/* * Copyright (C) 2009 Nokia Corporation * Author: Tomi Valkeinen * * Some code and ideas taken from drivers/video/omap/ driver * by Imre Deak. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #define DSS_SUBSYS_NAME "DSS" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "omapdss.h" #include "dss.h" #define DSS_SZ_REGS SZ_512 struct dss_reg { u16 idx; }; #define DSS_REG(idx) ((const struct dss_reg) { idx }) #define DSS_REVISION DSS_REG(0x0000) #define DSS_SYSCONFIG DSS_REG(0x0010) #define DSS_SYSSTATUS DSS_REG(0x0014) #define DSS_CONTROL DSS_REG(0x0040) #define DSS_SDI_CONTROL DSS_REG(0x0044) #define DSS_PLL_CONTROL DSS_REG(0x0048) #define DSS_SDI_STATUS DSS_REG(0x005C) #define REG_GET(idx, start, end) \ FLD_GET(dss_read_reg(idx), start, end) #define REG_FLD_MOD(idx, val, start, end) \ dss_write_reg(idx, FLD_MOD(dss_read_reg(idx), val, start, end)) struct dss_ops { int (*dpi_select_source)(int port, enum omap_channel channel); int (*select_lcd_source)(enum omap_channel channel, enum dss_clk_source clk_src); }; struct dss_features { enum dss_model model; u8 fck_div_max; unsigned int fck_freq_max; u8 dss_fck_multiplier; const char *parent_clk_name; const enum omap_display_type *ports; int num_ports; const enum omap_dss_output_id *outputs; const struct dss_ops *ops; struct dss_reg_field dispc_clk_switch; bool has_lcd_clk_src; }; static struct { struct platform_device *pdev; void __iomem *base; struct regmap *syscon_pll_ctrl; u32 syscon_pll_ctrl_offset; struct clk *parent_clk; struct clk *dss_clk; unsigned long dss_clk_rate; unsigned long cache_req_pck; unsigned long cache_prate; struct dispc_clock_info cache_dispc_cinfo; enum dss_clk_source dsi_clk_source[MAX_NUM_DSI]; enum dss_clk_source dispc_clk_source; enum dss_clk_source lcd_clk_source[MAX_DSS_LCD_MANAGERS]; bool ctx_valid; u32 ctx[DSS_SZ_REGS / sizeof(u32)]; const struct dss_features *feat; struct dss_pll *video1_pll; struct dss_pll *video2_pll; } dss; static const char * const dss_generic_clk_source_names[] = { [DSS_CLK_SRC_FCK] = "FCK", [DSS_CLK_SRC_PLL1_1] = "PLL1:1", [DSS_CLK_SRC_PLL1_2] = "PLL1:2", [DSS_CLK_SRC_PLL1_3] = "PLL1:3", [DSS_CLK_SRC_PLL2_1] = "PLL2:1", [DSS_CLK_SRC_PLL2_2] = "PLL2:2", [DSS_CLK_SRC_PLL2_3] = "PLL2:3", [DSS_CLK_SRC_HDMI_PLL] = "HDMI PLL", }; static inline void dss_write_reg(const struct dss_reg idx, u32 val) { __raw_writel(val, dss.base + idx.idx); } static inline u32 dss_read_reg(const struct dss_reg idx) { return __raw_readl(dss.base + idx.idx); } #define SR(reg) \ dss.ctx[(DSS_##reg).idx / sizeof(u32)] = dss_read_reg(DSS_##reg) #define RR(reg) \ dss_write_reg(DSS_##reg, dss.ctx[(DSS_##reg).idx / sizeof(u32)]) static void dss_save_context(void) { DSSDBG("dss_save_context\n"); SR(CONTROL); if (dss.feat->outputs[OMAP_DSS_CHANNEL_LCD] & OMAP_DSS_OUTPUT_SDI) { SR(SDI_CONTROL); SR(PLL_CONTROL); } dss.ctx_valid = true; DSSDBG("context saved\n"); } static void dss_restore_context(void) { DSSDBG("dss_restore_context\n"); if (!dss.ctx_valid) return; RR(CONTROL); if (dss.feat->outputs[OMAP_DSS_CHANNEL_LCD] & OMAP_DSS_OUTPUT_SDI) { RR(SDI_CONTROL); RR(PLL_CONTROL); } DSSDBG("context restored\n"); } #undef SR #undef RR void dss_ctrl_pll_enable(enum dss_pll_id pll_id, bool enable) { unsigned int shift; unsigned int val; if (!dss.syscon_pll_ctrl) return; val = !enable; switch (pll_id) { case DSS_PLL_VIDEO1: shift = 0; break; case DSS_PLL_VIDEO2: shift = 1; break; case DSS_PLL_HDMI: shift = 2; break; default: DSSERR("illegal DSS PLL ID %d\n", pll_id); return; } regmap_update_bits(dss.syscon_pll_ctrl, dss.syscon_pll_ctrl_offset, 1 << shift, val << shift); } static int dss_ctrl_pll_set_control_mux(enum dss_clk_source clk_src, enum omap_channel channel) { unsigned int shift, val; if (!dss.syscon_pll_ctrl) return -EINVAL; switch (channel) { case OMAP_DSS_CHANNEL_LCD: shift = 3; switch (clk_src) { case DSS_CLK_SRC_PLL1_1: