/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include "drmP.h" #include "radeon_reg.h" #include "radeon.h" #include "rs690r.h" #include "atom.h" #include "atom-bits.h" /* rs690,rs740 depends on : */ void r100_hdp_reset(struct radeon_device *rdev); int r300_mc_wait_for_idle(struct radeon_device *rdev); void r420_pipes_init(struct radeon_device *rdev); void rs400_gart_disable(struct radeon_device *rdev); int rs400_gart_enable(struct radeon_device *rdev); void rs400_gart_adjust_size(struct radeon_device *rdev); void rs600_mc_disable_clients(struct radeon_device *rdev); void rs600_disable_vga(struct radeon_device *rdev); /* This files gather functions specifics to : * rs690,rs740 * * Some of these functions might be used by newer ASICs. */ void rs690_gpu_init(struct radeon_device *rdev); int rs690_mc_wait_for_idle(struct radeon_device *rdev); /* * MC functions. */ int rs690_mc_init(struct radeon_device *rdev) { uint32_t tmp; int r; if (r100_debugfs_rbbm_init(rdev)) { DRM_ERROR("Failed to register debugfs file for RBBM !\n"); } rs690_gpu_init(rdev); rs400_gart_disable(rdev); /* Setup GPU memory space */ rdev->mc.gtt_location = rdev->mc.vram_size; rdev->mc.gtt_location += (rdev->mc.gtt_size - 1); rdev->mc.gtt_location &= ~(rdev->mc.gtt_size - 1); rdev->mc.vram_location = 0xFFFFFFFFUL; r = radeon_mc_setup(rdev); if (r) { return r; } /* Program GPU memory space */ rs600_mc_disable_clients(rdev); if (rs690_mc_wait_for_idle(rdev)) { printk(KERN_WARNING "Failed to wait MC idle while " "programming pipes. Bad things might happen.\n"); } tmp = rdev->mc.vram_location + rdev->mc.vram_size - 1; tmp = REG_SET(RS690_MC_FB_TOP, tmp >> 16); tmp |= REG_SET(RS690_MC_FB_START, rdev->mc.vram_location >> 16); WREG32_MC(RS690_MCCFG_FB_LOCATION, tmp); /* FIXME: Does this reg exist on RS480,RS740 ? */ WREG32(0x310, rdev->mc.vram_location); WREG32(RS690_HDP_FB_LOCATION, rdev->mc.vram_location >> 16); return 0; } void rs690_mc_fini(struct radeon_device *rdev) { rs400_gart_disable(rdev); radeon_gart_table_ram_free(rdev); radeon_gart_fini(rdev); } /* * Global GPU functions */ int rs690_mc_wait_for_idle(struct radeon_device *rdev) { unsigned i; uint32_t tmp; for (i = 0; i < rdev->usec_timeout; i++) { /* read MC_STATUS */ tmp = RREG32_MC(RS690_MC_STATUS); if (tmp & RS690_MC_STATUS_IDLE) { return 0; } DRM_UDELAY(1); } return -1; } void rs690_errata(struct radeon_device *rdev) { rdev->pll_errata = 0; } void rs690_gpu_init(struct radeon_device *rdev) { /* FIXME: HDP same place on rs690 ? */ r100_hdp_reset(rdev); rs600_disable_vga(rdev); /* FIXME: is this correct ? */ r420_pipes_init(rdev); if (rs690_mc_wait_for_idle(rdev)) { printk(KERN_WARNING "Failed to wait MC idle while " "programming pipes. Bad things might happen.\n"); } } /* * VRAM info. */ void rs690_pm_info(struct radeon_device *rdev) { int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo); struct _ATOM_INTEGRATED_SYSTEM_INFO *info; struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 *info_v2; void *ptr; uint16_t data_offset; uint8_t frev, crev; fixed20_12 tmp; atom_parse_data_header(rdev->mode_info.atom_context, index, NULL, &frev, &crev, &data_offset); ptr = rdev->mode_info.atom_context->bios + data_offset; info = (struct _ATOM_INTEGRATED_SYSTEM_INFO *)ptr; info_v2 = (struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 *)ptr; /* Get various system informations from bios */ switch (crev) { case 1: tmp.full = rfixed_const(100); rdev->pm.igp_sideport_mclk.full = rfixed_const(info->ulBootUpMemoryClock); rdev->pm.igp_sideport_mclk.full = rfixed_div(rdev->pm.igp_sideport_mclk, tmp); rdev->pm.igp_system_mclk.full = rfixed_const(le16_to_cpu(info->usK8MemoryClock)); rdev->pm.igp_ht_link_clk.full = rfixed_const(le16_to_cpu(info->usFSBClock)); rdev->pm.igp_ht_link_width.full = rfixed_const(info->ucHTLinkWidth); break; case 2: tmp.full = rfixed_const(100); rdev->pm.igp_sideport_mclk.full = rfixed_const(info_v2->ulBootUpSidePortClock); rdev->pm.igp_sideport_mclk.full = rfixed_div(rdev->pm.igp_sideport_mclk, tmp); rdev->pm.igp_system_mclk.full = rfixed_const(info_v2->ulBootUpUMAClock); rdev->pm.igp_system_mclk.full = rfixed_div(rdev->pm.igp_system_mclk, tmp); rdev->pm.igp_ht_link_clk.full = rfixed_const(info_v2->ulHTLinkFreq); rdev->pm.igp_ht_link_clk.full = rfixed_div(rdev->pm.igp_ht_link_clk, tmp); rdev->pm.igp_ht_link_width.full = rfixed_const(le16_to_cpu(info_v2->usMinHTLinkWidth)); break; default: tmp.full = rfixed_const(100); /* We assume the slower possible clock ie worst case */ /* DDR 333Mhz */ rdev->pm.igp_sideport_mclk.full = rfixed_const(333); /* FIXME: system clock ? */ rdev->pm.igp_system_mclk.full = rfixed_const(100); rdev->pm.igp_system_mclk.full = rfixed_div(rdev->pm.igp_system_mclk, tmp); rdev->pm.igp_ht_link_clk.full = rfixed_const(200); rdev->pm.igp_ht_link_width.full = rfixed_const(8); DRM_ERROR("No integrated system info for your GPU, using safe default\n"); break; } /* Compute various bandwidth */ /* k8_bandwidth = (memory_clk / 2) * 2 * 8 * 0.5 = memory_clk * 4 */ tmp.full = rfixed_const(4); rdev->pm.k8_bandwidth.full = rfixed_mul(rdev->pm.igp_system_mclk, tmp); /* ht_bandwidth = ht_clk * 2 * ht_width / 8 * 0.8 * = ht_clk * ht_width / 5 */ tmp.full = rfixed_const(5); rdev->pm.ht_bandwidth.full = rfixed_mul(rdev->pm.igp_ht_link_clk, rdev->pm.igp_ht_link_width); rdev->pm.ht_bandwidth.full = rfixed_div(rdev->pm.ht_bandwidth, tmp); if (tmp.full < rdev->pm.max_bandwidth.full) { /* HT link is a limiting factor */ rdev->pm.max_bandwidth.full = tmp.full; } /* sideport_bandwidth = (sideport_clk / 2) * 2 * 2 * 0.7 * = (sideport_clk * 14) / 10 */ tmp.full = rfixed_const(14); rdev->pm.sideport_bandwidth.full = rfixed_mul(rdev->pm.igp_sideport_mclk, tmp); tmp.full = rfixed_const(10); rdev->pm.sideport_bandwidth.full = rfixed_div(rdev->pm.sideport_bandwidth, tmp); } void rs690_vram_info(struct radeon_device *rdev) { uint32_t tmp; fixed20_12 a; rs400_gart_adjust_size(rdev); /* DDR for all card after R300 & IGP */ rdev->mc.vram_is_ddr = true; /* FIXME: is this correct for RS690/RS740 ? */ tmp = RREG32(RADEON_MEM_CNTL); if (tmp & R300_MEM_NUM_CHANNELS_MASK) { rdev->mc.vram_width = 128; } else { rdev->mc.vram_width = 64; } rdev->mc.vram_size = RREG32(RADEON_CONFIG_MEMSIZE); rdev->mc.aper_base = drm_get_resource_start(rdev->ddev, 0); rdev->mc.aper_size = drm_get_resource_len(rdev->ddev, 0); rs690_pm_info(rdev); /* FIXME: we should enforce default clock in case GPU is not in * default setup */ a.full = rfixed_const(100); rdev->pm.sclk.full = rfixed_const(rdev->clock.default_sclk); rdev->pm.sclk.full = rfixed_div(rdev->pm.sclk, a); a.full = rfixed_const(16); /* core_bandwidth = sclk(Mhz) * 16 */ rdev->pm.core_bandwidth.full = rfixed_div(rdev->pm.sclk, a); } void rs690_line_buffer_adjust(struct radeon_device *rdev, struct drm_display_mode *mode1, struct drm_display_mode *mode2) { u32 tmp; /* * Line Buffer Setup * There is a single line buffer shared