't * cooperate: */ if (rcvd->max_ops < sent->max_ops) return -EINVAL; if (rcvd->max_reqs == 0) return -EINVAL; if (rcvd->max_reqs > NFS4_MAX_SLOT_TABLE) rcvd->max_reqs = NFS4_MAX_SLOT_TABLE; return 0; } static int nfs4_verify_back_channel_attrs(struct nfs41_create_session_args *args, struct nfs41_create_session_res *res) { struct nfs4_channel_attrs *sent = &args->bc_attrs; struct nfs4_channel_attrs *rcvd = &res->bc_attrs; if (!(res->flags & SESSION4_BACK_CHAN)) goto out; if (rcvd->max_rqst_sz > sent->max_rqst_sz) return -EINVAL; if (rcvd->max_resp_sz < sent->max_resp_sz) return -EINVAL; if (rcvd->max_resp_sz_cached > sent->max_resp_sz_cached) return -EINVAL; /* These would render the backchannel useless: */ if (rcvd->max_ops != sent->max_ops) return -EINVAL; if (rcvd->max_reqs != sent->max_reqs) return -EINVAL; out: return 0; } static int nfs4_verify_channel_attrs(struct nfs41_create_session_args *args, struct nfs41_create_session_res *res) { int ret; ret = nfs4_verify_fore_channel_attrs(args, res); if (ret) return ret; return nfs4_verify_back_channel_attrs(args, res); } static void nfs4_update_session(struct nfs4_session *session, struct nfs41_create_session_res *res) { nfs4_copy_sessionid(&session->sess_id, &res->sessionid); /* Mark client id and session as being confirmed */ session->clp->cl_exchange_flags |= EXCHGID4_FLAG_CONFIRMED_R; set_bit(NFS4_SESSION_ESTABLISHED, &session->session_state); session->flags = res->flags; memcpy(&session->fc_attrs, &res->fc_attrs, sizeof(session->fc_attrs)); if (res->flags & SESSION4_BACK_CHAN) memcpy(&session->bc_attrs, &res->bc_attrs, sizeof(session->bc_attrs)); } static int _nfs4_proc_create_session(struct nfs_client *clp, struct rpc_cred *cred) { struct nfs4_session *session = clp->cl_session; struct nfs41_create_session_args args = { .client = clp, .clientid = clp->cl_clientid, .seqid = clp->cl_seqid, .cb_program = NFS4_CALLBACK, }; struct nfs41_create_session_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE_SESSION], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = cred, }; int status; nfs4_init_channel_attrs(&args, clp->cl_rpcclient); args.flags = (SESSION4_PERSIST | SESSION4_BACK_CHAN); status = rpc_call_sync(session->clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT); trace_nfs4_create_session(clp, status); if (!status) { /* Verify the session's negotiated channel_attrs values */ status = nfs4_verify_channel_attrs(&args, &res); /* Increment the clientid slot sequence id */ if (clp->cl_seqid == res.seqid) clp->cl_seqid++; if (status) goto out; nfs4_update_session(session, &res); } out: return status; } /* * Issues a CREATE_SESSION operation to the server. * It is the responsibility of the caller to verify the session is * expired before calling this routine. */ int nfs4_proc_create_session(struct nfs_client *clp, struct rpc_cred *cred) { int status; unsigned *ptr; struct nfs4_session *session = clp->cl_session; dprintk("--> %s clp=%p session=%p\n", __func__, clp, session); status = _nfs4_proc_create_session(clp, cred); if (status) goto out; /* Init or reset the session slot tables */ status = nfs4_setup_session_slot_tables(session); dprintk("slot table setup returned %d\n", status); if (status) goto out; ptr = (unsigned *)&session->sess_id.data[0]; dprintk("%s client>seqid %d sessionid %u:%u:%u:%u\n", __func__, clp->cl_seqid, ptr[0], ptr[1], ptr[2], ptr[3]); out: dprintk("<-- %s\n", __func__); return status; } /* * Issue the over-the-wire RPC DESTROY_SESSION. * The caller must serialize access to this routine. */ int nfs4_proc_destroy_session(struct nfs4_session *session, struct rpc_cred *cred) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DESTROY_SESSION], .rpc_argp = session, .rpc_cred = cred, }; int status = 0; dprintk("--> nfs4_proc_destroy_session\n"); /* session is still being setup */ if (!test_and_clear_bit(NFS4_SESSION_ESTABLISHED, &session->session_state)) return 0; status = rpc_call_sync(session->clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT); trace_nfs4_destroy_session(session->clp, status); if (status) dprintk("NFS: Got error %d from the server on DESTROY_SESSION. " "Session has been destroyed regardless...