val = 0; break; case DSS_CLK_SRC_HDMI_PLL: val = 1; break; default: DSSERR("error in PLL mux config for LCD\n"); return -EINVAL; } break; case OMAP_DSS_CHANNEL_LCD2: shift = 5; switch (clk_src) { case DSS_CLK_SRC_PLL1_3: val = 0; break; case DSS_CLK_SRC_PLL2_3: val = 1; break; case DSS_CLK_SRC_HDMI_PLL: val = 2; break; default: DSSERR("error in PLL mux config for LCD2\n"); return -EINVAL; } break; case OMAP_DSS_CHANNEL_LCD3: shift = 7; switch (clk_src) { case DSS_CLK_SRC_PLL2_1: val = 0; break; case DSS_CLK_SRC_PLL1_3: val = 1; break; case DSS_CLK_SRC_HDMI_PLL: val = 2; break; default: DSSERR("error in PLL mux config for LCD3\n"); return -EINVAL; } break; default: DSSERR("error in PLL mux config\n"); return -EINVAL; } regmap_update_bits(dss.syscon_pll_ctrl, dss.syscon_pll_ctrl_offset, 0x3 << shift, val << shift); return 0; } void dss_sdi_init(int datapairs) { u32 l; BUG_ON(datapairs > 3 || datapairs < 1); l = dss_read_reg(DSS_SDI_CONTROL); l = FLD_MOD(l, 0xf, 19, 15); /* SDI_PDIV */ l = FLD_MOD(l, datapairs-1, 3, 2); /* SDI_PRSEL */ l = FLD_MOD(l, 2, 1, 0); /* SDI_BWSEL */ dss_write_reg(DSS_SDI_CONTROL, l); l = dss_read_reg(DSS_PLL_CONTROL); l = FLD_MOD(l, 0x7, 25, 22); /* SDI_PLL_FREQSEL */ l = FLD_MOD(l, 0xb, 16, 11); /* SDI_PLL_REGN */ l = FLD_MOD(l, 0xb4, 10, 1); /* SDI_PLL_REGM */ dss_write_reg(DSS_PLL_CONTROL, l); } int dss_sdi_enable(void) { unsigned long timeout; dispc_pck_free_enable(1); /* Reset SDI PLL */ REG_FLD_MOD(DSS_PLL_CONTROL, 1, 18, 18); /* SDI_PLL_SYSRESET */ udelay(1); /* wait 2x PCLK */ /* Lock SDI PLL */ REG_FLD_MOD(DSS_PLL_CONTROL, 1, 28, 28); /* SDI_PLL_GOBIT */ /* Waiting for PLL lock request to complete */ timeout = jiffies + msecs_to_jiffies(500); while (dss_read_reg(DSS_SDI_STATUS) & (1 << 6)) { if (time_after_eq(jiffies, timeout)) { DSSERR("PLL lock request timed out\n"); goto err1; } } /* Clearing PLL_GO bit */ REG_FLD_MOD(DSS_PLL_CONTROL, 0, 28, 28); /* Waiting for PLL to lock */ timeout = jiffies + msecs_to_jiffies(500); while (!(dss_read_reg(DSS_SDI_STATUS) & (1 << 5))) { if (time_after_eq(jiffies, timeout)) { DSSERR("PLL lock timed out\n"); goto err1; } } dispc_lcd_enable_signal(1); /* Waiting for SDI reset to complete */ timeout = jiffies + msecs_to_jiffies(500); while (!(dss_read_reg(DSS_SDI_STATUS) & (1 << 2))) { if (time_after_eq(jiffies, timeout)) { DSSERR("SDI reset timed out\n"); goto err2; } } return 0; err2: dispc_lcd_enable_signal(0); err1: /* Reset SDI PLL */ REG_FLD_MOD(DSS_PLL_CONTROL, 0, 18, 18); /* SDI_PLL_SYSRESET */ dispc_pck_free_enable(0); return -ETIMEDOUT; } void dss_sdi_disable(void) { dispc_lcd_enable_signal(0); dispc_pck_free_enable(0); /* Reset SDI PLL */ REG_FLD_MOD(DSS_PLL_CONTROL, 0, 18, 18); /* SDI_PLL_SYSRESET */ } const char *dss_get_clk_source_name(enum dss_clk_source clk_src) { return dss_generic_clk_source_names[clk_src]; } #if defined(CONFIG_OMAP2_DSS_DEBUGFS) static void dss_dump_clocks(struct seq_file *s) { const char *fclk_name; unsigned long fclk_rate; if (dss_runtime_get()) return; seq_printf(s, "- DSS -\n"); fclk_name = dss_get_clk_source_name(DSS_CLK_SRC_FCK); fclk_rate = clk_get_rate(dss.dss_clk); seq_printf(s, "%s = %lu\n", fclk_name, fclk_rate); dss_runtime_put(); } #endif static void dss_dump_regs(struct seq_file *s) { #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dss_read_reg(r)) if (dss_runtime_get()) return; DUMPREG(DSS_REVISION); DUMPREG(DSS_SYSCONFIG); DUMPREG(DSS_SYSSTATUS); DUMPREG(DSS_CONTROL); if (dss.feat->outputs[OMAP_DSS_CHANNEL_LCD] & OMAP_DSS_OUTPUT_SDI) { DUMPREG(DSS_SDI_CONTROL); DUMPREG(DSS_PLL_CONTROL); DUMPREG(DSS_SDI_STATUS); } dss_runtime_put(); #undef DUMPREG } static int dss_get_channel_index(enum omap_channel channel) { switch (channel) { case OMAP_DSS_CHANNEL_LCD: return 0; case OMAP_DSS_CHANNEL_LCD2: return 1; case OMAP_DSS_CHANNEL_LCD3: return 2; default: WARN_ON(1); return 0; } } static void dss_select_dispc_clk_source(enum dss_clk_source clk_src) { int b; /* * We always use PRCM clock as the DISPC func clock, except on DSS3, * where we don't have separate DISPC and LCD clock sources. */ if (WARN_ON(dss.feat->has_lcd_clk_src && clk_src != DSS_CLK_SRC_FCK)) return; switch (clk_src) { case DSS_CLK_SRC_FCK: b = 0; break; case DSS_CLK_SRC_PLL1_1: b = 1; break; case DSS_CLK_SRC_PLL2_1: b = 2; break; default: BUG(); return; } REG_FLD_MOD(DSS_CONTROL, b, /* DISPC_CLK_SWITCH */ dss.feat->dispc_clk_switch.start, dss.feat->dispc_clk_switch.end); dss.dispc_clk_source = clk_src; } void dss_select_dsi_clk_source(int dsi_module, enum dss_clk_source clk_src) { int b, pos; switch (clk_src) { case DSS_CLK_SRC_FCK: b = 0; break; case DSS_CLK_SRC_PLL1_2: BUG_ON(dsi_module != 0); b = 1; break; case DSS_CLK_SRC_PLL2_2: BUG_ON(dsi_module != 1); b = 1; break; default: BUG(); return; } pos = dsi_module == 0 ? 1 : 10; REG_FLD_MOD(DSS_CONTROL, b, pos, pos); /* DSIx_CLK_SWITCH */ dss.dsi_clk_source[dsi_module] = clk_src; } static int dss_lcd_clk_mux_dra7(enum omap_channel channel, enum dss_clk_source clk_src) { const u8 ctrl_bits[] = { [OMAP_DSS_CHANNEL_LCD] = 0, [OMAP_DSS_CHANNEL_LCD2] = 12, [OMAP_DSS_CHANNEL_LCD3] = 19, }; u8 ctrl_bit = ctrl_bits[channel]; int r; if (clk_src == DSS_CLK_SRC_FCK) { /* LCDx_CLK_SWITCH */ REG_FLD_MOD(DSS_CONTROL, 0, ctrl_bit, ctrl_bit); return -EINVAL; } r = dss_ctrl_pll_set_control_mux(clk_src, channel); if (r) return r; REG_FLD_MOD(DSS_CONTROL, 1, ctrl_bit, ctrl_bit); return 0; } static int dss_lcd_clk_mux_omap5(enum omap_channel channel, enum dss_clk_source clk_src) { const u8 ctrl_bits[] = { [OMAP_DSS_CHANNEL_LCD] = 0, [OMAP_DSS_CHANNEL_LCD2] = 12, [OMAP_DSS_CHANNEL_LCD3] = 19, }; const enum dss_clk_source allowed_plls[] = { [OMAP_DSS_CHANNEL_LCD] = DSS_CLK_SRC_PLL1_1, [OMAP_DSS_CHANNEL_LCD2] = DSS_CLK_SRC_FCK, [OMAP_DSS_CHANNEL_LCD3] = DSS_CLK_SRC_PLL2_1, }; u8 ctrl_bit = ctrl_bits[channel]; if (clk_src == DSS_CLK_SRC_FCK) { /* LCDx_CLK_SWITCH */ REG_FLD_MOD(DSS_CONTROL, 0, ctrl_bit, ctrl_bit); return -EINVAL; } if (WARN_ON(allowed_plls[channel] != clk_src)) return -EINVAL; REG_FLD_MOD(DSS_CONTROL, 1, ctrl_bit, ctrl_bit); return 0; } static int dss_lcd_clk_mux_omap4(enum omap_channel channel, enum dss_clk_source clk_src) { const u8 ctrl_bits[] = { [OMAP_DSS_CHANNEL_LCD] = 0, [OMAP_DSS_CHANNEL_LCD2] = 12, }; const enum dss_clk_source allowed_plls[] = { [OMAP_DSS_CHANNEL_LCD] = DSS_CLK_SRC_PLL1_1, [OMAP_DSS_CHANNEL_LCD2] = DSS_CLK_SRC_PLL2_1, }; u8 ctrl_bit = ctrl_bits[channel]; if (clk_src == DSS_CLK_SRC_FCK) { /* LCDx_CLK_SWITCH */ REG_FLD_MOD(DSS_CONTROL, 0, ctrl_bit, ctrl_bit); return 0; } if (WARN_ON(allowed_plls[channel] != clk_src)) return -EINVAL; REG_FLD_MOD(DSS_CONTROL, 1, ctrl_bit, ctrl_bit); return 0; } void dss_select_lcd_clk_source(enum omap_channel channel, enum dss_clk_source clk_src) { int idx = dss_get_channel_index(channel); int r; if (!dss.feat->has_lcd_clk_src) { dss_select_dispc_clk_source(clk_src); dss.lcd_clk_source[idx] = clk_src; return; } r = dss.feat->ops->select_lcd_source(channel, clk_src); if (r) return; dss.lcd_clk_source[idx] = clk_src; } enum dss_clk_source dss_get_dispc_clk_source(void) { return dss.dispc_clk_source; } enum dss_clk_source dss_get_dsi_clk_source(int dsi_module) { return dss.dsi_clk_source[dsi_module]; } enum dss_clk_source dss_get_lcd_clk_source(enum omap_channel channel) { if (dss.feat->has_lcd_clk_src) { int idx = dss_get_channel_index(channel); return dss.lcd_clk_source[idx]; } else { /* LCD_CLK source is the same as DISPC_FCLK source for * OMAP2 and OMAP3 */ return dss.dispc_clk_source; } } bool dss_div_calc(unsigned long pck, unsigned long fck_min, dss_div_calc_func func, void *data) { int fckd, fckd_start, fckd_stop; unsigned long fck; unsigned long fck_hw_max; unsigned long