by both display controllers. * DC_LB_MEMORY_SPLIT controls how that line buffer is shared between * the display controllers. The paritioning can either be done * manually or via one of four preset allocations specified in bits 1:0: * 0 - line buffer is divided in half and shared between crtc * 1 - D1 gets 3/4 of the line buffer, D2 gets 1/4 * 2 - D1 gets the whole buffer * 3 - D1 gets 1/4 of the line buffer, D2 gets 3/4 * Setting bit 2 of DC_LB_MEMORY_SPLIT controls switches to manual * allocation mode. In manual allocation mode, D1 always starts at 0, * D1 end/2 is specified in bits 14:4; D2 allocation follows D1. */ tmp = RREG32(DC_LB_MEMORY_SPLIT) & ~DC_LB_MEMORY_SPLIT_MASK; tmp &= ~DC_LB_MEMORY_SPLIT_SHIFT_MODE; /* auto */ if (mode1 && mode2) { if (mode1->hdisplay > mode2->hdisplay) { if (mode1->hdisplay > 2560) tmp |= DC_LB_MEMORY_SPLIT_D1_3Q_D2_1Q; else tmp |= DC_LB_MEMORY_SPLIT_D1HALF_D2HALF; } else if (mode2->hdisplay > mode1->hdisplay) { if (mode2->hdisplay > 2560) tmp |= DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q; else tmp |= DC_LB_MEMORY_SPLIT_D1HALF_D2HALF; } else tmp |= AVIVO_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF; } else if (mode1) { tmp |= DC_LB_MEMORY_SPLIT_D1_ONLY; } else if (mode2) { tmp |= DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q; } WREG32(DC_LB_MEMORY_SPLIT, tmp); } struct rs690_watermark { u32 lb_request_fifo_depth; fixed20_12 num_line_pair; fixed20_12 estimated_width; fixed20_12 worst_case_latency; fixed20_12 consumption_rate; fixed20_12 active_time; fixed20_12 dbpp; fixed20_12 priority_mark_max; fixed20_12 priority_mark; fixed20_12 sclk; }; void rs690_crtc_bandwidth_compute(struct radeon_device *rdev, struct radeon_crtc *crtc, struct rs690_watermark *wm) { struct drm_display_mode *mode = &crtc->base.mode; fixed20_12 a, b, c; fixed20_12 pclk, request_fifo_depth, tolerable_latency, estimated_width; fixed20_12 consumption_time, line_time, chunk_time, read_delay_latency; /* FIXME: detect IGP with sideport memory, i don't think there is any * such product available */ bool sideport = false; if (!crtc->base.enabled) { /* FIXME: wouldn't it better to set priority mark to maximum */ wm->lb_request_fifo_depth = 4; return; } if (crtc->vsc.full > rfixed_const(2)) wm->num_line_pair.full = rfixed_const(2); else wm->num_line_pair.full = rfixed_const(1); b.full = rfixed_const(mode->crtc_hdisplay); c.full = rfixed_const(256); a.full = rfixed_mul(wm->num_line_pair, b); request_fifo_depth.full = rfixed_div(a, c); if (a.full < rfixed_const(4)) { wm->lb_request_fifo_depth = 4; } else { wm->lb_request_fifo_depth = rfixed_trunc(request_fifo_depth); } /* Determine consumption rate * pclk = pixel clock period(ns) = 1000 / (mode.clock / 1000) * vtaps = number of vertical taps, * vsc = vertical scaling ratio, defined as source/destination * hsc = horizontal scaling ration, defined as source/destination */ a.full = rfixed_const(mode->clock); b.full = rfixed_const(1000); a.full = rfixed_div(a, b); pclk.full = rfixed_div(b, a); if (crtc->rmx_type != RMX_OFF) { b.full = rfixed_const(2); if (crtc->vsc.full > b.full) b.full = crtc->vsc.full; b.full = rfixed_mul(b, crtc->hsc); c.full = rfixed_const(2); b.full = rfixed_div(b, c); consumption_time.full = rfixed_div(pclk, b); } else { consumption_time.full = pclk.full; } a.full = rfixed_const(1); wm->consumption_rate.full = rfixed_div(a, consumption_time); /* Determine line time * LineTime = total time for one