\n", status); dprintk("<-- nfs4_proc_destroy_session\n"); return status; } /* * Renew the cl_session lease. */ struct nfs4_sequence_data { struct nfs_client *clp; struct nfs4_sequence_args args; struct nfs4_sequence_res res; }; static void nfs41_sequence_release(void *data) { struct nfs4_sequence_data *calldata = data; struct nfs_client *clp = calldata->clp; if (atomic_read(&clp->cl_count) > 1) nfs4_schedule_state_renewal(clp); nfs_put_client(clp); kfree(calldata); } static int nfs41_sequence_handle_errors(struct rpc_task *task, struct nfs_client *clp) { switch(task->tk_status) { case -NFS4ERR_DELAY: rpc_delay(task, NFS4_POLL_RETRY_MAX); return -EAGAIN; default: nfs4_schedule_lease_recovery(clp); } return 0; } static void nfs41_sequence_call_done(struct rpc_task *task, void *data) { struct nfs4_sequence_data *calldata = data; struct nfs_client *clp = calldata->clp; if (!nfs41_sequence_done(task, task->tk_msg.rpc_resp)) return; trace_nfs4_sequence(clp, task->tk_status); if (task->tk_status < 0) { dprintk("%s ERROR %d\n", __func__, task->tk_status); if (atomic_read(&clp->cl_count) == 1) goto out; if (nfs41_sequence_handle_errors(task, clp) == -EAGAIN) { rpc_restart_call_prepare(task); return; } } dprintk("%s rpc_cred %p\n", __func__, task->tk_msg.rpc_cred); out: dprintk("<-- %s\n", __func__); } static void nfs41_sequence_prepare(struct rpc_task *task, void *data) { struct nfs4_sequence_data *calldata = data; struct nfs_client *clp = calldata->clp; struct nfs4_sequence_args *args; struct nfs4_sequence_res *res; args = task->tk_msg.rpc_argp; res = task->tk_msg.rpc_resp; nfs41_setup_sequence(clp->cl_session, args, res, task); } static const struct rpc_call_ops nfs41_sequence_ops = { .rpc_call_done = nfs41_sequence_call_done, .rpc_call_prepare = nfs41_sequence_prepare, .rpc_release = nfs41_sequence_release, }; static struct rpc_task *_nfs41_proc_sequence(struct nfs_client *clp, struct rpc_cred *cred, bool is_privileged) { struct nfs4_sequence_data *calldata; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SEQUENCE], .rpc_cred = cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = clp->cl_rpcclient, .rpc_message = &msg, .callback_ops = &nfs41_sequence_ops, .flags = RPC_TASK_ASYNC | RPC_TASK_TIMEOUT, }; if (!atomic_inc_not_zero(&clp->cl_count)) return ERR_PTR(-EIO); calldata = kzalloc(sizeof(*calldata), GFP_NOFS); if (calldata == NULL) { nfs_put_client(clp); return ERR_PTR(-ENOMEM); } nfs4_init_sequence(&calldata->args, &calldata->res, 0); if (is_privileged) nfs4_set_sequence_privileged(&calldata->args); msg.rpc_argp = &calldata->args; msg.rpc_resp = &calldata->res; calldata->clp = clp; task_setup_data.callback_data = calldata; return rpc_run_task(&task_setup_data); } static int nfs41_proc_async_sequence(struct nfs_client *clp, struct rpc_cred *cred, unsigned renew_flags) { struct rpc_task *task; int ret = 0; if ((renew_flags & NFS4_RENEW_TIMEOUT) == 0) return -EAGAIN; task = _nfs41_proc_sequence(clp, cred, false); if (IS_ERR(task)) ret = PTR_ERR(task); else rpc_put_task_async(task); dprintk("<-- %s status=%d\n", __func__, ret); return ret; } static int nfs4_proc_sequence(struct nfs_client *clp, struct rpc_cred *cred) { struct rpc_task *task; int ret; task = _nfs41_proc_sequence(clp, cred, true); if (IS_ERR(task)) { ret = PTR_ERR(task); goto out; } ret = rpc_wait_for_completion_task(task); if (!ret) ret = task->tk_status; rpc_put_task(task); out: dprintk("<-- %s status=%d\n", __func__, ret); return ret; } struct nfs4_reclaim_complete_data { struct nfs_client *clp; struct nfs41_reclaim_complete_args arg; struct nfs41_reclaim_complete_res res; }; static void nfs4_reclaim_complete_prepare(struct rpc_task *task, void *data) { struct nfs4_reclaim_complete_data *calldata = data; nfs41_setup_sequence(calldata->clp->cl_session, &calldata->arg.seq_args, &calldata->res.seq_res, task); } static int nfs41_reclaim_complete_handle_errors(struct rpc_task *task, struct nfs_client *clp) { switch(task->tk_status) { case 0: case -NFS4ERR_COMPLETE_ALREADY: case -NFS4ERR_WRONG_CRED: /* What to do here? */ break; case -NFS4ERR_DELAY: rpc_delay(task, NFS4_POLL_RETRY_MAX); /* fall through */ case -NFS4ERR_RETRY_UNCACHED_REP: return -EAGAIN; default: nfs4_schedule_lease_recovery(clp); } return 0; } static void nfs4_reclaim_complete_done(struct rpc_task *task, void *data) { struct nfs4_reclaim_complete_data *calldata = data; struct nfs_client *clp = calldata->clp; struct nfs4_sequence_res *res = &calldata->res.seq_res; dprintk("--> %s\n", __func__); if (!nfs41_sequence_done(task, res)) return; trace_nfs4_reclaim_complete(clp, task->tk_status); if (nfs41_reclaim_complete_handle_errors(task, clp) == -EAGAIN) { rpc_restart_call_prepare(task); return; } dprintk("<-- %s\n", __func__); } static void nfs4_free_reclaim_complete_data(void *data) { struct nfs4_reclaim_complete_data *calldata = data; kfree(calldata); } static const struct rpc_call_ops nfs4_reclaim_complete_call_ops = { .rpc_call_prepare = nfs4_reclaim_complete_prepare, .rpc_call_done = nfs4_reclaim_complete_done, .rpc_release = nfs4_free_reclaim_complete_data, }; /* * Issue a global reclaim complete. */ static int nfs41_proc_reclaim_complete(struct nfs_client *clp, struct rpc_cred *cred) { struct nfs4_reclaim_complete_data *calldata; struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RECLAIM_COMPLETE], .rpc_cred = cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = clp->cl_rpcclient, .rpc_message = &msg, .callback_ops = &nfs4_reclaim_complete_call_ops, .flags = RPC_TASK_ASYNC, }; int