/* * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include "mlx5_ib.h" enum { MAX_PENDING_REG_MR = 8, }; #define MLX5_UMR_ALIGN 2048 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING static __be64 mlx5_ib_update_mtt_emergency_buffer[ MLX5_UMR_MTT_MIN_CHUNK_SIZE/sizeof(__be64)] __aligned(MLX5_UMR_ALIGN); static DEFINE_MUTEX(mlx5_ib_update_mtt_emergency_buffer_mutex); #endif static int clean_mr(struct mlx5_ib_mr *mr); static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) { int err = mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING /* Wait until all page fault handlers using the mr complete. */ synchronize_srcu(&dev->mr_srcu); #endif return err; } static int order2idx(struct mlx5_ib_dev *dev, int order) { struct mlx5_mr_cache *cache = &dev->cache; if (order < cache->ent[0].order) return 0; else return order - cache->ent[0].order; } static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length) { return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >= length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1)); } #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING static void update_odp_mr(struct mlx5_ib_mr *mr) { if (mr->umem->odp_data) { /* * This barrier prevents the compiler from moving the * setting of umem->odp_data->private to point to our * MR, before reg_umr finished, to ensure that the MR * initialization have finished before starting to * handle invalidations. */ smp_wmb(); mr->umem->odp_data->private = mr; /* * Make sure we will see the new * umem->odp_data->private value in the invalidation * routines, before we can get page faults on the * MR. Page faults can happen once we put the MR in * the tree, below this line. Without the barrier, * there can be a fault handling and an invalidation * before umem->odp_data->private == mr is visible to * the invalidation handler. */ smp_wmb(); } } #endif static void reg_mr_callback(int status, void *context) { struct mlx5_ib_mr *mr = context; struct mlx5_ib_dev *dev = mr->dev; struct mlx5_mr_cache *cache = &dev->cache; int c = order2idx(dev, mr->order); struct mlx5_cache_ent *ent = &cache->ent[c]; u8 key; unsigned long flags; struct mlx5_mkey_table *table = &dev->mdev->priv.mkey_table; int err; spin_lock_irqsave(&ent->lock, flags); ent->pending--; spin_unlock_irqrestore(&ent->lock, flags); if (status) { mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status); kfree(mr); dev->fill_delay = 1; mod_timer(&dev->delay_timer, jiffies + HZ); return; } spin_lock_irqsave(&dev->mdev->priv.mkey_lock, flags); key = dev->mdev->priv.mkey_key++; spin_unlock_irqrestore(&dev->mdev->priv.mkey_lock, flags); mr->mmkey.key = mlx5_idx_to_mkey(MLX5_GET(create_mkey_out, mr->out, mkey_index)) | key; cache->last_add = jiffies; spin_lock_irqsave(&ent->lock, flags); list_add_tail(&mr->list, &ent->head); ent->cur++; ent->size++; spin_unlock_irqrestore(&ent->lock, flags); write_lock_irqsave(&table->lock, flags); err = radix_tree_insert(&table->tree, mlx5_base_mkey(mr->mmkey.key), &mr->mmkey); if (err) pr_err("Error inserting to mkey tree. 0x%x\n", -err); write_unlock_irqrestore(&table->lock, flags); } static int add_keys(struct mlx5_ib_dev *dev, int c, int num) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent = &cache->ent[c]; int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); struct mlx5_ib_mr *mr; int npages = 1 << ent->order; void *mkc; u32 *in; int err = 0; int i; in = kzalloc(inlen, GFP_KERNEL); if (!in) return -ENOMEM; mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); for (i = 0; i < num; i++) { if (ent->pending >= MAX_PENDING_REG_MR) { err = -EAGAIN; break; } mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) { err = -ENOMEM; break; } mr->order = ent->order; mr->umred = 1; mr->dev = dev; MLX5_SET(mkc, mkc, free, 1); MLX5_SET(mkc, mkc, umr_en, 