/* * Copyright (c) 2007-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "core.h" #include "target.h" #include "hif-ops.h" #include "htc_hif.h" #include "debug.h" #define MAILBOX_FOR_BLOCK_SIZE 1 #define ATH6KL_TIME_QUANTUM 10 /* in ms */ static void ath6kl_add_io_pkt(struct ath6kl_device *dev, struct htc_packet *packet) { spin_lock_bh(&dev->lock); list_add_tail(&packet->list, &dev->reg_io); spin_unlock_bh(&dev->lock); } static struct htc_packet *ath6kl_get_io_pkt(struct ath6kl_device *dev) { struct htc_packet *packet = NULL; spin_lock_bh(&dev->lock); if (!list_empty(&dev->reg_io)) { packet = list_first_entry(&dev->reg_io, struct htc_packet, list); list_del(&packet->list); } spin_unlock_bh(&dev->lock); return packet; } static int ath6kldev_cp_scat_dma_buf(struct hif_scatter_req *req, bool from_dma) { u8 *buf; int i; buf = req->virt_dma_buf; for (i = 0; i < req->scat_entries; i++) { if (from_dma) memcpy(req->scat_list[i].buf, buf, req->scat_list[i].len); else memcpy(buf, req->scat_list[i].buf, req->scat_list[i].len); buf += req->scat_list[i].len; } return 0; } int ath6kldev_rw_comp_handler(void *context, int status) { struct htc_packet *packet = context; ath6kl_dbg(ATH6KL_DBG_HTC_RECV, "ath6kldev_rw_comp_handler (pkt:0x%p , status: %d\n", packet, status); packet->status = status; packet->completion(packet->context, packet); return 0; } static int ath6kldev_proc_dbg_intr(struct ath6kl_device *dev) { u32 dummy; int status; ath6kl_err("target debug interrupt\n"); ath6kl_target_failure(dev->ar); /* * read counter to clear the interrupt, the debug error interrupt is * counter 0. */ status = hif_read_write_sync(dev->ar, COUNT_DEC_ADDRESS, (u8 *)&dummy, 4, HIF_RD_SYNC_BYTE_INC); if (status) WARN_ON(1); return status; } /* mailbox recv message polling */ int ath6kldev_poll_mboxmsg_rx(struct ath6kl_device *dev, u32 *lk_ahd, int timeout) { struct ath6kl_irq_proc_registers *rg; int status = 0, i; u8 htc_mbox = 1 << HTC_MAILBOX; for (i = timeout / ATH6KL_TIME_QUANTUM; i > 0; i--) { /* this is the standard HIF way, load the reg table */ status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS, (u8 *) &dev->irq_proc_reg, sizeof(dev->irq_proc_reg), HIF_RD_SYNC_BYTE_INC); if (status) { ath6kl_err("failed to read reg table\n"); return status; } /* check for MBOX data and valid lookahead */ if (dev->irq_proc_reg.host_int_status & htc_mbox) { if (dev->irq_proc_reg.rx_lkahd_valid & htc_mbox) { /* * Mailbox has a message and the look ahead * is valid. */ rg = &dev->irq_proc_reg; *lk_ahd = le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]); break; } } /* delay a little */ mdelay(ATH6KL_TIME_QUANTUM); ath6kl_dbg(ATH6KL_DBG_HTC_RECV, "retry mbox poll : %d\n", i); } if (i == 0) { ath6kl_err("timeout waiting for recv message\n"); status = -ETIME; /* check if the target asserted */ if (dev->irq_proc_reg.counter_int_status & ATH6KL_TARGET_DEBUG_INTR_MASK) /* * Target failure handler will be called in case of * an assert. */ ath6kldev_proc_dbg_intr(dev); } return status; } /* * Disable packet reception (used in case the host runs out of buffers) * using the interrupt enable registers through the host I/F */ int ath6kldev_rx_control(struct ath6kl_device *dev, bool enable_rx) { struct ath6kl_irq_enable_reg regs; int status = 0; /* take the lock to protect interrupt enable shadows */ spin_lock_bh(&dev->lock); if (enable_rx) dev->irq_en_reg.int_status_en |= SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01); else dev->irq_en_reg.int_status_en &= ~SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01); memcpy(®s, &dev->irq_en_reg, sizeof(regs)); spin_unlock_bh(&dev->lock); status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS, ®s.int_status_en, sizeof(struct ath6kl_irq_enable_reg), HIF_WR_SYNC_BYTE_INC); return