status = -ENOMEM; dprintk("--> %s\n", __func__); calldata = kzalloc(sizeof(*calldata), GFP_NOFS); if (calldata == NULL) goto out; calldata->clp = clp; calldata->arg.one_fs = 0; nfs4_init_sequence(&calldata->arg.seq_args, &calldata->res.seq_res, 0); nfs4_set_sequence_privileged(&calldata->arg.seq_args); msg.rpc_argp = &calldata->arg; msg.rpc_resp = &calldata->res; task_setup_data.callback_data = calldata; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) { status = PTR_ERR(task); goto out; } status = nfs4_wait_for_completion_rpc_task(task); if (status == 0) status = task->tk_status; rpc_put_task(task); return 0; out: dprintk("<-- %s status=%d\n", __func__, status); return status; } static void nfs4_layoutget_prepare(struct rpc_task *task, void *calldata) { struct nfs4_layoutget *lgp = calldata; struct nfs_server *server = NFS_SERVER(lgp->args.inode); struct nfs4_session *session = nfs4_get_session(server); dprintk("--> %s\n", __func__); nfs41_setup_sequence(session, &lgp->args.seq_args, &lgp->res.seq_res, task); dprintk("<-- %s\n", __func__); } static void nfs4_layoutget_done(struct rpc_task *task, void *calldata) { struct nfs4_layoutget *lgp = calldata; dprintk("--> %s\n", __func__); nfs41_sequence_done(task, &lgp->res.seq_res); dprintk("<-- %s\n", __func__); } static int nfs4_layoutget_handle_exception(struct rpc_task *task, struct nfs4_layoutget *lgp, struct nfs4_exception *exception) { struct inode *inode = lgp->args.inode; struct nfs_server *server = NFS_SERVER(inode); struct pnfs_layout_hdr *lo; int status = task->tk_status; dprintk("--> %s tk_status => %d\n", __func__, -task->tk_status); switch (status) { case 0: goto out; /* * NFS4ERR_LAYOUTUNAVAILABLE means we are not supposed to use pnfs * on the file. set tk_status to -ENODATA to tell upper layer to * retry go inband. */ case -NFS4ERR_LAYOUTUNAVAILABLE: status = -ENODATA; goto out; /* * NFS4ERR_BADLAYOUT means the MDS cannot return a layout of * length lgp->args.minlength != 0 (see RFC5661 section 18.43.3). */ case -NFS4ERR_BADLAYOUT: status = -EOVERFLOW; goto out; /* * NFS4ERR_LAYOUTTRYLATER is a conflict with another client * (or clients) writing to the same RAID stripe except when * the minlength argument is 0 (see RFC5661 section 18.43.3). * * Treat it like we would RECALLCONFLICT -- we retry for a little * while, and then eventually give up. */ case -NFS4ERR_LAYOUTTRYLATER: if (lgp->args.minlength == 0) { status = -EOVERFLOW; goto out; } /* Fallthrough */ case -NFS4ERR_RECALLCONFLICT: nfs4_handle_exception(server, -NFS4ERR_RECALLCONFLICT, exception); status = -ERECALLCONFLICT; goto out; case -NFS4ERR_EXPIRED: case -NFS4ERR_BAD_STATEID: exception->timeout = 0; spin_lock(&inode->i_lock); if (nfs4_stateid_match(&lgp->args.stateid, &lgp->args.ctx->state->stateid)) { spin_unlock(&inode->i_lock); /* If the open stateid was bad, then recover it. */ exception->state = lgp->args.ctx->state; break; } lo = NFS_I(inode)->layout; if (lo && !test_bit(NFS_LAYOUT_INVALID_STID, &lo->plh_flags) && nfs4_stateid_match_other(&lgp->args.stateid, &lo->plh_stateid)) { LIST_HEAD(head); /* * Mark the bad layout state as invalid, then retry * with the current stateid. */ set_bit(NFS_LAYOUT_INVALID_STID, &lo->plh_flags); pnfs_mark_matching_lsegs_invalid(lo, &head, NULL, 0); spin_unlock(&inode->i_lock); pnfs_free_lseg_list(&head); status = -EAGAIN; goto out; } else spin_unlock(&inode->i_lock); } status = nfs4_handle_exception(server, status, exception); if (exception->retry) status = -EAGAIN; out: dprintk("<-- %s\n", __func__); return status; } static size_t max_response_pages(struct nfs_server *server) { u32 max_resp_sz = server->nfs_client->cl_session->fc_attrs.max_resp_sz; return nfs_page_array_len(0, max_resp_sz); } static void nfs4_free_pages(struct page **pages, size_t size) { int i; if (!pages) return; for (i = 0; i < size; i++) { if (!pages[i]) break; __free_page(pages[i]); } kfree(pages); } static struct page **nfs4_alloc_pages(size_t size, gfp_t gfp_flags) { struct page **pages; int i; pages = kcalloc(size, sizeof(struct page *), gfp_flags); if (!pages) { dprintk("%s: can't alloc array of %zu pages\n", __func__, size); return NULL; } for (i = 0; i < size; i++) { pages[i] = alloc_page(gfp_flags); if (!pages[i]) { dprintk("%s: failed to allocate page\n", __func__); nfs4_free_pages(pages, size); return NULL; } } return pages; } static void nfs4_layoutget_release(void *calldata) { struct nfs4_layoutget *lgp = calldata; struct inode *inode = lgp->args.inode; struct nfs_server *server = NFS_SERVER(inode); size_t max_pages = max_response_pages(server); dprintk("--> %s\n", __func__); nfs4_free_pages(lgp->args.layout.pages, max_pages); pnfs_put_layout_hdr(NFS_I(inode)->layout); put_nfs_open_context(lgp->args.ctx); kfree(calldata); dprintk("<-- %s\n", __func__); } static const struct rpc_call_ops nfs4_layoutget_call_ops = { .rpc_call_prepare = nfs4_layoutget_prepare, .rpc_call_done = nfs4_layoutget_done, .rpc_release = nfs4_layoutget_release, }; struct pnfs_layout_segment * nfs4_proc_layoutget(struct nfs4_layoutget *lgp, long *timeout, gfp_t gfp_flags) { struct inode *inode = lgp->args.inode; struct nfs_server *server = NFS_SERVER(inode); size_t max_pages = max_response_pages(server); struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTGET], .rpc_argp = &lgp->args, .rpc_resp = &lgp->res, .rpc_cred = lgp->cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs4_layoutget_call_ops, .callback_data = lgp, .flags = RPC_TASK_ASYNC, }; struct pnfs_layout_segment *lseg = NULL; struct nfs4_exception exception = { .inode = inode, .timeout = *timeout, }; int status = 0; dprintk("--> %s\n", __func__); /* nfs4_layoutget_release calls pnfs_put_layout_hdr */ pnfs_get_layout_hdr(NFS_I(inode)->layout); lgp->args.layout.pages = nfs4_alloc_pages(max_pages, gfp_flags); if (!lgp->args.layout.pages) { nfs4_layoutget_release(lgp); return ERR_PTR(-ENOMEM); } lgp->args.layout.pglen = max_pages * PAGE_SIZE; lgp->res.layoutp = &lgp->args.layout; lgp->res.seq_res.sr_slot = NULL; nfs4_init_sequence(&lgp->args.seq_args, &lgp->res.seq_res, 0); task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return ERR_CAST(task); status = nfs4_wait_for_completion_rpc_task(task); if (status == 0) { status = nfs4_layoutget_handle_exception(task, lgp, &exception); *timeout = exception.timeout; } trace_nfs4_layoutget(lgp->args.ctx, &lgp->args.range, &lgp->res.range, &lgp->res.stateid, status); /* if layoutp->len is 0, nfs4_layoutget_prepare called rpc_exit */ if (status == 0 && lgp->res.layoutp->len) lseg = pnfs_layout_process(lgp); rpc_put_task(task); dprintk("<-- %s status=%d\n", __func__, status); if (status) return ERR_PTR(status); return lseg; } static void nfs4_layoutreturn_prepare(struct rpc_task *task, void *calldata) { struct nfs4_layoutreturn *lrp = calldata; dprintk("--> %s\n", __func__); nfs41_setup_sequence(lrp->clp->cl_session, &lrp->args.seq_args, &lrp->res.seq_res, task); } static void nfs4_layoutreturn_done(struct rpc_task *task, void *calldata) { struct nfs4_layoutreturn *lrp = calldata; struct nfs_server *server; dprintk("--> %s\n", __func__); if (!nfs41_sequence_done(task, &lrp->res.seq_res)) return; server = NFS_SERVER(lrp->args.inode); switch (task->tk_status) { default: task->tk_status = 0; case 0: break; case -NFS4ERR_DELAY: if (nfs4_async_handle_error(task, server, NULL, NULL) != -EAGAIN) break; rpc_restart_call_prepare(task); return; } dprintk("<-- %s\n", __func__); } static void nfs4_layoutreturn_release(void *calldata) { struct nfs4_layoutreturn *lrp = calldata; struct pnfs_layout_hdr *lo = lrp->args.layout; LIST_HEAD(freeme); dprintk("--> %s\n", __func__); spin_lock(&lo->plh_inode->i_lock); pnfs_mark_matching_lsegs_invalid(lo, &freeme, &lrp->args.range, be32_to_cpu(lrp->args.stateid.seqid)); pnfs_mark_layout_returned_if_empty(lo); if (lrp->res.lrs_present) pnfs_set_layout_stateid(lo, &lrp->res.stateid, true); pnfs_clear_layoutreturn_waitbit(lo); spin_unlock(&lo->plh_inode->i_lock); pnfs_free_lseg_list(&freeme); pnfs_put_layout_hdr(lrp->args.layout); nfs_iput_and_deactive(lrp->inode); kfree(calldata); dprintk("<-- %s\n", __func__); } static const struct rpc_call_ops nfs4_layoutreturn_call_ops = { .rpc_call_prepare = nfs4_layoutreturn_prepare, .rpc_call_done = nfs4_layoutreturn_done, .rpc_release = nfs4_layoutreturn_release, }; int nfs4_proc_layoutreturn(struct nfs4_layoutreturn *lrp, bool sync) { struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTRETURN], .rpc_argp = &lrp->args, .rpc_resp = &lrp->res, .rpc_cred = lrp->cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = NFS_SERVER(lrp->args.inode)->client, .rpc_message = &msg, .callback_ops = &nfs4_layoutreturn_call_ops, .callback_data = lrp, }; int status = 0; nfs4_state_protect(NFS_SERVER(lrp->args.inode)->nfs_client, NFS_SP4_MACH_CRED_PNFS_CLEANUP, &task_setup_data.rpc_client, &msg); dprintk("--> %s\n", __func__); if (!sync) { lrp->inode = nfs_igrab_and_active(lrp->args.inode); if (!lrp->inode) { nfs4_layoutreturn_release(lrp); return -EAGAIN; } task_setup_data.flags |= RPC_TASK_ASYNC; } nfs4_init_sequence(&lrp->args.seq_args, &lrp->res.seq_res, 1); task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); if (sync) status = task->tk_status; trace_nfs4_layoutreturn(lrp->args.inode, &lrp->args.stateid, status); dprintk("<-- %s status=%d\n", __func__, status); rpc_put_task(task); return status; } static int _nfs4_proc_getdeviceinfo(struct nfs_server *server, struct pnfs_device *pdev, struct rpc_cred *cred) { struct nfs4_getdeviceinfo_args args = { .pdev = pdev, .notify_types = NOTIFY_DEVICEID4_CHANGE | NOTIFY_DEVICEID4_DELETE, }; struct nfs4_getdeviceinfo_res res = { .pdev = pdev, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETDEVICEINFO], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = cred, }; int status; dprintk("--> %s\n", __func__); status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0); if (res.notification & ~args.notify_types) dprintk("%s: unsupported notification\n", __func__); if (res.notification != args.notify_types) pdev->nocache = 1; dprintk("<-- %s status=%d\n", __func__, status); return status; } int nfs4_proc_getdeviceinfo(struct nfs_server *server, struct pnfs_device *pdev, struct rpc_cred *cred) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_proc_getdeviceinfo(server, pdev, cred), &exception); } while (exception.retry); return err; } EXPORT_SYMBOL_GPL(nfs4_proc_getdeviceinfo); static void nfs4_layoutcommit_prepare(struct rpc_task *task, void *calldata) { struct nfs4_layoutcommit_data *data = calldata; struct nfs_server *server = NFS_SERVER(data->args.inode); struct nfs4_session *session = nfs4_get_session(server); nfs41_setup_sequence(session, &data->args.seq_args, &data->res.seq_res, task); } static void nfs4_layoutcommit_done(struct rpc_task *task, void *calldata) { struct nfs4_layoutcommit_data *data = calldata; struct nfs_server *server = NFS_SERVER(data->args.inode); if (!nfs41_sequence_done(task, &data->res.seq_res)) return; switch (task->tk_status) { /* Just ignore these failures */ case -NFS4ERR_DELEG_REVOKED: /* layout was recalled */ case -NFS4ERR_BADIOMODE: /* no IOMODE_RW layout for range */ case -NFS4ERR_BADLAYOUT: /* no layout */ case -NFS4ERR_GRACE: /* loca_recalim always false */ task->tk_status = 0; case 0: break; default: if (nfs4_async_handle_error(task, server, NULL, NULL) == -EAGAIN) { rpc_restart_call_prepare(task); return; } } } static void nfs4_layoutcommit_release(void *calldata) { struct nfs4_layoutcommit_data *data = calldata; pnfs_cleanup_layoutcommit(data); nfs_post_op_update_inode_force_wcc(data->args.inode, data->res.fattr); put_rpccred(data->cred); nfs_iput_and_deactive(data->inode); kfree(data); } static const struct rpc_call_ops nfs4_layoutcommit_ops = { .rpc_call_prepare = nfs4_layoutcommit_prepare, .rpc_call_done = nfs4_layoutcommit_done, .rpc_release = nfs4_layoutcommit_release, }; int nfs4_proc_layoutcommit(struct nfs4_layoutcommit_data *data, bool sync) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTCOMMIT], .rpc_argp = &data->args, .rpc_resp = &data->res, .rpc_cred = data->cred, }; struct rpc_task_setup task_setup_data = { .task = &data->task, .rpc_client = NFS_CLIENT(data->args.inode), .rpc_message = &msg, .callback_ops = &nfs4_layoutcommit_ops, .callback_data = data, }; struct rpc_task *task; int status = 0; dprintk("NFS: initiating layoutcommit call. sync %d " "lbw: %llu inode %lu\n", sync, data->args.lastbytewritten, data->args.inode->i_ino); if (!sync) { data->inode = nfs_igrab_and_active(data->args.inode); if (data->inode == NULL) { nfs4_layoutcommit_release(data); return -EAGAIN; } task_setup_data.flags = RPC_TASK_ASYNC; } nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 1); task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); if (sync) status = task->tk_status; trace_nfs4_layoutcommit(data->args.inode, &data->args.stateid, status); dprintk("%s: status %d\n", __func__, status); rpc_put_task(task); return status; } /** * Use the state managment nfs_client cl_rpcclient, which uses krb5i (if * possible) as per RFC3530bis and RFC5661 Security Considerations sections */ static int _nfs41_proc_secinfo_no_name(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info, struct nfs4_secinfo_flavors *flavors, bool use_integrity) { struct nfs41_secinfo_no_name_args args = { .style = SECINFO_STYLE_CURRENT_FH, }; struct nfs4_secinfo_res res = { .flavors = flavors, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SECINFO_NO_NAME], .rpc_argp = &args, .rpc_resp = &res, }; struct rpc_clnt *clnt = server->client; struct rpc_cred *cred = NULL; int status; if (use_integrity) { clnt = server->nfs_client->cl_rpcclient; cred = nfs4_get_clid_cred(server->nfs_client); msg.rpc_cred = cred; } dprintk("--> %s\n", __func__); status = nfs4_call_sync(clnt, server, &msg, &args.seq_args, &res.seq_res, 0); dprintk("<-- %s status=%d\n", __func__, status); if (cred) put_rpccred(cred); return status; } static int nfs41_proc_secinfo_no_name(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info, struct nfs4_secinfo_flavors *flavors) { struct nfs4_exception exception = { }; int err; do { /* first try using integrity protection */ err = -NFS4ERR_WRONGSEC; /* try to use integrity protection with machine cred */ if (_nfs4_is_integrity_protected(server->nfs_client)) err = _nfs41_proc_secinfo_no_name(server, fhandle, info, flavors, true); /* * if unable to use integrity protection, or SECINFO with * integrity protection returns NFS4ERR_WRONGSEC (which is * disallowed by spec, but exists in deployed