1); MLX5_SET(mkc, mkc, access_mode, MLX5_MKC_ACCESS_MODE_MTT); MLX5_SET(mkc, mkc, qpn, 0xffffff); MLX5_SET(mkc, mkc, translations_octword_size, (npages + 1) / 2); MLX5_SET(mkc, mkc, log_page_size, 12); spin_lock_irq(&ent->lock); ent->pending++; spin_unlock_irq(&ent->lock); err = mlx5_core_create_mkey_cb(dev->mdev, &mr->mmkey, in, inlen, mr->out, sizeof(mr->out), reg_mr_callback, mr); if (err) { spin_lock_irq(&ent->lock); ent->pending--; spin_unlock_irq(&ent->lock); mlx5_ib_warn(dev, "create mkey failed %d\n", err); kfree(mr); break; } } kfree(in); return err; } static void remove_keys(struct mlx5_ib_dev *dev, int c, int num) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent = &cache->ent[c]; struct mlx5_ib_mr *mr; int err; int i; for (i = 0; i < num; i++) { spin_lock_irq(&ent->lock); if (list_empty(&ent->head)) { spin_unlock_irq(&ent->lock); return; } mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); list_del(&mr->list); ent->cur--; ent->size--; spin_unlock_irq(&ent->lock); err = destroy_mkey(dev, mr); if (err) mlx5_ib_warn(dev, "failed destroy mkey\n"); else kfree(mr); } } static ssize_t size_write(struct file *filp, const char __user *buf, size_t count, loff_t *pos) { struct mlx5_cache_ent *ent = filp->private_data; struct mlx5_ib_dev *dev = ent->dev; char lbuf[20]; u32 var; int err; int c; if (copy_from_user(lbuf, buf, sizeof(lbuf))) return -EFAULT; c = order2idx(dev, ent->order); lbuf[sizeof(lbuf) - 1] = 0; if (sscanf(lbuf, "%u", &var) != 1) return -EINVAL; if (var < ent->limit) return -EINVAL; if (var > ent->size) { do { err = add_keys(dev, c, var - ent->size); if (err && err != -EAGAIN) return err; usleep_range(3000, 5000); } while (err); } else if (var < ent->size) { remove_keys(dev, c, ent->size - var); } return count; } static ssize_t size_read(struct file *filp, char __user *buf, size_t count, loff_t *pos) { struct mlx5_cache_ent *ent = filp->private_data; char lbuf[20]; int err; if (*pos) return 0; err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->size); if (err < 0) return err; if (copy_to_user(buf, lbuf, err)) return -EFAULT; *pos += err; return err; } static const struct file_operations size_fops = { .owner = THIS_MODULE, .open = simple_open, .write = size_write, .read = size_read, }; static ssize_t limit_write(struct file *filp, const char __user *buf, size_t count, loff_t *pos) { struct mlx5_cache_ent *ent = filp->private_data; struct mlx5_ib_dev *dev = ent->dev; char lbuf[20]; u32 var; int err; int c; if (copy_from_user(lbuf, buf, sizeof(lbuf))) return -EFAULT; c = order2idx(dev, ent->order); lbuf[sizeof(lbuf) - 1] = 0; if (sscanf(lbuf, "%u", &var) != 1) return -EINVAL; if (var > ent->size) return -EINVAL; ent->limit = var; if (ent->cur < ent->limit) { err = add_keys(dev, c, 2 * ent->limit - ent->cur); if (err) return err; } return count; } static ssize_t limit_read(struct file *filp, char __user *buf, size_t count, loff_t *pos) { struct mlx5_cache_ent *ent = filp->private_data; char lbuf[20]; int err; if (*pos) return 0; err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit); if (err < 0) return err; if (copy_to_user(buf, lbuf, err)) return -EFAULT; *pos += err; return err; } static const struct file_operations limit_fops = { .owner = THIS_MODULE, .open = simple_open, .write = limit_write, .read = limit_read, }; static int someone_adding(struct mlx5_mr_cache *cache) { int i; for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { if (cache->ent[i].cur < cache->ent[i].limit) return 1; } return 0; } static void __cache_work_func(struct mlx5_cache_ent *ent) { struct mlx5_ib_dev *dev = ent->dev; struct mlx5_mr_cache *cache = &dev->cache; int i = order2idx(dev, ent->order); int err; if (cache->stopped) return; ent = &dev->cache.ent[i]; if (ent->cur < 2 * ent->limit && !dev->fill_delay) { err = add_keys(dev, i, 1); if (ent->cur < 2 * ent->limit) { if (err == -EAGAIN) { mlx5_ib_dbg(dev, "returned