/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Please try to maintain the following order within this file unless it makes * sense to do otherwise. From top to bottom: * 1. typedefs * 2. #defines, and macros * 3. structure definitions * 4. function prototypes * * Within each section, please try to order by generation in ascending order, * from top to bottom (ie. gen6 on the top, gen8 on the bottom). */ #ifndef __I915_GEM_GTT_H__ #define __I915_GEM_GTT_H__ struct drm_i915_file_private; typedef uint32_t gen6_pte_t; typedef uint64_t gen8_pte_t; typedef uint64_t gen8_pde_t; #define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT) /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */ #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0)) #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) #define GEN6_PTE_CACHE_LLC (2 << 1) #define GEN6_PTE_UNCACHED (1 << 1) #define GEN6_PTE_VALID (1 << 0) #define I915_PTES(pte_len) (PAGE_SIZE / (pte_len)) #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1) #define I915_PDES 512 #define I915_PDE_MASK (I915_PDES - 1) #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT)) #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t)) #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE) #define GEN6_PD_ALIGN (PAGE_SIZE * 16) #define GEN6_PDE_SHIFT 22 #define GEN6_PDE_VALID (1 << 0) #define GEN7_PTE_CACHE_L3_LLC (3 << 1) #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2) #define BYT_PTE_WRITEABLE (1 << 1) /* Cacheability Control is a 4-bit value. The low three bits are stored in bits * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE. */ #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \ (((bits) & 0x8) << (11 - 3))) #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2) #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3) #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8) #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb) #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7) #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6) #define HSW_PTE_UNCACHED (0) #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0)) #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr) /* GEN8 legacy style address is defined as a 3 level page table: * 31:30 | 29:21 | 20:12 | 11:0 * PDPE | PDE | PTE | offset * The difference as compared to normal x86 3 level page table is the PDPEs are * programmed via register. */ #define GEN8_PDPE_SHIFT 30 #define GEN8_PDPE_MASK 0x3 #define GEN8_PDE_SHIFT 21 #define GEN8_PDE_MASK 0x1ff #define GEN8_PTE_SHIFT 12 #define GEN8_PTE_MASK 0x1ff #define GEN8_LEGACY_PDPES 4 #define GEN8_PTES I915_PTES(sizeof(gen8_pte_t)) #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD) #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */ #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */ #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */ #define CHV_PPAT_SNOOP (1<<6) #define GEN8_PPAT_AGE(x) (x<<4) #define GEN8_PPAT_LLCeLLC (3<<2) #define GEN8_PPAT_LLCELLC (2<<2) #define GEN8_PPAT_LLC (1<<2) #define GEN8_PPAT_WB (3<<0) #define GEN8_PPAT_WT (2<<0) #define GEN8_PPAT_WC (1<<0) #define GEN8_PPAT_UC (0<<0) #define GEN8_PPAT_ELLC_OVERRIDE (0<<2) #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8)) enum i915_ggtt_view_type { I915_GGTT_VIEW_NORMAL = 0, I915_GGTT_VIEW_ROTATED, I915_GGTT_VIEW_PARTIAL, }; struct intel_rotation_info { unsigned int height; unsigned int pitch; uint32_t pixel_format; uint64_t fb_modifier; unsigned int width_pages, height_pages; uint64_t size; }; struct i915_ggtt_view { enum i915_ggtt_view_type type; union { struct { unsigned long offset; unsigned int size; } partial; } params; struct sg_table *pages; union { struct intel_rotation_info rotation_info; }; }; extern const struct i915_ggtt_view i915_ggtt_view_normal; extern const struct i915_ggtt_view i915_ggtt_view_rotated; enum i915_cache_level; /** * A VMA represents a GEM BO that is bound into an address space. Therefore, a * VMA's presence cannot be guaranteed before binding, or after unbinding the * object into/from the address space. * * To make things as simple as possible (ie. no refcounting), a VMA's lifetime * will always be <= an objects lifetime. So object refcounting should cover us. */ struct i915_vma { struct drm_mm_node node; struct drm_i915_gem_object *obj; struct i915_address_space *vm; /** Flags and address space this VMA is bound to */ #define GLOBAL_BIND (1<<0) #define LOCAL_BIND (1<<1) unsigned int bound : 4; /** * Support different GGTT views into the same object. * This means there can be multiple VMA mappings per object and per VM. * i915_ggtt_view_type is used to distinguish between those entries. * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also * assumed in GEM functions which take no ggtt view parameter. */ struct i915_ggtt_view ggtt_view; /** This object's place on the