servers) use * the current filesystem's rpc_client and the user cred. */ if (err == -NFS4ERR_WRONGSEC) err = _nfs41_proc_secinfo_no_name(server, fhandle, info, flavors, false); switch (err) { case 0: case -NFS4ERR_WRONGSEC: case -ENOTSUPP: goto out; default: err = nfs4_handle_exception(server, err, &exception); } } while (exception.retry); out: return err; } static int nfs41_find_root_sec(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { int err; struct page *page; rpc_authflavor_t flavor = RPC_AUTH_MAXFLAVOR; struct nfs4_secinfo_flavors *flavors; struct nfs4_secinfo4 *secinfo; int i; page = alloc_page(GFP_KERNEL); if (!page) { err = -ENOMEM; goto out; } flavors = page_address(page); err = nfs41_proc_secinfo_no_name(server, fhandle, info, flavors); /* * Fall back on "guess and check" method if * the server doesn't support SECINFO_NO_NAME */ if (err == -NFS4ERR_WRONGSEC || err == -ENOTSUPP) { err = nfs4_find_root_sec(server, fhandle, info); goto out_freepage; } if (err) goto out_freepage; for (i = 0; i < flavors->num_flavors; i++) { secinfo = &flavors->flavors[i]; switch (secinfo->flavor) { case RPC_AUTH_NULL: case RPC_AUTH_UNIX: case RPC_AUTH_GSS: flavor = rpcauth_get_pseudoflavor(secinfo->flavor, &secinfo->flavor_info); break; default: flavor = RPC_AUTH_MAXFLAVOR; break; } if (!nfs_auth_info_match(&server->auth_info, flavor)) flavor = RPC_AUTH_MAXFLAVOR; if (flavor != RPC_AUTH_MAXFLAVOR) { err = nfs4_lookup_root_sec(server, fhandle, info, flavor); if (!err) break; } } if (flavor == RPC_AUTH_MAXFLAVOR) err = -EPERM; out_freepage: put_page(page); if (err == -EACCES) return -EPERM; out: return err; } static int _nfs41_test_stateid(struct nfs_server *server, nfs4_stateid *stateid, struct rpc_cred *cred) { int status; struct nfs41_test_stateid_args args = { .stateid = stateid, }; struct nfs41_test_stateid_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_TEST_STATEID], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = cred, }; struct rpc_clnt *rpc_client = server->client; nfs4_state_protect(server->nfs_client, NFS_SP4_MACH_CRED_STATEID, &rpc_client, &msg); dprintk("NFS call test_stateid %p\n", stateid); nfs4_init_sequence(&args.seq_args, &res.seq_res, 0); nfs4_set_sequence_privileged(&args.seq_args); status = nfs4_call_sync_sequence(rpc_client, server, &msg, &args.seq_args, &res.seq_res); if (status != NFS_OK) { dprintk("NFS reply test_stateid: failed, %d\n", status); return status; } dprintk("NFS reply test_stateid: succeeded, %d\n", -res.status); return -res.status; } /** * nfs41_test_stateid - perform a TEST_STATEID operation * * @server: server / transport on which to perform the operation * @stateid: state ID to test * @cred: credential * * Returns NFS_OK if the server recognizes that "stateid" is valid. * Otherwise a negative NFS4ERR value is returned if the operation * failed or the state ID is not currently valid. */ static int nfs41_test_stateid(struct nfs_server *server, nfs4_stateid *stateid, struct rpc_cred *cred) { struct nfs4_exception exception = { }; int err; do { err = _nfs41_test_stateid(server, stateid, cred); if (err != -NFS4ERR_DELAY) break; nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } struct nfs_free_stateid_data { struct nfs_server *server; struct nfs41_free_stateid_args args; struct nfs41_free_stateid_res res; }; static void nfs41_free_stateid_prepare(struct rpc_task *task, void *calldata) { struct nfs_free_stateid_data *data = calldata; nfs41_setup_sequence(nfs4_get_session(data->server), &data->args.seq_args, &data->res.seq_res, task); } static void nfs41_free_stateid_done(struct rpc_task *task, void *calldata) { struct nfs_free_stateid_data *data = calldata; nfs41_sequence_done(task, &data->res.seq_res); switch (task->tk_status) { case -NFS4ERR_DELAY: if (nfs4_async_handle_error(task, data->server, NULL, NULL) == -EAGAIN) rpc_restart_call_prepare(task); } } static void nfs41_free_stateid_release(void *calldata) { kfree(calldata); } static const struct rpc_call_ops nfs41_free_stateid_ops = { .rpc_call_prepare = nfs41_free_stateid_prepare, .rpc_call_done = nfs41_free_stateid_done, .rpc_release = nfs41_free_stateid_release, }; static struct rpc_task *_nfs41_free_stateid(struct nfs_server *server, nfs4_stateid *stateid, struct rpc_cred *cred, bool privileged) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FREE_STATEID], .rpc_cred = cred, }; struct rpc_task_setup task_setup = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs41_free_stateid_ops, .flags = RPC_TASK_ASYNC, }; struct nfs_free_stateid_data *data; nfs4_state_protect(server->nfs_client, NFS_SP4_MACH_CRED_STATEID, &task_setup.rpc_client, &msg); dprintk("NFS call free_stateid %p\n", stateid); data = kmalloc(sizeof(*data), GFP_NOFS); if (!data) return ERR_PTR(-ENOMEM); data->server = server; nfs4_stateid_copy(&data->args.stateid, stateid); task_setup.callback_data = data; msg.rpc_argp = &data->args; msg.rpc_resp = &data->res; nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 0); if (privileged) nfs4_set_sequence_privileged(&data->args.seq_args); return rpc_run_task(&task_setup); } /** * nfs41_free_stateid - perform a FREE_STATEID operation * * @server: server / transport on which to perform the operation * @stateid: state ID to release * @cred: credential * * Returns NFS_OK if the server freed "stateid". Otherwise a * negative NFS4ERR value is returned. */ static int nfs41_free_stateid(struct nfs_server *server, nfs4_stateid *stateid, struct rpc_cred *cred) { struct rpc_task *task; int ret; task = _nfs41_free_stateid(server, stateid, cred, true); if (IS_ERR(task)) return PTR_ERR(task); ret = rpc_wait_for_completion_task(task); if (!ret) ret = task->tk_status; rpc_put_task(task); return ret; } static void nfs41_free_lock_state(struct nfs_server *server, struct nfs4_lock_state *lsp) { struct rpc_task *task; struct rpc_cred *cred = lsp->ls_state->owner->so_cred; task = _nfs41_free_stateid(server, &lsp->ls_stateid, cred, false); nfs4_free_lock_state(server, lsp); if (IS_ERR(task)) return; rpc_put_task(task); } static bool nfs41_match_stateid(const nfs4_stateid *s1, const nfs4_stateid *s2) { if (s1->type != s2->type) return false; if (memcmp(s1->other, s2->other, sizeof(s1->other)) != 0) return false; if (s1->seqid == s2->seqid) return true; if (s1->seqid == 0 || s2->seqid == 0) return true; return false; } #endif /* CONFIG_NFS_V4_1 */ static bool nfs4_match_stateid(const nfs4_stateid *s1, const nfs4_stateid *s2) { return nfs4_stateid_match(s1, s2); } static const struct nfs4_state_recovery_ops nfs40_reboot_recovery_ops = { .owner_flag_bit = NFS_OWNER_RECLAIM_REBOOT, .state_flag_bit = NFS_STATE_RECLAIM_REBOOT, .recover_open = nfs4_open_reclaim, .recover_lock = nfs4_lock_reclaim, .establish_clid = nfs4_init_clientid, .detect_trunking = nfs40_discover_server_trunking, }; #if defined(CONFIG_NFS_V4_1) static const struct nfs4_state_recovery_ops nfs41_reboot_recovery_ops = { .owner_flag_bit = NFS_OWNER_RECLAIM_REBOOT, .state_flag_bit = NFS_STATE_RECLAIM_REBOOT, .recover_open = nfs4_open_reclaim, .recover_lock = nfs4_lock_reclaim, .establish_clid = nfs41_init_clientid, .reclaim_complete = nfs41_proc_reclaim_complete, .detect_trunking = nfs41_discover_server_trunking, }; #endif /* CONFIG_NFS_V4_1 */ static const struct nfs4_state_recovery_ops nfs40_nograce_recovery_ops = { .owner_flag_bit = NFS_OWNER_RECLAIM_NOGRACE, .state_flag_bit = NFS_STATE_RECLAIM_NOGRACE, .recover_open = nfs40_open_expired, .recover_lock = nfs4_lock_expired, .establish_clid = nfs4_init_clientid, }; #if defined(CONFIG_NFS_V4_1) static const struct nfs4_state_recovery_ops nfs41_nograce_recovery_ops = { .owner_flag_bit = NFS_OWNER_RECLAIM_NOGRACE, .state_flag_bit = NFS_STATE_RECLAIM_NOGRACE, .recover_open = nfs41_open_expired, .recover_lock = nfs41_lock_expired, .establish_clid = nfs41_init_clientid, }; #endif /* CONFIG_NFS_V4_1 */ static const struct nfs4_state_maintenance_ops nfs40_state_renewal_ops = { .sched_state_renewal = nfs4_proc_async_renew, .get_state_renewal_cred_locked = nfs4_get_renew_cred_locked, .renew_lease = nfs4_proc_renew, }; #if defined(CONFIG_NFS_V4_1) static const struct nfs4_state_maintenance_ops nfs41_state_renewal_ops = { .sched_state_renewal = nfs41_proc_async_sequence, .get_state_renewal_cred_locked = nfs4_get_machine_cred_locked, .renew_lease = nfs4_proc_sequence, }; #endif static const struct nfs4_mig_recovery_ops nfs40_mig_recovery_ops = { .get_locations = _nfs40_proc_get_locations, .fsid_present = _nfs40_proc_fsid_present, }; #if defined(CONFIG_NFS_V4_1) static const struct nfs4_mig_recovery_ops nfs41_mig_recovery_ops = { .get_locations = _nfs41_proc_get_locations, .fsid_present = _nfs41_proc_fsid_present, }; #endif /* CONFIG_NFS_V4_1 */ static const struct nfs4_minor_version_ops nfs_v4_0_minor_ops = { .minor_version = 0, .init_caps = NFS_CAP_READDIRPLUS | NFS_CAP_ATOMIC_OPEN | NFS_CAP_POSIX_LOCK, .init_client = nfs40_init_client, .shutdown_client = nfs40_shutdown_client, .match_stateid = nfs4_match_stateid, .find_root_sec = nfs4_find_root_sec, .free_lock_state = nfs4_release_lockowner, .alloc_seqid = nfs_alloc_seqid, .call_sync_ops = &nfs40_call_sync_ops, .reboot_recovery_ops = &nfs40_reboot_recovery_ops, .nograce_recovery_ops = &nfs40_nograce_recovery_ops, .state_renewal_ops = &nfs40_state_renewal_ops, .mig_recovery_ops = &nfs40_mig_recovery_ops, }; #if defined(CONFIG_NFS_V4_1) static struct nfs_seqid * nfs_alloc_no_seqid(struct nfs_seqid_counter *arg1, gfp_t arg2) { return NULL; } static const struct nfs4_minor_version_ops nfs_v4_1_minor_ops = { .minor_version = 1, .init_caps = NFS_CAP_READDIRPLUS | NFS_CAP_ATOMIC_OPEN | NFS_CAP_POSIX_LOCK | NFS_CAP_STATEID_NFSV41 | NFS_CAP_ATOMIC_OPEN_V1, .init_client = nfs41_init_client, .shutdown_client = nfs41_shutdown_client, .match_stateid = nfs41_match_stateid, .find_root_sec = nfs41_find_root_sec, .free_lock_state = nfs41_free_lock_state, .alloc_seqid = nfs_alloc_no_seqid, .call_sync_ops = &nfs41_call_sync_ops, .reboot_recovery_ops = &nfs41_reboot_recovery_ops, .nograce_recovery_ops = &nfs41_nograce_recovery_ops, .state_renewal_ops = &nfs41_state_renewal_ops, .mig_recovery_ops = &nfs41_mig_recovery_ops, }; #endif #if defined(CONFIG_NFS_V4_2) static const struct nfs4_minor_version_ops nfs_v4_2_minor_ops = { .minor_version = 2, .init_caps = NFS_CAP_READDIRPLUS | NFS_CAP_ATOMIC_OPEN | NFS_CAP_POSIX_LOCK | NFS_CAP_STATEID_NFSV41 | NFS_CAP_ATOMIC_OPEN_V1 | NFS_CAP_ALLOCATE | NFS_CAP_COPY | NFS_CAP_DEALLOCATE | NFS_CAP_SEEK | NFS_CAP_LAYOUTSTATS | NFS_CAP_CLONE, .init_client = nfs41_init_client, .shutdown_client = nfs41_shutdown_client, .match_stateid = nfs41_match_stateid, .find_root_sec = nfs41_find_root_sec, .free_lock_state = nfs41_free_lock_state, .call_sync_ops = &nfs41_call_sync_ops, .alloc_seqid = nfs_alloc_no_seqid, .reboot_recovery_ops = &nfs41_reboot_recovery_ops, .nograce_recovery_ops = &nfs41_nograce_recovery_ops, .state_renewal_ops = &nfs41_state_renewal_ops, .mig_recovery_ops = &nfs41_mig_recovery_ops, }; #endif const struct nfs4_minor_version_ops *nfs_v4_minor_ops[] = { [0] = &nfs_v4_0_minor_ops, #if defined(CONFIG_NFS_V4_1) [1] = &nfs_v4_1_minor_ops, #endif #if defined(CONFIG_NFS_V4_2) [2] = &nfs_v4_2_minor_ops, #endif }; ssize_t nfs4_listxattr(struct dentry *dentry, char *list, size_t size) { ssize_t error, error2; error = generic_listxattr(dentry, list, size); if (error < 0) return error; if (list) { list += error; size -= error; } error2 = nfs4_listxattr_nfs4_label(d_inode(dentry), list, size); if (error2 < 0) return error2; return error + error2; } static const struct inode_operations nfs4_dir_inode_operations = { .create = nfs_create, .lookup = nfs_lookup, .atomic_open = nfs_atomic_open, .link = nfs_link, .unlink = nfs_unlink, .symlink = nfs_symlink, .mkdir = nfs_mkdir, .rmdir = nfs_rmdir, .mknod = nfs_mknod, .rename = nfs_rename, .permission = nfs_permission, .getattr = nfs_getattr, .setattr = nfs_setattr, .getxattr = generic_getxattr, .setxattr = generic_setxattr, .listxattr = nfs4_listxattr, .removexattr = generic_removexattr, }; static const struct inode_operations nfs4_file_inode_operations = { .permission = nfs_permission, .getattr = nfs_getattr, .setattr = nfs_setattr, .getxattr = generic_getxattr, .setxattr = generic_setxattr, .listxattr = nfs4_listxattr, .removexattr = generic_removexattr, }; const struct nfs_rpc_ops nfs_v4_clientops = { .version = 4, /* protocol version */ .dentry_ops = &nfs4_dentry_operations, .dir_inode_ops = &nfs4_dir_inode_operations, .file_inode_ops = &nfs4_file_inode_operations, .file_ops = &nfs4_file_operations, .getroot = nfs4_proc_get_root, .submount = nfs4_submount, .try_mount = nfs4_try_mount, .getattr = nfs4_proc_getattr, .setattr = nfs4_proc_setattr, .lookup = nfs4_proc_lookup, .access = nfs4_proc_access, .readlink = nfs4_proc_readlink, .create = nfs4_proc_create, .remove = nfs4_proc_remove, .unlink_setup = nfs4_proc_unlink_setup, .unlink_rpc_prepare = nfs4_proc_unlink_rpc_prepare, .unlink_done = nfs4_proc_unlink_done, .rename_setup = nfs4_proc_rename_setup, .rename_rpc_prepare = nfs4_proc_rename_rpc_prepare, .rename_done = nfs4_proc_rename_done, .link = nfs4_proc_link, .symlink = nfs4_proc_symlink, .mkdir = nfs4_proc_mkdir, .rmdir = nfs4_proc_remove, .readdir = nfs4_proc_readdir, .mknod = nfs4_proc_mknod, .statfs = nfs4_proc_statfs, .fsinfo = nfs4_proc_fsinfo, .pathconf = nfs4_proc_pathconf, .set_capabilities = nfs4_server_capabilities, .decode_dirent = nfs4_decode_dirent, .pgio_rpc_prepare = nfs4_proc_pgio_rpc_prepare, .read_setup = nfs4_proc_read_setup, .read_done = nfs4_read_done, .write_setup = nfs4_proc_write_setup, .write_done = nfs4_write_done, .commit_setup = nfs4_proc_commit_setup, .commit_rpc_prepare = nfs4_proc_commit_rpc_prepare, .commit_done = nfs4_commit_done, .lock = nfs4_proc_lock, .clear_acl_cache = nfs4_zap_acl_attr, .close_context = nfs4_close_context, .open_context = nfs4_atomic_open, .have_delegation = nfs4_have_delegation, .return_delegation = nfs4_inode_return_delegation, .alloc_client = nfs4_alloc_client, .init_client = nfs4_init_client, .free_client = nfs4_free_client, .create_server = nfs4_create_server, .clone_server = nfs_clone_server, }; static const struct xattr_handler nfs4_xattr_nfs4_acl_handler = { .name = XATTR_NAME_NFSV4_ACL, .list = nfs4_xattr_list_nfs4_acl, .get = nfs4_xattr_get_nfs4_acl, .set = nfs4_xattr_set_nfs4_acl, }; const struct xattr_handler *nfs4_xattr_handlers[] = { &nfs4_xattr_nfs4_acl_handler, #ifdef CONFIG_NFS_V4_SECURITY_LABEL &nfs4_xattr_nfs4_label_handler, #endif NULL }; /* * Local variables: * c-basic-offset: 8 * End: */