status; } static void ath6kldev_rw_async_handler(struct htc_target *target, struct htc_packet *packet) { struct ath6kl_device *dev = target->dev; struct hif_scatter_req *req = packet->pkt_cntxt; req->status = packet->status; ath6kl_add_io_pkt(dev, packet); req->complete(req); } static int ath6kldev_rw_scatter(struct ath6kl *ar, struct hif_scatter_req *req) { struct ath6kl_device *dev = ar->htc_target->dev; struct htc_packet *packet = NULL; int status = 0; u32 request = req->req; u8 *virt_dma_buf; if (!req->len) return 0; if (request & HIF_ASYNCHRONOUS) { /* use an I/O packet to carry this request */ packet = ath6kl_get_io_pkt(dev); if (!packet) { status = -ENOMEM; goto out; } packet->pkt_cntxt = req; packet->completion = ath6kldev_rw_async_handler; packet->context = ar->htc_target; } virt_dma_buf = req->virt_dma_buf; if (request & HIF_ASYNCHRONOUS) status = hif_write_async(dev->ar, req->addr, virt_dma_buf, req->len, request, packet); else status = hif_read_write_sync(dev->ar, req->addr, virt_dma_buf, req->len, request); out: if (status) if (request & HIF_ASYNCHRONOUS) { if (packet != NULL) ath6kl_add_io_pkt(dev, packet); req->status = status; req->complete(req); status = 0; } return status; } int ath6kldev_submit_scat_req(struct ath6kl_device *dev, struct hif_scatter_req *scat_req, bool read) { int status = 0; if (read) { scat_req->req = HIF_RD_SYNC_BLOCK_FIX; scat_req->addr = dev->ar->mbox_info.htc_addr; } else { scat_req->req = HIF_WR_ASYNC_BLOCK_INC; scat_req->addr = (scat_req->len > HIF_MBOX_WIDTH) ? dev->ar->mbox_info.htc_ext_addr : dev->ar->mbox_info.htc_addr; } ath6kl_dbg((ATH6KL_DBG_HTC_RECV | ATH6KL_DBG_HTC_SEND), "ath6kldev_submit_scat_req, entries: %d, total len: %d mbox:0x%X (mode: %s : %s)\n", scat_req->scat_entries, scat_req->len, scat_req->addr, !read ? "async" : "sync", (read) ? "rd" : "wr"); if (!read && dev->virt_scat) status = ath6kldev_cp_scat_dma_buf(scat_req, false); if (status) { if (!read) { scat_req->status = status; scat_req->complete(scat_req); return 0; } return status; } status = dev->hif_scat_info.rw_scat_func(dev->ar, scat_req); if (read) { /* in sync mode, we can touch the scatter request */ scat_req->status = status; if (!status && dev->virt_scat) scat_req->status = ath6kldev_cp_scat_dma_buf(scat_req, true); } return status; } /* * function to set up virtual scatter support if HIF * layer has not implemented the interface. */ static int ath6kldev_setup_virt_scat_sup(struct ath6kl_device *dev) { struct hif_scatter_req *scat_req; int buf_sz, scat_req_sz, scat_list_sz; int i, status = 0; u8 *virt_dma_buf; buf_sz = 2 * L1_CACHE_BYTES + ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER; scat_list_sz = (ATH6KL_SCATTER_ENTRIES_PER_REQ - 1) * sizeof(struct hif_scatter_item); scat_req_sz = sizeof(*scat_req) + scat_list_sz; for (i = 0; i < ATH6KL_SCATTER_REQS; i++) { scat_req = kzalloc(scat_req_sz, GFP_KERNEL); if (!scat_req) { status = -ENOMEM; break; } virt_dma_buf = kzalloc(buf_sz, GFP_KERNEL); if (!virt_dma_buf) { kfree(scat_req); status = -ENOMEM; break; } scat_req->virt_dma_buf = (u8 *)L1_CACHE_ALIGN((unsigned long)virt_dma_buf); /* we emulate a DMA bounce interface */ hif_scatter_req_add(dev->ar, scat_req); } if (status) ath6kl_hif_cleanup_scatter(dev->ar); else { dev->hif_scat_info.rw_scat_func = ath6kldev_rw_scatter; dev->hif_scat_info.max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ; dev->hif_scat_info.max_xfer_szper_scatreq = ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER; dev->virt_scat = true; } return status; } int ath6kldev_setup_msg_bndl(struct ath6kl_device *dev, int max_msg_per_trans) { int status; status = ath6kl_hif_enable_scatter(dev->ar, &dev->hif_scat_info); if (status) { ath6kl_warn("hif does not support scatter requests (%d)\n", status); /* we can try to use a virtual DMA scatter mechanism */ status = ath6kldev_setup_virt_scat_sup(dev); } if (!status) ath6kl_dbg(ATH6KL_DBG_ANY, "max scatter items:%d: maxlen:%d\n", dev->hif_scat_info.max_scat_entries, dev->hif_scat_info.max_xfer_szper_scatreq); return status; } static int ath6kldev_proc_counter_intr(struct ath6kl_device *dev) { u8 counter_int_status; ath6kl_dbg(ATH6KL_DBG_IRQ, "counter interrupt\n"); counter_int_status = dev->irq_proc_reg.counter_int_status & dev->irq_en_reg.cntr_int_status_en; ath6kl_dbg(ATH6KL_DBG_IRQ, "valid interrupt source(s) in COUNTER_INT_STATUS: 0x%x\n", counter_int_status); /* * NOTE: other modules like GMBOX may use the counter interrupt for * credit flow control on other counters, we only need to check for * the debug assertion counter interrupt. */ if (counter_int_status & ATH6KL_TARGET_DEBUG_INTR_MASK) return ath6kldev_proc_dbg_intr(dev); return 0; } static int ath6kldev_proc_err_intr(struct ath6kl_device *dev) { int status; u8 error_int_status; u8 reg_buf[4]; ath6kl_dbg(ATH6KL_DBG_IRQ, "error interrupt\n"); error_int_status = dev->irq_proc_reg.error_int_status & 0x0F; if (!error_int_status) { WARN_ON(1); return -EIO; } ath6kl_dbg(ATH6KL_DBG_IRQ, "valid interrupt source(s) in ERROR_INT_STATUS: 0x%x\n", error_int_status); if (MS(ERROR_INT_STATUS_WAKEUP, error_int_status)) ath6kl_dbg(ATH6KL_DBG_IRQ, "error : wakeup\n"); if (MS(ERROR_INT_STATUS_RX_UNDERFLOW, error_int_status)) ath6kl_err("rx underflow\n"); if (MS(ERROR_INT_STATUS_TX_OVERFLOW, error_int_status)) ath6kl_err("tx overflow\n"); /* Clear the interrupt */ dev->irq_proc_reg.error_int_status &= ~error_int_status; /* set W1C value to clear the interrupt, this hits the register first */ reg_buf[0] = error_int_status; reg_buf[1] = 0; reg_buf[2] = 0; reg_buf[3] = 0; status = hif_read_write_sync(dev->ar, ERROR_INT_STATUS_ADDRESS, reg_buf, 4, HIF_WR_SYNC_BYTE_FIX); if (status) WARN_ON(1); return status; } static int ath6kldev_proc_cpu_intr(struct ath6kl_device *dev) { int status; u8 cpu_int_status; u8 reg_buf[4]; ath6kl_dbg(ATH6KL_DBG_IRQ, "cpu interrupt\n"); cpu_int_status = dev->irq_proc_reg.cpu_int_status & dev->irq_en_reg.cpu_int_status_en; if (!cpu_int_status) { WARN_ON(1); return -EIO; } ath6kl_dbg(ATH6KL_DBG_IRQ, "valid interrupt source(s) in CPU_INT_STATUS: 0x%x\n", cpu_int_status); /* Clear the interrupt */ dev->irq_proc_reg.cpu_int_status &= ~cpu_int_status; /* * Set up the register transfer buffer to hit the register 4 times , * this is done to make the access 4-byte aligned to mitigate issues * with host bus interconnects that restrict bus transfer lengths to * be a multiple of 4-bytes. */ /* set W1C value to clear the interrupt, this hits the register first */ reg_buf[0] = cpu_int_status; /* the remaining are set to zero which have no-effect */ reg_buf[1] = 0; reg_buf[2] = 0; reg_buf[3] = 0; status = hif_read_write_sync(dev->ar, CPU_INT_STATUS_ADDRESS, reg_buf, 4, HIF_WR_SYNC_BYTE_FIX); if (status) WARN_ON(1); return status; } /* process pending interrupts synchronously */ static int proc_pending_irqs(struct ath6kl_device *dev, bool *done) { struct ath6kl_irq_proc_registers *rg; int status = 0; u8 host_int_status = 0; u32 lk_ahd = 0; u8 htc_mbox = 1 << HTC_MAILBOX; ath6kl_dbg(ATH6KL_DBG_IRQ, "proc_pending_irqs: (dev: 0x%p)\n", dev); /* * NOTE: HIF implementation guarantees that the context of this * call allows us to perform SYNCHRONOUS I/O, that is we can block, * sleep or call any API that can block or switch thread/task * contexts. This is a fully schedulable context. */ /* * Process pending intr only when int_status_en is clear, it may * result in unnecessary bus transaction otherwise. Target may be * unresponsive at the time. */ if (dev->irq_en_reg.int_status_en) { /* * Read the