active/inactive lists */ struct list_head mm_list; struct list_head vma_link; /* Link in the object's VMA list */ /** This vma's place in the batchbuffer or on the eviction list */ struct list_head exec_list; /** * Used for performing relocations during execbuffer insertion. */ struct hlist_node exec_node; unsigned long exec_handle; struct drm_i915_gem_exec_object2 *exec_entry; /** * How many users have pinned this object in GTT space. The following * users can each hold at most one reference: pwrite/pread, execbuffer * (objects are not allowed multiple times for the same batchbuffer), * and the framebuffer code. When switching/pageflipping, the * framebuffer code has at most two buffers pinned per crtc. * * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3 * bits with absolutely no headroom. So use 4 bits. */ unsigned int pin_count:4; #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf }; struct i915_page_table { struct page *page; dma_addr_t daddr; unsigned long *used_ptes; }; struct i915_page_directory { struct page *page; /* NULL for GEN6-GEN7 */ union { uint32_t pd_offset; dma_addr_t daddr; }; unsigned long *used_pdes; struct i915_page_table *page_table[I915_PDES]; /* PDEs */ }; struct i915_page_directory_pointer { /* struct page *page; */ DECLARE_BITMAP(used_pdpes, GEN8_LEGACY_PDPES); struct i915_page_directory *page_directory[GEN8_LEGACY_PDPES]; }; struct i915_address_space { struct drm_mm mm; struct drm_device *dev; struct list_head global_link; u64 start; /* Start offset always 0 for dri2 */ u64 total; /* size addr space maps (ex. 2GB for ggtt) */ struct { dma_addr_t addr; struct page *page; } scratch; /** * List of objects currently involved in rendering. * * Includes buffers having the contents of their GPU caches * flushed, not necessarily primitives. last_read_req * represents when the rendering involved will be completed. * * A reference is held on the buffer while on this list. */ struct list_head active_list; /** * LRU list of objects which are not in the ringbuffer and * are ready to unbind, but are still in the GTT. * * last_read_req is NULL while an object is in this list. * * A reference is not held on the buffer while on this list, * as merely being GTT-bound shouldn't prevent its being * freed, and we'll pull it off the list in the free path. */ struct list_head inactive_list; /* FIXME: Need a more generic return type */ gen6_pte_t (*pte_encode)(dma_addr_t addr, enum i915_cache_level level, bool valid, u32 flags); /* Create a valid PTE */ /* flags for pte_encode */ #define PTE_READ_ONLY (1<<0) int (*allocate_va_range)(struct i915_address_space *vm, uint64_t start, uint64_t length); void (*clear_range)(struct i915_address_space *vm, uint64_t start, uint64_t length, bool use_scratch); void (*insert_entries)(struct i915_address_space *vm, struct sg_table *st, uint64_t start, enum i915_cache_level cache_level, u32 flags); void (*cleanup)(struct i915_address_space *vm); /** Unmap an object from an address space. This usually consists of * setting the valid PTE entries to a reserved scratch page. */ void (*unbind_vma)(struct i915_vma *vma); /* Map an object into an address space with the given cache flags. */ int (*bind_vma)(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags); }; /* The Graphics Translation Table is the way in which GEN hardware translates a * Graphics Virtual Address into a Physical Address. In addition to the normal * collateral associated with any va->pa translations GEN hardware also has a * portion of the GTT which can be mapped by the CPU and remain both coherent * and correct (in cases like swizzling). That region is referred to as GMADR in * the spec. */ struct i915_gtt { struct i915_address_space base; size_t stolen_size; /* Total size of stolen memory */ u64 mappable_end; /* End offset that we can CPU map */ struct io_mapping *mappable; /* Mapping to our CPU mappable region */ phys_addr_t mappable_base; /* PA of our GMADR */ /** "Graphics Stolen Memory" holds the global PTEs */ void __iomem *gsm; bool do_idle_maps; int mtrr; /* global gtt ops */ int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total, size_t *stolen, phys_addr_t *mappable_base, u64 *mappable_end); }; struct i915_hw_ppgtt { struct i915_address_space base; struct kref ref; struct drm_mm_node node; unsigned long pd_dirty_rings; union { struct i915_page_directory_pointer pdp; struct i915_page_directory pd; }; struct i915_page_table *scratch_pt; struct i915_page_directory *scratch_pd; struct drm_i915_file_private *file_priv; gen6_pte_t __iomem *pd_addr; int (*enable)(struct i915_hw_ppgtt *ppgtt); int (*switch_mm)(struct i915_hw_ppgtt *ppgtt, struct drm_i915_gem_request *req); void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m); }; /* For each pde iterates over every pde between from start until start + length. * If start, and start+length are not perfectly divisible, the