fckd_hw_max; unsigned long prate; unsigned int m; fck_hw_max = dss.feat->fck_freq_max; if (dss.parent_clk == NULL) { unsigned int pckd; pckd = fck_hw_max / pck; fck = pck * pckd; fck = clk_round_rate(dss.dss_clk, fck); return func(fck, data); } fckd_hw_max = dss.feat->fck_div_max; m = dss.feat->dss_fck_multiplier; prate = clk_get_rate(dss.parent_clk); fck_min = fck_min ? fck_min : 1; fckd_start = min(prate * m / fck_min, fckd_hw_max); fckd_stop = max(DIV_ROUND_UP(prate * m, fck_hw_max), 1ul); for (fckd = fckd_start; fckd >= fckd_stop; --fckd) { fck = DIV_ROUND_UP(prate, fckd) * m; if (func(fck, data)) return true; } return false; } int dss_set_fck_rate(unsigned long rate) { int r; DSSDBG("set fck to %lu\n", rate); r = clk_set_rate(dss.dss_clk, rate); if (r) return r; dss.dss_clk_rate = clk_get_rate(dss.dss_clk); WARN_ONCE(dss.dss_clk_rate != rate, "clk rate mismatch: %lu != %lu", dss.dss_clk_rate, rate); return 0; } unsigned long dss_get_dispc_clk_rate(void) { return dss.dss_clk_rate; } unsigned long dss_get_max_fck_rate(void) { return dss.feat->fck_freq_max; } enum omap_dss_output_id dss_get_supported_outputs(enum omap_channel channel) { return dss.feat->outputs[channel]; } static int dss_setup_default_clock(void) { unsigned long max_dss_fck, prate; unsigned long fck; unsigned int fck_div; int r; max_dss_fck = dss.feat->fck_freq_max; if (dss.parent_clk == NULL) { fck = clk_round_rate(dss.dss_clk, max_dss_fck); } else { prate = clk_get_rate(dss.parent_clk); fck_div = DIV_ROUND_UP(prate * dss.feat->dss_fck_multiplier, max_dss_fck); fck = DIV_ROUND_UP(prate, fck_div) * dss.feat->dss_fck_multiplier; } r = dss_set_fck_rate(fck); if (r) return r; return 0; } void dss_set_venc_output(enum omap_dss_venc_type type) { int l = 0; if (type == OMAP_DSS_VENC_TYPE_COMPOSITE) l = 0; else if (type == OMAP_DSS_VENC_TYPE_SVIDEO) l = 1; else BUG(); /* venc out selection. 0 = comp, 1 = svideo */ REG_FLD_MOD(DSS_CONTROL, l, 6, 6); } void dss_set_dac_pwrdn_bgz(bool enable) { REG_FLD_MOD(DSS_CONTROL, enable, 5, 5); /* DAC Power-Down Control */ } void dss_select_hdmi_venc_clk_source(enum dss_hdmi_venc_clk_source_select src) { enum omap_dss_output_id outputs; outputs = dss.feat->outputs[OMAP_DSS_CHANNEL_DIGIT]; /* Complain about invalid selections */ WARN_ON((src == DSS_VENC_TV_CLK) && !(outputs & OMAP_DSS_OUTPUT_VENC)); WARN_ON((src == DSS_HDMI_M_PCLK) && !(outputs & OMAP_DSS_OUTPUT_HDMI)); /* Select only if we have options */ if ((outputs & OMAP_DSS_OUTPUT_VENC) && (outputs & OMAP_DSS_OUTPUT_HDMI)) REG_FLD_MOD(DSS_CONTROL, src, 15, 15); /* VENC_HDMI_SWITCH */ } static int dss_dpi_select_source_omap2_omap3(int port, enum omap_channel channel) { if (channel != OMAP_DSS_CHANNEL_LCD) return -EINVAL; return 0; } static int dss_dpi_select_source_omap4(int port, enum omap_channel channel) { int val; switch (channel) { case OMAP_DSS_CHANNEL_LCD2: val = 0; break; case OMAP_DSS_CHANNEL_DIGIT: val = 1; break; default: return -EINVAL; } REG_FLD_MOD(DSS_CONTROL, val, 17, 17); return 0; } static int dss_dpi_select_source_omap5(int port, enum omap_channel channel) { int val; switch (channel) { case OMAP_DSS_CHANNEL_LCD: val = 1; break; case OMAP_DSS_CHANNEL_LCD2: val = 2; break; case OMAP_DSS_CHANNEL_LCD3: val = 3; break; case OMAP_DSS_CHANNEL_DIGIT: val = 0; break; default: return -EINVAL; } REG_FLD_MOD(DSS_CONTROL, val, 17, 16); return 0; } static int dss_dpi_select_source_dra7xx(int port, enum omap_channel channel) { switch (port) { case 0: return dss_dpi_select_source_omap5(port, channel); case 1: if (channel != OMAP_DSS_CHANNEL_LCD2) return -EINVAL; break; case 2: if (channel != OMAP_DSS_CHANNEL_LCD3) return -EINVAL; break; default: return -EINVAL; } return 0; } int dss_dpi_select_source(int port, enum omap_channel channel) { return dss.feat->ops->dpi_select_source(port, channel); } static int dss_get_clocks(void) { struct