line of displayhtotal * LineTime = total number of horizontal pixels * pclk = pixel clock period(ns) */ a.full = rfixed_const(crtc->base.mode.crtc_htotal); line_time.full = rfixed_mul(a, pclk); /* Determine active time * ActiveTime = time of active region of display within one line, * hactive = total number of horizontal active pixels * htotal = total number of horizontal pixels */ a.full = rfixed_const(crtc->base.mode.crtc_htotal); b.full = rfixed_const(crtc->base.mode.crtc_hdisplay); wm->active_time.full = rfixed_mul(line_time, b); wm->active_time.full = rfixed_div(wm->active_time, a); /* Maximun bandwidth is the minimun bandwidth of all component */ rdev->pm.max_bandwidth = rdev->pm.core_bandwidth; if (sideport) { if (rdev->pm.max_bandwidth.full > rdev->pm.sideport_bandwidth.full && rdev->pm.sideport_bandwidth.full) rdev->pm.max_bandwidth = rdev->pm.sideport_bandwidth; read_delay_latency.full = rfixed_const(370 * 800 * 1000); read_delay_latency.full = rfixed_div(read_delay_latency, rdev->pm.igp_sideport_mclk); } else { if (rdev->pm.max_bandwidth.full > rdev->pm.k8_bandwidth.full && rdev->pm.k8_bandwidth.full) rdev->pm.max_bandwidth = rdev->pm.k8_bandwidth; if (rdev->pm.max_bandwidth.full > rdev->pm.ht_bandwidth.full && rdev->pm.ht_bandwidth.full) rdev->pm.max_bandwidth = rdev->pm.ht_bandwidth; read_delay_latency.full = rfixed_const(5000); } /* sclk = system clocks(ns) = 1000 / max_bandwidth / 16 */ a.full = rfixed_const(16); rdev->pm.sclk.full = rfixed_mul(rdev->pm.max_bandwidth, a); a.full = rfixed_const(1000); rdev->pm.sclk.full = rfixed_div(a, rdev->pm.sclk); /* Determine chunk time * ChunkTime = the time it takes the DCP to send one chunk of data * to the LB which consists of pipeline delay and inter chunk gap * sclk = system clock(ns) */ a.full = rfixed_const(256 * 13); chunk_time.full = rfixed_mul(rdev->pm.sclk, a); a.full = rfixed_const(10); chunk_time.full = rfixed_div(chunk_time, a); /* Determine the worst case latency * NumLinePair = Number of line pairs to request(1=2 lines, 2=4 lines) * WorstCaseLatency = worst case time from urgent to when the MC starts * to return data * READ_DELAY_IDLE_MAX = constant of 1us * ChunkTime = time it takes the DCP to send one chunk of data to the LB * which consists of pipeline delay and inter chunk gap */ if (rfixed_trunc(wm->num_line_pair) > 1) { a.full = rfixed_const(3); wm->worst_case_latency.full = rfixed_mul(a, chunk_time); wm->worst_case_latency.full += read_delay_latency.full; } else { a.full = rfixed_const(2); wm->worst_case_latency.full = rfixed_mul(a, chunk_time); wm->worst_case_latency.full += read_delay_latency.full; } /* Determine the tolerable latency * TolerableLatency = Any given request has only 1 line time * for the data to be returned * LBRequestFifoDepth = Number of chunk requests the LB can * put into the request FIFO for a display * LineTime = total time for one line of display * ChunkTime = the time it takes the DCP to send one chunk * of data to the LB which consists of * pipeline delay and inter chunk gap */ if ((2+wm->lb_request_fifo_depth) >= rfixed_trunc(request_fifo_depth)) { tolerable_latency.full = line_time.full; } else { tolerable_latency.full = rfixed_const(wm->lb_request_fifo_depth - 2); tolerable_latency.full = request_fifo_depth.full - tolerable_latency.full; tolerable_latency.full = rfixed_mul(tolerable_latency, chunk_time); tolerable_latency.full = line_time.full - tolerable_latency.full; } /* We assume worst