/****************************************************************************** * * Copyright(c) 2003 - 2012 Intel Corporation. All rights reserved. * * Portions of this file are derived from the ipw3945 project, as well * as portions of the ieee80211 subsystem header files. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * *****************************************************************************/ #ifndef __iwl_trans_int_pcie_h__ #define __iwl_trans_int_pcie_h__ #include #include #include #include #include "iwl-fh.h" #include "iwl-csr.h" #include "iwl-shared.h" #include "iwl-trans.h" #include "iwl-debug.h" #include "iwl-io.h" #include "iwl-op-mode.h" struct iwl_tx_queue; struct iwl_queue; struct iwl_host_cmd; /*This file includes the declaration that are internal to the * trans_pcie layer */ struct iwl_rx_mem_buffer { dma_addr_t page_dma; struct page *page; struct list_head list; }; /** * struct isr_statistics - interrupt statistics * */ struct isr_statistics { u32 hw; u32 sw; u32 err_code; u32 sch; u32 alive; u32 rfkill; u32 ctkill; u32 wakeup; u32 rx; u32 tx; u32 unhandled; }; /** * struct iwl_rx_queue - Rx queue * @bd: driver's pointer to buffer of receive buffer descriptors (rbd) * @bd_dma: bus address of buffer of receive buffer descriptors (rbd) * @pool: * @queue: * @read: Shared index to newest available Rx buffer * @write: Shared index to oldest written Rx packet * @free_count: Number of pre-allocated buffers in rx_free * @write_actual: * @rx_free: list of free SKBs for use * @rx_used: List of Rx buffers with no SKB * @need_update: flag to indicate we need to update read/write index * @rb_stts: driver's pointer to receive buffer status * @rb_stts_dma: bus address of receive buffer status * @lock: * * NOTE: rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers */ struct iwl_rx_queue { __le32 *bd; dma_addr_t bd_dma; struct iwl_rx_mem_buffer pool[RX_QUEUE_SIZE + RX_FREE_BUFFERS]; struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE]; u32 read; u32 write; u32 free_count; u32 write_actual; struct list_head rx_free; struct list_head rx_used; int need_update; struct iwl_rb_status *rb_stts; dma_addr_t rb_stts_dma; spinlock_t lock; }; struct iwl_dma_ptr { dma_addr_t dma; void *addr; size_t size; }; /* * This queue number is required for proper operation * because the ucode will stop/start the scheduler as * required. */ #define IWL_IPAN_MCAST_QUEUE 8 struct iwl_cmd_meta { /* only for SYNC commands, iff the reply skb is wanted */ struct iwl_host_cmd *source; u32 flags; DEFINE_DMA_UNMAP_ADDR(mapping); DEFINE_DMA_UNMAP_LEN(len); }; /* * Generic queue structure * * Contains common data for Rx and Tx queues. * * Note the difference between n_bd and n_window: the hardware * always assumes 256 descriptors, so n_bd is always 256 (unless * there might be HW changes in the future). For the normal TX * queues, n_window, which is the size of the software queue data * is also 256; however, for the command queue, n_window is only * 32 since we don't need so many commands pending. Since the HW * still uses 256 BDs for DMA though, n_bd stays 256. As a result, * the software buffers (in the variables @meta, @txb in struct * iwl_tx_queue) only have 32 entries, while the HW buffers (@tfds * in the same struct) have 256. * This means that we end up with the following: * HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 | * SW entries: | 0 | ... | 31 | * where N is a number between 0 and 7. This means that the SW * data is a window overlayed over the HW queue. */ struct iwl_queue { int n_bd; /* number of BDs in this queue */ int write_ptr; /* 1-st empty entry (index) host_w*/ int read_ptr; /* last used entry (index) host_r*/ /* use for monitoring and recovering the stuck queue */ dma_addr_t dma_addr; /* physical addr for BD's */ int n_window; /* safe queue window */ u32 id; int low_mark; /* low watermark, resume queue if free * space more than this */ int high_mark; /* high watermark, stop queue if free * space less than this */ }; /** * struct iwl_tx_queue - Tx Queue for DMA * @q: generic Rx/Tx queue descriptor * @bd: base of circular buffer of TFDs * @cmd: array of command/TX buffer pointers * @meta: array of meta data for each command/tx buffer * @dma_addr_cmd: physical address of cmd/tx buffer array * @txb: array of per-TFD driver data * lock: queue lock * @time_stamp: time (in jiffies) of last read_ptr change * @need_update: indicates need to