clk *clk; clk = devm_clk_get(&dss.pdev->dev, "fck"); if (IS_ERR(clk)) { DSSERR("can't get clock fck\n"); return PTR_ERR(clk); } dss.dss_clk = clk; if (dss.feat->parent_clk_name) { clk = clk_get(NULL, dss.feat->parent_clk_name); if (IS_ERR(clk)) { DSSERR("Failed to get %s\n", dss.feat->parent_clk_name); return PTR_ERR(clk); } } else { clk = NULL; } dss.parent_clk = clk; return 0; } static void dss_put_clocks(void) { if (dss.parent_clk) clk_put(dss.parent_clk); } int dss_runtime_get(void) { int r; DSSDBG("dss_runtime_get\n"); r = pm_runtime_get_sync(&dss.pdev->dev); WARN_ON(r < 0); return r < 0 ? r : 0; } void dss_runtime_put(void) { int r; DSSDBG("dss_runtime_put\n"); r = pm_runtime_put_sync(&dss.pdev->dev); WARN_ON(r < 0 && r != -ENOSYS && r != -EBUSY); } /* DEBUGFS */ #if defined(CONFIG_OMAP2_DSS_DEBUGFS) static void dss_debug_dump_clocks(struct seq_file *s) { dss_dump_clocks(s); dispc_dump_clocks(s); #ifdef CONFIG_OMAP2_DSS_DSI dsi_dump_clocks(s); #endif } static int dss_debug_show(struct seq_file *s, void *unused) { void (*func)(struct seq_file *) = s->private; func(s); return 0; } static int dss_debug_open(struct inode *inode, struct file *file) { return single_open(file, dss_debug_show, inode->i_private); } static const struct file_operations dss_debug_fops = { .open = dss_debug_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static struct dentry *dss_debugfs_dir; static int dss_initialize_debugfs(void) { dss_debugfs_dir = debugfs_create_dir("omapdss", NULL); if (IS_ERR(dss_debugfs_dir)) { int err = PTR_ERR(dss_debugfs_dir); dss_debugfs_dir = NULL; return err; } debugfs_create_file("clk", S_IRUGO, dss_debugfs_dir, &dss_debug_dump_clocks, &dss_debug_fops); return 0; } static void dss_uninitialize_debugfs(void) { if (dss_debugfs_dir) debugfs_remove_recursive(dss_debugfs_dir); } int dss_debugfs_create_file(const char *name, void (*write)(struct seq_file *)) { struct dentry *d; d = debugfs_create_file(name, S_IRUGO, dss_debugfs_dir, write, &dss_debug_fops); return PTR_ERR_OR_ZERO(d); } #else /* CONFIG_OMAP2_DSS_DEBUGFS */ static inline int dss_initialize_debugfs(void) { return 0; } static inline void dss_uninitialize_debugfs(void) { } #endif /* CONFIG_OMAP2_DSS_DEBUGFS */ static const struct dss_ops dss_ops_omap2_omap3 = { .dpi_select_source = &dss_dpi_select_source_omap2_omap3, }; static const struct dss_ops dss_ops_omap4 = { .dpi_select_source = &dss_dpi_select_source_omap4, .select_lcd_source = &dss_lcd_clk_mux_omap4, }; static const struct dss_ops dss_ops_omap5 = { .dpi_select_source = &dss_dpi_select_source_omap5, .select_lcd_source = &dss_lcd_clk_mux_omap5, }; static const struct dss_ops dss_ops_dra7 = { .dpi_select_source = &dss_dpi_select_source_dra7xx, .select_lcd_source = &dss_lcd_clk_mux_dra7, }; static const enum omap_display_type omap2plus_ports[] = { OMAP_DISPLAY_TYPE_DPI, }; static const enum omap_display_type omap34xx_ports[] = { OMAP_DISPLAY_TYPE_DPI, OMAP_DISPLAY_TYPE_SDI, }; static const enum omap_display_type dra7xx_ports[] = { OMAP_DISPLAY_TYPE_DPI, OMAP_DISPLAY_TYPE_DPI, OMAP_DISPLAY_TYPE_DPI, }; static const enum omap_dss_output_id omap2_dss_supported_outputs[] = { /* OMAP_DSS_CHANNEL_LCD */ OMAP_DSS_OUTPUT_DPI | OMAP_DSS_OUTPUT_DBI, /* OMAP_DSS_CHANNEL_DIGIT */ OMAP_DSS_OUTPUT_VENC, }; static const enum omap_dss_output_id omap3430_dss_supported_outputs[] = { /* OMAP_DSS_CHANNEL_LCD */ OMAP_DSS_OUTPUT_DPI | OMAP_DSS_OUTPUT_DBI | OMAP_DSS_OUTPUT_SDI | OMAP_DSS_OUTPUT_DSI1, /* OMAP_DSS_CHANNEL_DIGIT */ OMAP_DSS_OUTPUT_VENC, }; static const enum omap_dss_output_id omap3630_dss_supported_outputs[] = { /* OMAP_DSS_CHANNEL_LCD */ OMAP_DSS_OUTPUT_DPI | OMAP_DSS_OUTPUT_DBI | OMAP_DSS_OUTPUT_DSI1, /* OMAP_DSS_CHANNEL_DIGIT */ OMAP_DSS_OUTPUT_VENC, }; static const enum omap_dss_output_id am43xx_dss_supported_outputs[] = { /* OMAP_DSS_CHANNEL_LCD */ OMAP_DSS_OUTPUT_DPI | OMAP_DSS_OUTPUT_DBI, }; static const enum omap_dss_output_id omap4_dss_supported_outputs[] = { /* OMAP_DSS_CHANNEL_LCD */ OMAP_DSS_OUTPUT_DBI | OMAP_DSS_OUTPUT_DSI1, /* OMAP_DSS_CHANNEL_DIGIT */ OMAP_DSS_OUTPUT_VENC | OMAP_DSS_OUTPUT_HDMI, /* OMAP_DSS_CHANNEL_LCD2 */ OMAP_DSS_OUTPUT_DPI | OMAP_DSS_OUTPUT_DBI | OMAP_DSS_OUTPUT_DSI2, }; static const enum omap_dss_output_id omap5_dss_supported_outputs[] = { /* OMAP_DSS_CHANNEL_LCD */ OMAP_DSS_OUTPUT_DPI | OMAP_DSS_OUTPUT_DBI | OMAP_DSS_OUTPUT_DSI1 | OMAP_DSS_OUTPUT_DSI2, /* OMAP_DSS_CHANNEL_DIGIT */ OMAP_DSS_OUTPUT_HDMI, /* OMAP_DSS_CHANNEL_LCD2 */ OMAP_DSS_OUTPUT_DPI | OMAP_DSS_OUTPUT_DBI | OMAP_DSS_OUTPUT_DSI1, /* OMAP_DSS_CHANNEL_LCD3 */ OMAP_DSS_OUTPUT_DPI | OMAP_DSS_OUTPUT_DBI | OMAP_DSS_OUTPUT_DSI2, }; static const struct dss_features omap24xx_dss_feats = { .model = DSS_MODEL_OMAP2, /* * fck div max is really 16, but the divider range has gaps. The range * from 1 to 6 has no gaps, so let's use that as a max. */ .fck_div_max = 6, .fck_freq_max = 133000000, .dss_fck_multiplier = 2, .parent_clk_name = "core_ck", .ports = omap2plus_ports, .num_ports = ARRAY_SIZE(omap2plus_ports), .outputs = omap2_dss_supported_outputs, .ops = &dss_ops_omap2_omap3, .dispc_clk_switch = { 0, 0 }, .has_lcd_clk_src = false, }; static const struct dss_features omap34xx_dss_feats = { .model = DSS_MODEL_OMAP3, .fck_div_max = 16, .fck_freq_max = 173000000, .dss_fck_multiplier = 2, .parent_clk_name = "dpll4_ck", .ports = omap34xx_ports, .outputs = omap3430_dss_supported_outputs, .num_ports = ARRAY_SIZE(omap34xx_ports), .ops = &dss_ops_omap2_omap3, .dispc_clk_switch = { 0, 0 }, .has_lcd_clk_src = false, }; static const struct dss_features omap3630_dss_feats = { .model = DSS_MODEL_OMAP3, .fck_div_max = 32, .fck_freq_max = 173000000, .dss_fck_multiplier = 1, .parent_clk_name = "dpll4_ck", .ports = omap2plus_ports, .num_ports = ARRAY_SIZE(omap2plus_ports), .outputs = omap3630_dss_supported_outputs, .ops = &dss_ops_omap2_omap3, .dispc_clk_switch = { 0, 0 }, .has_lcd_clk_src = false, }; static const struct dss_features omap44xx_dss_feats = { .model = DSS_MODEL_OMAP4, .fck_div_max = 32, .fck_freq_max = 186000000, .dss_fck_multiplier = 1, .parent_clk_name = "dpll_per_x2_ck", .ports = omap2plus_ports, .num_ports = ARRAY_SIZE(omap2plus_ports), .outputs = omap4_dss_supported_outputs, .ops = &dss_ops_omap4, .dispc_clk_switch = { 9, 8 }, .has_lcd_clk_src = true, }; static const struct dss_features omap54xx_dss_feats = { .model = DSS_MODEL_OMAP5, .fck_div_max = 64, .fck_freq_max = 209250000, .dss_fck_multiplier = 1, .parent_clk_name = "dpll_per_x2_ck", .ports = omap2plus_ports, .num_ports = ARRAY_SIZE(omap2plus_ports), .outputs = omap5_dss_supported_outputs, .ops = &dss_ops_omap5, .dispc_clk_switch = { 9, 7 }, .has_lcd_clk_src = true, }; static const struct dss_features am43xx_dss_feats = { .model = DSS_MODEL_OMAP3, .fck_div_max = 0, .fck_freq_max = 200000000, .dss_fck_multiplier = 0, .parent_clk_name = NULL, .ports = omap2plus_ports, .num_ports = ARRAY_SIZE(omap2plus_ports), .outputs = am43xx_dss_supported_outputs, .ops = &dss_ops_omap2_omap3, .dispc_clk_switch = { 0, 0 }, .has_lcd_clk_src = true, }; static const struct dss_features dra7xx_dss_feats = { .model = DSS_MODEL_DRA7, .fck_div_max = 64, .fck_freq_max = 209250000, .dss_fck_multiplier = 1, .parent_clk_name = "dpll_per_x2_ck", .ports = dra7xx_ports, .num_ports = ARRAY_SIZE(dra7xx_ports), .outputs = omap5_dss_supported_outputs, .ops = &dss_ops_dra7, .dispc_clk_switch = { 9, 7 }, .has_lcd_clk_src = true, }; static int dss_init_ports(struct platform_device *pdev) { struct device_node *parent = pdev->dev.of_node; struct device_node *port; int i; for (i = 0; i < dss.feat->num_ports; i++) { port = of_graph_get_port_by_id(parent, i); if (!port) continue; switch (dss.feat->ports[i]) { case OMAP_DISPLAY_TYPE_DPI: dpi_init_port(pdev, port, dss.feat->model); break; case OMAP_DISPLAY_TYPE_SDI: sdi_init_port(pdev, port); break; default: break; } } return 0; } static void dss_uninit_ports(struct platform_device *pdev) { struct device_node *parent = pdev->dev.of_node; struct device_node *port; int i; for (i = 0; i < dss.feat->num_ports; i++) { port = of_graph_get_port_by_id(parent, i); if (!port) continue; switch (dss.feat->ports[i]) { case OMAP_DISPLAY_TYPE_DPI: dpi_uninit_port(port); break; case OMAP_DISPLAY_TYPE_SDI: sdi_uninit_port(port); break; default: break; } } } static int dss_video_pll_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct regulator *pll_regulator; int r; if (!np) return 0; if (of_property_read_bool(np, "syscon-pll-ctrl")) { dss.syscon_pll_ctrl = syscon_regmap_lookup_by_phandle(np, "syscon-pll-ctrl"); if (IS_ERR(dss.syscon_pll_ctrl)) { dev_err(&pdev->dev, "failed to get syscon-pll-ctrl regmap\n"); return PTR_ERR(dss.syscon_pll_ctrl); } if (of_property_read_u32_index(np, "syscon-pll-ctrl", 1, &dss.syscon_pll_ctrl_offset)) { dev_err(&pdev->dev, "failed to get syscon-pll-ctrl offset\n"); return -EINVAL; } } pll_regulator = devm_regulator_get(&pdev->dev, "vdda_video"); if (IS_ERR(pll_regulator)) { r = PTR_ERR(pll_regulator); switch (r) { case -ENOENT: pll_regulator = NULL; break; case -EPROBE_DEFER: return -EPROBE_DEFER; default: DSSERR("can't get DPLL VDDA regulator\n"); return r; } } if (of_property_match_string(np, "reg-names", "pll1") >= 0) { dss.video1_pll = dss_video_pll_init(pdev, 0, pll_regulator); if (IS_ERR(dss.video1_pll)) return PTR_ERR(dss.video1_pll); } if (of_property_match_string(np, "reg-names", "pll2") >= 0) { dss.video2_pll = dss_video_pll_init(pdev, 1, pll_regulator); if (IS_ERR(dss.video2_pll)) { dss_video_pll_uninit(dss.video1_pll); return PTR_ERR(dss.video2_pll); } } return 0; } /* DSS HW IP initialisation */ static const struct of_device_id dss_of_match[] = { { .compatible = "ti,omap2-dss", .data = &omap24xx_dss_feats }, { .compatible = "ti,omap3-dss", .data = &omap3630_dss_feats }, { .compatible = "ti,omap4-dss", .data = &omap44xx_dss_feats }, { .compatible = "ti,omap5-dss", .data = &omap54xx_dss_feats }, { .compatible = "ti,dra7-dss", .data = &dra7xx_dss_feats }, {}, }; MODULE_DEVICE_TABLE(of, dss_of_match); static const struct soc_device_attribute dss_soc_devices[] = { { .machine = "OMAP3430/3530", .data = &omap34xx_dss_feats }, { .machine = "AM35??", .data = &omap34xx_dss_feats }, { .family = "AM43xx", .data = &am43xx_dss_feats }, { /* sentinel */ } }; static int dss_bind(struct device *dev) { int r; r = component_bind_all(dev, NULL); if (r) return r; pm_set_vt_switch(0); omapdss_gather_components(dev); omapdss_set_is_initialized(true); return 0; } static void dss_unbind(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); omapdss_set_is_initialized(false); component_unbind_all(&pdev->dev, NULL); } static const struct component_master_ops dss_component_ops = { .bind = dss_bind, .unbind = dss_unbind, }; static int dss_component_compare(struct device *dev, void *data) { struct device *child = data; return dev == child; } static int dss_add_child_component(struct device *dev, void *data) { struct component_match **match = data; /* * HACK * We don't have a working driver for rfbi, so skip it here always. * Otherwise dss will never get probed successfully, as it will wait * for rfbi to get probed. */ if (strstr(dev_name(dev), "rfbi")) return 0; component_match_add(dev->parent, match, dss_component_compare, dev); return 0; } static int dss_probe_hardware(void) { u32 rev; int r; r = dss_runtime_get(); if (r) return r; dss.dss_clk_rate = clk_get_rate(dss.dss_clk); /* Select DPLL */ REG_FLD_MOD(DSS_CONTROL, 0, 0, 0); dss_select_dispc_clk_source(DSS_CLK_SRC_FCK); #ifdef CONFIG_OMAP2_DSS_VENC REG_FLD_MOD(DSS_CONTROL, 1, 4, 4); /* venc dac demen */ REG_FLD_MOD(DSS_CONTROL, 1, 3, 3); /* venc clock 4x enable */ REG_FLD_MOD(DSS_CONTROL, 0, 2, 2); /* venc clock mode = normal */ #endif dss.dsi_clk_source[0] = DSS_CLK_SRC_FCK; dss.dsi_clk_source[1] = DSS_CLK_SRC_FCK; dss.dispc_clk_source = DSS_CLK_SRC_FCK; dss.lcd_clk_source[0] = DSS_CLK_SRC_FCK; dss.lcd_clk_source[1] = DSS_CLK_SRC_FCK; rev = dss_read_reg(DSS_REVISION); pr_info("OMAP DSS rev %d.