first 28 bytes of the HTC register table. This * will yield us the value of different int status * registers and the lookahead registers. * * length = sizeof(int_status) + sizeof(cpu_int_status) * + sizeof(error_int_status) + * sizeof(counter_int_status) + * sizeof(mbox_frame) + sizeof(rx_lkahd_valid) * + sizeof(hole) + sizeof(rx_lkahd) + * sizeof(int_status_en) + * sizeof(cpu_int_status_en) + * sizeof(err_int_status_en) + * sizeof(cntr_int_status_en); */ status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS, (u8 *) &dev->irq_proc_reg, sizeof(dev->irq_proc_reg), HIF_RD_SYNC_BYTE_INC); if (status) goto out; if (AR_DBG_LVL_CHECK(ATH6KL_DBG_IRQ)) ath6kl_dump_registers(dev, &dev->irq_proc_reg, &dev->irq_en_reg); /* Update only those registers that are enabled */ host_int_status = dev->irq_proc_reg.host_int_status & dev->irq_en_reg.int_status_en; /* Look at mbox status */ if (host_int_status & htc_mbox) { /* * Mask out pending mbox value, we use "lookAhead as * the real flag for mbox processing. */ host_int_status &= ~htc_mbox; if (dev->irq_proc_reg.rx_lkahd_valid & htc_mbox) { rg = &dev->irq_proc_reg; lk_ahd = le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]); if (!lk_ahd) ath6kl_err("lookAhead is zero!\n"); } } } if (!host_int_status && !lk_ahd) { *done = true; goto out; } if (lk_ahd) { int fetched = 0; ath6kl_dbg(ATH6KL_DBG_IRQ, "pending mailbox msg, lk_ahd: 0x%X\n", lk_ahd); /* * Mailbox Interrupt, the HTC layer may issue async * requests to empty the mailbox. When emptying the recv * mailbox we use the async handler above called from the * completion routine of the callers read request. This can * improve performance by reducing context switching when * we rapidly pull packets. */ status = dev->msg_pending(dev->htc_cnxt, &lk_ahd, &fetched); if (status) goto out; if (!fetched) /* * HTC could not pull any messages out due to lack * of resources. */ dev->chk_irq_status_cnt = 0; } /* now handle the rest of them */ ath6kl_dbg(ATH6KL_DBG_IRQ, "valid interrupt source(s) for other interrupts: 0x%x\n", host_int_status); if (MS(HOST_INT_STATUS_CPU, host_int_status)) { /* CPU Interrupt */ status = ath6kldev_proc_cpu_intr(dev); if (status) goto out; } if (MS(HOST_INT_STATUS_ERROR, host_int_status)) { /* Error Interrupt */ status = ath6kldev_proc_err_intr(dev); if (status) goto out; } if (MS(HOST_INT_STATUS_COUNTER, host_int_status)) /* Counter Interrupt */ status = ath6kldev_proc_counter_intr(dev); out: /* * An optimization to bypass reading the IRQ status registers * unecessarily which can re-wake the target, if upper layers * determine that we are in a low-throughput mode, we can rely on * taking another interrupt rather than re-checking the status * registers which can re-wake the target. * * NOTE : for host interfaces that makes use of detecting pending * mbox messages at hif can not use this optimization due to * possible side effects, SPI requires the host to drain all * messages from the mailbox before exiting the ISR routine. */ ath6kl_dbg(ATH6KL_DBG_IRQ, "bypassing irq status re-check, forcing done\n"); *done = true; ath6kl_dbg(ATH6KL_DBG_IRQ, "proc_pending_irqs: (done:%d, status=%d\n", *done, status); return status; } /* interrupt handler, kicks off all interrupt processing */ int ath6kldev_intr_bh_handler(struct ath6kl *ar) { struct ath6kl_device *dev = ar->htc_target->dev; int status = 0; bool done = false; /* * Reset counter used to flag a re-scan of IRQ status registers on * the target. */ dev->chk_irq_status_cnt = 0; /* * IRQ processing is synchronous, interrupt status registers can be * re-read. */ while (!done) { status = proc_pending_irqs(dev, &done); if (status) break; } return status; } static int ath6kldev_enable_intrs(struct ath6kl_device *dev) { struct ath6kl_irq_enable_reg