update read/write index * @sched_retry: indicates queue is high-throughput aggregation (HT AGG) enabled * @sta_id: valid if sched_retry is set * @tid: valid if sched_retry is set * * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame * descriptors) and required locking structures. */ #define TFD_TX_CMD_SLOTS 256 #define TFD_CMD_SLOTS 32 struct iwl_tx_queue { struct iwl_queue q; struct iwl_tfd *tfds; struct iwl_device_cmd **cmd; struct iwl_cmd_meta *meta; struct sk_buff **skbs; spinlock_t lock; unsigned long time_stamp; u8 need_update; u8 sched_retry; u8 active; u8 swq_id; u16 sta_id; u16 tid; }; /** * struct iwl_trans_pcie - PCIe transport specific data * @rxq: all the RX queue data * @rx_replenish: work that will be called when buffers need to be allocated * @trans: pointer to the generic transport area * @irq_requested: true when the irq has been requested * @scd_base_addr: scheduler sram base address in SRAM * @scd_bc_tbls: pointer to the byte count table of the scheduler * @kw: keep warm address * @ac_to_fifo: to what fifo is a specifc AC mapped ? * @ac_to_queue: to what tx queue is a specifc AC mapped ? * @mcast_queue: * @txq: Tx DMA processing queues * @txq_ctx_active_msk: what queue is active * queue_stopped: tracks what queue is stopped * queue_stop_count: tracks what SW queue is stopped * @pci_dev: basic pci-network driver stuff * @hw_base: pci hardware address support */ struct iwl_trans_pcie { struct iwl_rx_queue rxq; struct work_struct rx_replenish; struct iwl_trans *trans; /* INT ICT Table */ __le32 *ict_tbl; dma_addr_t ict_tbl_dma; int ict_index; u32 inta; bool use_ict; bool irq_requested; struct tasklet_struct irq_tasklet; struct isr_statistics isr_stats; spinlock_t irq_lock; u32 inta_mask; u32 scd_base_addr; struct iwl_dma_ptr scd_bc_tbls; struct iwl_dma_ptr kw; const u8 *ac_to_fifo[NUM_IWL_RXON_CTX]; const u8 *ac_to_queue[NUM_IWL_RXON_CTX]; u8 mcast_queue[NUM_IWL_RXON_CTX]; u8 agg_txq[IWLAGN_STATION_COUNT][IWL_MAX_TID_COUNT]; struct iwl_tx_queue *txq; unsigned long txq_ctx_active_msk; #define IWL_MAX_HW_QUEUES 32 unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_HW_QUEUES)]; atomic_t queue_stop_count[4]; /* PCI bus related data */ struct pci_dev *pci_dev; void __iomem *hw_base; }; #define IWL_TRANS_GET_PCIE_TRANS(_iwl_trans) \ ((struct iwl_trans_pcie *) ((_iwl_trans)->trans_specific)) /***************************************************** * RX ******************************************************/ void iwl_bg_rx_replenish(struct work_struct *data); void iwl_irq_tasklet(struct iwl_trans *trans); void iwlagn_rx_replenish(struct iwl_trans *trans); void iwl_rx_queue_update_write_ptr(struct iwl_trans *trans, struct iwl_rx_queue *q); /***************************************************** * ICT ******************************************************/ void iwl_reset_ict(struct iwl_trans *trans); void iwl_disable_ict(struct iwl_trans *trans); int iwl_alloc_isr_ict(struct iwl_trans *trans); void iwl_free_isr_ict(struct iwl_trans *trans); irqreturn_t iwl_isr_ict(int irq, void *data); /***************************************************** * TX / HCMD ******************************************************/ void iwl_txq_update_write_ptr(struct iwl_trans *trans, struct iwl_tx_queue *txq); int iwlagn_txq_attach_buf_to_tfd(struct iwl_trans *trans, struct iwl_tx_queue *txq, dma_addr_t addr, u16 len, u8 reset); int iwl_queue_init(struct iwl_queue *q, int count, int slots_num, u32 id); int iwl_trans_pcie_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); void iwl_tx_cmd_complete(struct iwl_trans *trans, struct iwl_rx_cmd_buffer *rxb, int handler_status); void iwl_trans_txq_update_byte_cnt_tbl(struct iwl_trans *trans, struct iwl_tx_queue *txq, u16 byte_cnt); int iwl_trans_pcie_tx_agg_disable(struct iwl_trans *trans, int sta_id, int tid); void iwl_trans_set_wr_ptrs(struct iwl_trans *trans, int txq_id, u32 index); void iwl_trans_tx_queue_set_status(struct iwl_trans *trans, struct iwl_tx_queue *txq, int tx_fifo_id, int scd_retry); int iwl_trans_pcie_tx_agg_alloc(struct iwl_trans *trans, int sta_id, int tid); void iwl_trans_pcie_tx_agg_setup(struct iwl_trans *trans, enum iwl_rxon_context_id ctx, int sta_id, int tid, int frame_limit, u16 ssn); void iwlagn_txq_free_tfd(struct iwl_trans *trans, struct iwl_tx_queue *txq, int index, enum dma_data_direction dma_dir); int iwl_tx_queue_reclaim(struct iwl_trans *trans, int txq_id, int index, struct