%d\n", FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0)); dss_runtime_put(); return 0; } static int dss_probe(struct platform_device *pdev) { const struct soc_device_attribute *soc; struct component_match *match = NULL; struct resource *dss_mem; int r; dss.pdev = pdev; r = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); if (r) { dev_err(&pdev->dev, "Failed to set the DMA mask\n"); return r; } /* * The various OMAP3-based SoCs can't be told apart using the compatible * string, use SoC device matching. */ soc = soc_device_match(dss_soc_devices); if (soc) dss.feat = soc->data; else dss.feat = of_match_device(dss_of_match, &pdev->dev)->data; /* Map I/O registers, get and setup clocks. */ dss_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); dss.base = devm_ioremap_resource(&pdev->dev, dss_mem); if (IS_ERR(dss.base)) return PTR_ERR(dss.base); r = dss_get_clocks(); if (r) return r; r = dss_setup_default_clock(); if (r) goto err_put_clocks; /* Setup the video PLLs and the DPI and SDI ports. */ r = dss_video_pll_probe(pdev); if (r) goto err_put_clocks; r = dss_init_ports(pdev); if (r) goto err_uninit_plls; /* Enable runtime PM and probe the hardware. */ pm_runtime_enable(&pdev->dev); r = dss_probe_hardware(); if (r) goto err_pm_runtime_disable; /* Initialize debugfs. */ r = dss_initialize_debugfs(); if (r) goto err_pm_runtime_disable; dss_debugfs_create_file("dss", dss_dump_regs); /* Add all the child devices as components. */ device_for_each_child(&pdev->dev, &match, dss_add_child_component); r = component_master_add_with_match(&pdev->dev, &dss_component_ops, match); if (r) goto err_uninit_debugfs; return 0; err_uninit_debugfs: dss_uninitialize_debugfs(); err_pm_runtime_disable: pm_runtime_disable(&pdev->dev); dss_uninit_ports(pdev); err_uninit_plls: if (dss.video1_pll) dss_video_pll_uninit(dss.video1_pll); if (dss.video2_pll) dss_video_pll_uninit(dss.video2_pll); err_put_clocks: dss_put_clocks(); return r; } static int dss_remove(struct platform_device *pdev) { component_master_del(&pdev->dev, &dss_component_ops); dss_uninitialize_debugfs(); pm_runtime_disable(&pdev->dev); dss_uninit_ports(pdev); if (dss.video1_pll) dss_video_pll_uninit(dss.video1_pll); if (dss.video2_pll) dss_video_pll_uninit(dss.video2_pll); dss_put_clocks(); return 0; } static void dss_shutdown(struct platform_device *pdev) { struct omap_dss_device *dssdev = NULL; DSSDBG("shutdown\n"); for_each_dss_dev(dssdev) { if (!dssdev->driver) continue; if (dssdev->state == OMAP_DSS_DISPLAY_ACTIVE) dssdev->driver->disable(dssdev); } } static int dss_runtime_suspend(struct device *dev) { dss_save_context(); dss_set_min_bus_tput(dev, 0); pinctrl_pm_select_sleep_state(dev); return 0; } static int dss_runtime_resume(struct device *dev) { int r; pinctrl_pm_select_default_state(dev); /* * Set an arbitrarily high tput request to ensure OPP100. * What we should really do is to make a request to stay in OPP100, * without any tput requirements, but that is not currently possible * via the PM layer. */ r = dss_set_min_bus_tput(dev, 1000000000); if (r) return r; dss_restore_context(); return 0; } static const struct dev_pm_ops dss_pm_ops = { .runtime_suspend = dss_runtime_suspend, .runtime_resume = dss_runtime_resume, }; struct platform_driver omap_dsshw_driver = { .probe = dss_probe, .remove = dss_remove, .shutdown = dss_shutdown, .driver = { .name = "omapdss_dss", .pm = &dss_pm_ops, .of_match_table = dss_of_match, .suppress_bind_attrs = true, }, };