regs; int status; spin_lock_bh(&dev->lock); /* Enable all but ATH6KL CPU interrupts */ dev->irq_en_reg.int_status_en = SM(INT_STATUS_ENABLE_ERROR, 0x01) | SM(INT_STATUS_ENABLE_CPU, 0x01) | SM(INT_STATUS_ENABLE_COUNTER, 0x01); /* * NOTE: There are some cases where HIF can do detection of * pending mbox messages which is disabled now. */ dev->irq_en_reg.int_status_en |= SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01); /* Set up the CPU Interrupt status Register */ dev->irq_en_reg.cpu_int_status_en = 0; /* Set up the Error Interrupt status Register */ dev->irq_en_reg.err_int_status_en = SM(ERROR_STATUS_ENABLE_RX_UNDERFLOW, 0x01) | SM(ERROR_STATUS_ENABLE_TX_OVERFLOW, 0x1); /* * Enable Counter interrupt status register to get fatal errors for * debugging. */ dev->irq_en_reg.cntr_int_status_en = SM(COUNTER_INT_STATUS_ENABLE_BIT, ATH6KL_TARGET_DEBUG_INTR_MASK); memcpy(®s, &dev->irq_en_reg, sizeof(regs)); spin_unlock_bh(&dev->lock); status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS, ®s.int_status_en, sizeof(regs), HIF_WR_SYNC_BYTE_INC); if (status) ath6kl_err("failed to update interrupt ctl reg err: %d\n", status); return status; } int ath6kldev_disable_intrs(struct ath6kl_device *dev) { struct ath6kl_irq_enable_reg regs; spin_lock_bh(&dev->lock); /* Disable all interrupts */ dev->irq_en_reg.int_status_en = 0; dev->irq_en_reg.cpu_int_status_en = 0; dev->irq_en_reg.err_int_status_en = 0; dev->irq_en_reg.cntr_int_status_en = 0; memcpy(®s, &dev->irq_en_reg, sizeof(regs)); spin_unlock_bh(&dev->lock); return hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS, ®s.int_status_en, sizeof(regs), HIF_WR_SYNC_BYTE_INC); } /* enable device interrupts */ int ath6kldev_unmask_intrs(struct ath6kl_device *dev) { int status = 0; /* * Make sure interrupt are disabled before unmasking at the HIF * layer. The rationale here is that between device insertion * (where we clear the interrupts the first time) and when HTC * is finally ready to handle interrupts, other software can perform * target "soft" resets. The ATH6KL interrupt enables reset back to an * "enabled" state when this happens. */ ath6kldev_disable_intrs(dev); /* unmask the host controller interrupts */ ath6kl_hif_irq_enable(dev->ar); status = ath6kldev_enable_intrs(dev); return status; } /* disable all device interrupts */ int ath6kldev_mask_intrs(struct ath6kl_device *dev) { /* * Mask the interrupt at the HIF layer to avoid any stray interrupt * taken while we zero out our shadow registers in * ath6kldev_disable_intrs(). */ ath6kl_hif_irq_disable(dev->ar); return ath6kldev_disable_intrs(dev); } int ath6kldev_setup(struct ath6kl_device *dev) { int status = 0; int i; struct htc_packet *packet; /* initialize our free list of IO packets */ INIT_LIST_HEAD(&dev->reg_io); spin_lock_init(&dev->lock); /* carve up register I/O packets (these are for ASYNC register I/O ) */ for (i = 0; i < ATH6KL_MAX_REG_IO_BUFFERS; i++) { packet = &dev->reg_io_buf[i].packet; set_htc_rxpkt_info(packet, dev, dev->reg_io_buf[i].buf, ATH6KL_REG_IO_BUFFER_SIZE, 0); ath6kl_add_io_pkt(dev, packet); } /* * NOTE: we actually get the block size of a mailbox other than 0, * for SDIO the block size on mailbox 0 is artificially set to 1. * So we use the block size that is set for the other 3 mailboxes. */ dev->block_sz = dev->ar->mbox_info.block_size; /* must be a power of 2 */ if ((dev->block_sz & (dev->block_sz - 1)) != 0) { WARN_ON(1); goto fail_setup; } /* assemble mask, used for padding to a block */ dev->block_mask = dev->block_sz - 1; ath6kl_dbg(ATH6KL_DBG_TRC, "block size: %d, mbox addr:0x%X\n", dev->block_sz, dev->ar->mbox_info.htc_addr); ath6kl_dbg(ATH6KL_DBG_TRC, "hif interrupt processing is sync only\n"); status = ath6kldev_disable_intrs(dev); fail_setup: return status; }