case 32bits (4 bytes) */ wm->dbpp.full = rfixed_const(4 * 8); /* Determine the maximum priority mark * width = viewport width in pixels */ a.full = rfixed_const(16); wm->priority_mark_max.full = rfixed_const(crtc->base.mode.crtc_hdisplay); wm->priority_mark_max.full = rfixed_div(wm->priority_mark_max, a); /* Determine estimated width */ estimated_width.full = tolerable_latency.full - wm->worst_case_latency.full; estimated_width.full = rfixed_div(estimated_width, consumption_time); if (rfixed_trunc(estimated_width) > crtc->base.mode.crtc_hdisplay) { wm->priority_mark.full = rfixed_const(10); } else { a.full = rfixed_const(16); wm->priority_mark.full = rfixed_div(estimated_width, a); wm->priority_mark.full = wm->priority_mark_max.full - wm->priority_mark.full; } } void rs690_bandwidth_update(struct radeon_device *rdev) { struct drm_display_mode *mode0 = NULL; struct drm_display_mode *mode1 = NULL; struct rs690_watermark wm0; struct rs690_watermark wm1; u32 tmp; fixed20_12 priority_mark02, priority_mark12, fill_rate; fixed20_12 a, b; if (rdev->mode_info.crtcs[0]->base.enabled) mode0 = &rdev->mode_info.crtcs[0]->base.mode; if (rdev->mode_info.crtcs[1]->base.enabled) mode1 = &rdev->mode_info.crtcs[1]->base.mode; /* * Set display0/1 priority up in the memory controller for * modes if the user specifies HIGH for displaypriority * option. */ if (rdev->disp_priority == 2) { tmp = RREG32_MC(MC_INIT_MISC_LAT_TIMER); tmp &= ~MC_DISP1R_INIT_LAT_MASK; tmp &= ~MC_DISP0R_INIT_LAT_MASK; if (mode1) tmp |= (1 << MC_DISP1R_INIT_LAT_SHIFT); if (mode0) tmp |= (1 << MC_DISP0R_INIT_LAT_SHIFT); WREG32_MC(MC_INIT_MISC_LAT_TIMER, tmp); } rs690_line_buffer_adjust(rdev, mode0, mode1); if ((rdev->family == CHIP_RS690) || (rdev->family == CHIP_RS740)) WREG32(DCP_CONTROL, 0); if ((rdev->family == CHIP_RS780) || (rdev->family == CHIP_RS880)) WREG32(DCP_CONTROL, 2); rs690_crtc_bandwidth_compute(rdev, rdev->mode_info.crtcs[0], &wm0); rs690_crtc_bandwidth_compute(rdev, rdev->mode_info.crtcs[1], &wm1); tmp = (wm0.lb_request_fifo_depth - 1); tmp |= (wm1.lb_request_fifo_depth - 1) << 16; WREG32(LB_MAX_REQ_OUTSTANDING, tmp); if (mode0 && mode1) { if (rfixed_trunc(wm0.dbpp) > 64) a.full = rfixed_mul(wm0.dbpp, wm0.num_line_pair); else a.full = wm0.num_line_pair.full; if (rfixed_trunc(wm1.dbpp) > 64) b.full = rfixed_mul(wm1.dbpp, wm1.num_line_pair); else b.full = wm1.num_line_pair.full; a.full += b.full; fill_rate.full = rfixed_div(wm0.sclk, a); if (wm0.consumption_rate.full > fill_rate.full) { b.full = wm0.consumption_rate.full - fill_rate.full; b.full = rfixed_mul(b, wm0.active_time); a.full = rfixed_mul(wm0.worst_case_latency, wm0.consumption_rate); a.full = a.full + b.full; b.full = rfixed_const(16 * 1000); priority_mark02.full = rfixed_div(a, b); } else { a.full = rfixed_mul(wm0.worst_case_latency, wm0.consumption_rate); b.full = rfixed_const(16 * 1000); priority_mark02.full = rfixed_div(a, b); } if (wm1.consumption_rate.full > fill_rate.full) { b.full = wm1.consumption_rate.full - fill_rate.full; b.full = rfixed_mul(b, wm1.active_time); a.full = rfixed_mul(wm1.worst_case_latency, wm1.consumption_rate); a.full = a.full + b.full; b.full = rfixed_const(16 * 1000); priority_mark12.full = rfixed_div(a, b); } else { a.full = rfixed_mul(wm1.worst_case_latency, wm1.consumption_rate); b.full = rfixed_const(16 * 1000); priority_mark12.full = rfixed_div(a, b); } if (wm0.priority_mark.full > priority_mark02.full) priority_mark02.full = wm0.priority_mark.full; if (rfixed_trunc(priority_mark02) < 0) priority_mark02.full = 0; if (wm0.priority_mark_max.full > priority_mark02.full) priority_mark02.full = wm0.priority_mark_max.full; if (wm1.priority_mark.full > priority_mark12.full) priority_mark12.full = wm1.priority_mark.full; if (rfixed_trunc(priority_mark12) < 0) priority_mark12.full = 0; if (wm1.priority_mark_max.full > priority_mark12.full) priority_mark12.full = wm1.priority_mark_max.full; WREG32(D1MODE_PRIORITY_A_CNT, rfixed_trunc(priority_mark02)); WREG32(D1MODE_PRIORITY_B_CNT, rfixed_trunc(priority_mark02)); WREG32(D2MODE_PRIORITY_A_CNT, rfixed_trunc(priority_mark12)); WREG32(D2MODE_PRIORITY_B_CNT, rfixed_trunc(priority_mark12)); } else if (mode0) { if (rfixed_trunc(wm0.dbpp) > 64) a.full = rfixed_mul(wm0.dbpp, wm0.num_line_pair); else a.full = wm0.num_line_pair.full; fill_rate.full = rfixed_div(wm0.sclk, a); if (wm0.consumption_rate.full > fill_rate.full) { b.full = wm0.consumption_rate.full - fill_rate.full; b.full = rfixed_mul(b, wm0.active_time); a.full = rfixed_mul(wm0.worst_case_latency, wm0.consumption_rate); a.full = a.full + b.full; b.full = rfixed_const(16 * 1000); priority_mark02.full = rfixed_div(a, b); } else { a.full = rfixed_mul(wm0.worst_case_latency, wm0.consumption_rate); b.full = rfixed_const(16 * 1000); priority_mark02.full = rfixed_div(a, b); } if (wm0.priority_mark.full > priority_mark02.full) priority_mark02.full = wm0.priority_mark.full; if (rfixed_trunc(priority_mark02) < 0) priority_mark02.full = 0; if (wm0.priority_mark_max.full > priority_mark02.full) priority_mark02.full = wm0.priority_mark_max.full; WREG32(D1MODE_PRIORITY_A_CNT, rfixed_trunc(priority_mark02)); WREG32(D1MODE_PRIORITY_B_CNT, rfixed_trunc(priority_mark02)); WREG32(D2MODE_PRIORITY_A_CNT, MODE_PRIORITY_OFF); WREG32(D2MODE_PRIORITY_B_CNT, MODE_PRIORITY_OFF); } else { if (rfixed_trunc(wm1.dbpp) > 64) a.full = rfixed_mul(wm1.dbpp, wm1.num_line_pair); else a.full = wm1.num_line_pair.full; fill_rate.full = rfixed_div(wm1.sclk, a); if (wm1.consumption_rate.full > fill_rate.full) { b.full = wm1.consumption_rate.full - fill_rate.full; b.full = rfixed_mul(b, wm1.active_time); a.full = rfixed_mul(wm1.worst_case_latency, wm1.consumption_rate); a.full = a.full + b.full; b.full = rfixed_const(16 * 1000); priority_mark12.full = rfixed_div(a, b); } else { a.full = rfixed_mul(wm1.worst_case_latency, wm1.consumption_rate); b.full = rfixed_const(16 * 1000); priority_mark12.full = rfixed_div(a, b); } if (wm1.priority_mark.full > priority_mark12.full) priority_mark12.full = wm1.priority_mark.full; if (rfixed_trunc(priority_mark12) < 0) priority_mark12.full = 0; if (wm1.priority_mark_max.full > priority_mark12.full) priority_mark12.full = wm1.priority_mark_max.full; WREG32(D1MODE_PRIORITY_A_CNT, MODE_PRIORITY_OFF); WREG32(D1MODE_PRIORITY_B_CNT, MODE_PRIORITY_OFF); WREG32(D2MODE_PRIORITY_A_CNT, rfixed_trunc(priority_mark12)); WREG32(D2MODE_PRIORITY_B_CNT, rfixed_trunc(priority_mark12)); } } /* * Indirect registers accessor */ uint32_t rs690_mc_rreg(struct radeon_device *rdev, uint32_t reg) { uint32_t r; WREG32(RS690_MC_INDEX, (reg & RS690_MC_INDEX_MASK)); r = RREG32(RS690_MC_DATA); WREG32(RS690_MC_INDEX, RS690_MC_INDEX_MASK); return r; } void rs690_mc_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v) { WREG32(RS690_MC_INDEX, RS690_MC_INDEX_WR_EN | ((reg) & RS690_MC_INDEX_MASK)); WREG32(RS690_MC_DATA, v); WREG32(RS690_MC_INDEX, RS690_MC_INDEX_WR_ACK); }