sk_buff_head *skbs); int iwl_queue_space(const struct iwl_queue *q); /***************************************************** * Error handling ******************************************************/ int iwl_dump_nic_event_log(struct iwl_trans *trans, bool full_log, char **buf, bool display); int iwl_dump_fh(struct iwl_trans *trans, char **buf, bool display); void iwl_dump_csr(struct iwl_trans *trans); /***************************************************** * Helpers ******************************************************/ static inline void iwl_disable_interrupts(struct iwl_trans *trans) { clear_bit(STATUS_INT_ENABLED, &trans->shrd->status); /* disable interrupts from uCode/NIC to host */ iwl_write32(trans, CSR_INT_MASK, 0x00000000); /* acknowledge/clear/reset any interrupts still pending * from uCode or flow handler (Rx/Tx DMA) */ iwl_write32(trans, CSR_INT, 0xffffffff); iwl_write32(trans, CSR_FH_INT_STATUS, 0xffffffff); IWL_DEBUG_ISR(trans, "Disabled interrupts\n"); } static inline void iwl_enable_interrupts(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); IWL_DEBUG_ISR(trans, "Enabling interrupts\n"); set_bit(STATUS_INT_ENABLED, &trans->shrd->status); iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask); } /* * we have 8 bits used like this: * * 7 6 5 4 3 2 1 0 * | | | | | | | | * | | | | | | +-+-------- AC queue (0-3) * | | | | | | * | +-+-+-+-+------------ HW queue ID * | * +---------------------- unused */ static inline void iwl_set_swq_id(struct iwl_tx_queue *txq, u8 ac, u8 hwq) { BUG_ON(ac > 3); /* only have 2 bits */ BUG_ON(hwq > 31); /* only use 5 bits */ txq->swq_id = (hwq << 2) | ac; } static inline u8 iwl_get_queue_ac(struct iwl_tx_queue *txq) { return txq->swq_id & 0x3; } static inline void iwl_wake_queue(struct iwl_trans *trans, struct iwl_tx_queue *txq, const char *msg) { u8 queue = txq->swq_id; u8 ac = queue & 3; u8 hwq = (queue >> 2) & 0x1f; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); if (test_and_clear_bit(hwq, trans_pcie->queue_stopped)) { if (atomic_dec_return(&trans_pcie->queue_stop_count[ac]) <= 0) { iwl_op_mode_queue_not_full(trans->op_mode, ac); IWL_DEBUG_TX_QUEUES(trans, "Wake hwq %d ac %d. %s", hwq, ac, msg); } else { IWL_DEBUG_TX_QUEUES(trans, "Don't wake hwq %d ac %d" " stop count %d. %s", hwq, ac, atomic_read(&trans_pcie-> queue_stop_count[ac]), msg); } } } static inline void iwl_stop_queue(struct iwl_trans *trans, struct iwl_tx_queue *txq, const char *msg) { u8 queue = txq->swq_id; u8 ac = queue & 3; u8 hwq = (queue >> 2) & 0x1f; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); if (!test_and_set_bit(hwq, trans_pcie->queue_stopped)) { if (atomic_inc_return(&trans_pcie->queue_stop_count[ac]) > 0) { iwl_op_mode_queue_full(trans->op_mode, ac); IWL_DEBUG_TX_QUEUES(trans, "Stop hwq %d ac %d" " stop count %d. %s", hwq, ac, atomic_read(&trans_pcie-> queue_stop_count[ac]), msg); } else { IWL_DEBUG_TX_QUEUES(trans, "Don't stop hwq %d ac %d" " stop count %d. %s", hwq, ac, atomic_read(&trans_pcie-> queue_stop_count[ac]), msg); } } else { IWL_DEBUG_TX_QUEUES(trans, "stop hwq %d, but it is stopped/ %s", hwq, msg); } } #ifdef ieee80211_stop_queue #undef ieee80211_stop_queue #endif #define ieee80211_stop_queue DO_NOT_USE_ieee80211_stop_queue #ifdef ieee80211_wake_queue #undef ieee80211_wake_queue #endif #define ieee80211_wake_queue DO_NOT_USE_ieee80211_wake_queue static inline void iwl_txq_ctx_activate(struct iwl_trans_pcie *trans_pcie, int txq_id) { set_bit(txq_id, &trans_pcie->txq_ctx_active_msk); } static inline void iwl_txq_ctx_deactivate(struct iwl_trans_pcie *trans_pcie, int txq_id) { clear_bit(txq_id, &trans_pcie->txq_ctx_active_msk); } static inline int iwl_queue_used(const struct iwl_queue *q, int i) { return q->write_ptr >= q->read_ptr ? (i >= q->read_ptr && i < q->write_ptr) : !(i < q->read_ptr && i >= q->write_ptr); } static inline u8 get_cmd_index(struct iwl_queue *q, u32 index) { return index & (q->n_window - 1); } #define IWL_TX_FIFO_BK 0 /* shared */ #define IWL_TX_FIFO_BE 1 #define IWL_TX_FIFO_VI 2 /* shared */ #define IWL_TX_FIFO_VO 3 #define IWL_TX_FIFO_BK_IPAN IWL_TX_FIFO_BK #define IWL_TX_FIFO_BE_IPAN 4 #define IWL_TX_FIFO_VI_IPAN IWL_TX_FIFO_VI #define IWL_TX_FIFO_VO_IPAN 5 /* re-uses the VO FIFO, uCode will properly flush/schedule */ #define IWL_TX_FIFO_AUX 5 #define IWL_TX_FIFO_UNUSED -1 /* AUX (TX during scan dwell) queue */ #define IWL_AUX_QUEUE 10 #endif /* __iwl_trans_int_pcie_h__ */