macro will round * down, and up as needed. The macro modifies pde, start, and length. Dev is * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0, * and length = 2G effectively iterates over every PDE in the system. * * XXX: temp is not actually needed, but it saves doing the ALIGN operation. */ #define gen6_for_each_pde(pt, pd, start, length, temp, iter) \ for (iter = gen6_pde_index(start); \ pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \ iter++, \ temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \ temp = min_t(unsigned, temp, length), \ start += temp, length -= temp) #define gen6_for_all_pdes(pt, ppgtt, iter) \ for (iter = 0; \ pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \ iter++) static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift) { const uint32_t mask = NUM_PTE(pde_shift) - 1; return (address >> PAGE_SHIFT) & mask; } /* Helper to counts the number of PTEs within the given length. This count * does not cross a page table boundary, so the max value would be * GEN6_PTES for GEN6, and GEN8_PTES for GEN8. */ static inline uint32_t i915_pte_count(uint64_t addr, size_t length, uint32_t pde_shift) { const uint64_t mask = ~((1 << pde_shift) - 1); uint64_t end; WARN_ON(length == 0); WARN_ON(offset_in_page(addr|length)); end = addr + length; if ((addr & mask) != (end & mask)) return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift); return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift); } static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift) { return (addr >> shift) & I915_PDE_MASK; } static inline uint32_t gen6_pte_index(uint32_t addr) { return i915_pte_index(addr, GEN6_PDE_SHIFT); } static inline size_t gen6_pte_count(uint32_t addr, uint32_t length) { return i915_pte_count(addr, length, GEN6_PDE_SHIFT); } static inline uint32_t gen6_pde_index(uint32_t addr) { return i915_pde_index(addr, GEN6_PDE_SHIFT); } /* Equivalent to the gen6 version, For each pde iterates over every pde * between from start until start + length. On gen8+ it simply iterates * over every page directory entry in a page directory. */ #define gen8_for_each_pde(pt, pd, start, length, temp, iter) \ for (iter = gen8_pde_index(start); \ pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \ iter++, \ temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT) - start, \ temp = min(temp, length), \ start += temp, length -= temp) #define gen8_for_each_pdpe(pd, pdp, start, length, temp, iter) \ for (iter = gen8_pdpe_index(start); \ pd = (pdp)->page_directory[iter], length > 0 && iter < GEN8_LEGACY_PDPES; \ iter++, \ temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT) - start, \ temp = min(temp, length), \ start += temp, length -= temp) /* Clamp length to the next page_directory boundary */ static inline uint64_t gen8_clamp_pd(uint64_t start, uint64_t length) { uint64_t next_pd = ALIGN(start + 1, 1 << GEN8_PDPE_SHIFT); if (next_pd > (start + length)) return length; return next_pd - start; } static inline uint32_t gen8_pte_index(uint64_t address) { return i915_pte_index(address, GEN8_PDE_SHIFT); } static inline uint32_t gen8_pde_index(uint64_t address) { return i915_pde_index(address, GEN8_PDE_SHIFT); } static inline uint32_t gen8_pdpe_index(uint64_t address) { return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK; } static inline uint32_t gen8_pml4e_index(uint64_t address) { WARN_ON(1); /* For 64B */ return 0; } static inline size_t gen8_pte_count(uint64_t address, uint64_t length) { return i915_pte_count(address, length, GEN8_PDE_SHIFT); } int i915_gem_gtt_init(struct drm_device *dev); void i915_gem_init_global_gtt(struct drm_device *dev); void i915_global_gtt_cleanup(struct drm_device *dev); int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt); int i915_ppgtt_init_hw(struct drm_device *dev); int i915_ppgtt_init_ring(struct drm_i915_gem_request *req); void i915_ppgtt_release(struct kref *kref); struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv); static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt) { if (ppgtt) kref_get(&ppgtt->ref); } static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt) { if (ppgtt) kref_put(&ppgtt->ref, i915_ppgtt_release); } void i915_check_and_clear_faults(struct drm_device *dev); void i915_gem_suspend_gtt_mappings(struct drm_device *dev); void i915_gem_restore_gtt_mappings(struct drm_device *dev); int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj); void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj); static inline bool i915_ggtt_view_equal(const struct i915_ggtt_view *a, const struct i915_ggtt_view *b) { if (WARN_ON(!a || !b)) return false; if (a->type != b->type) return false; if (a->type == I915_GGTT_VIEW_PARTIAL) return !memcmp(&a->params, &b->params, sizeof(a->params)); return true; } size_t i915_ggtt_view_size(struct drm_i915_gem_object *obj, const struct i915_ggtt_view *view); #endif