eagain, order %d\n", i + 2); queue_delayed_work(cache->wq, &ent->dwork, msecs_to_jiffies(3)); } else if (err) { mlx5_ib_warn(dev, "command failed order %d, err %d\n", i + 2, err); queue_delayed_work(cache->wq, &ent->dwork, msecs_to_jiffies(1000)); } else { queue_work(cache->wq, &ent->work); } } } else if (ent->cur > 2 * ent->limit) { /* * The remove_keys() logic is performed as garbage collection * task. Such task is intended to be run when no other active * processes are running. * * The need_resched() will return TRUE if there are user tasks * to be activated in near future. * * In such case, we don't execute remove_keys() and postpone * the garbage collection work to try to run in next cycle, * in order to free CPU resources to other tasks. */ if (!need_resched() && !someone_adding(cache) && time_after(jiffies, cache->last_add + 300 * HZ)) { remove_keys(dev, i, 1); if (ent->cur > ent->limit) queue_work(cache->wq, &ent->work); } else { queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ); } } } static void delayed_cache_work_func(struct work_struct *work) { struct mlx5_cache_ent *ent; ent = container_of(work, struct mlx5_cache_ent, dwork.work); __cache_work_func(ent); } static void cache_work_func(struct work_struct *work) { struct mlx5_cache_ent *ent; ent = container_of(work, struct mlx5_cache_ent, work); __cache_work_func(ent); } static struct mlx5_ib_mr *alloc_cached_mr(struct mlx5_ib_dev *dev, int order) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_ib_mr *mr = NULL; struct mlx5_cache_ent *ent; int c; int i; c = order2idx(dev, order); if (c < 0 || c >= MAX_MR_CACHE_ENTRIES) { mlx5_ib_warn(dev, "order %d, cache index %d\n", order, c); return NULL; } for (i = c; i < MAX_MR_CACHE_ENTRIES; i++) { ent = &cache->ent[i]; mlx5_ib_dbg(dev, "order %d, cache index %d\n", ent->order, i); spin_lock_irq(&ent->lock); if (!list_empty(&ent->head)) { mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); list_del(&mr->list); ent->cur--; spin_unlock_irq(&ent->lock); if (ent->cur < ent->limit) queue_work(cache->wq, &ent->work); break; } spin_unlock_irq(&ent->lock); queue_work(cache->wq, &ent->work); } if (!mr) cache->ent[c].miss++; return mr; } static void free_cached_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent; int shrink = 0; int c; c = order2idx(dev, mr->order); if (c < 0 || c >= MAX_MR_CACHE_ENTRIES) { mlx5_ib_warn(dev, "order %d, cache index %d\n", mr->order, c); return; } ent = &cache->ent[c]; spin_lock_irq(&ent->lock); list_add_tail(&mr->list, &ent->head); ent->cur++; if (ent->cur > 2 * ent->limit) shrink = 1; spin_unlock_irq(&ent->lock); if (shrink) queue_work(cache->wq, &ent->work); } static void clean_keys(struct mlx5_ib_dev *dev, int c) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent = &cache->ent[c]; struct mlx5_ib_mr *mr; int err; cancel_delayed_work(&ent->dwork); while (1) { spin_lock_irq(&ent->lock); if (list_empty(&ent->head)) { spin_unlock_irq(&ent->lock); return; } mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); list_del(&mr->list); ent->cur--; ent->size--; spin_unlock_irq(&ent->lock); err = destroy_mkey(dev, mr); if (err) mlx5_ib_warn(dev, "failed destroy mkey\n"); else kfree(mr); } } static int mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent; int i; if (!mlx5_debugfs_root) return 0; cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root); if (!cache->root) return -ENOMEM; for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { ent = &cache->ent[i]; sprintf(ent->name, "%d", ent->order); ent->dir = debugfs_create_dir(ent->name, cache->root); if (!ent->dir) return -ENOMEM; ent->fsize = debugfs_create_file("size", 0600, ent->dir, ent, &size_fops); if (!ent->fsize) return -ENOMEM; ent->flimit = debugfs_create_file("limit", 0600, ent->dir, ent, &limit_fops); if (!ent->flimit) return -ENOMEM; ent->fcur = debugfs_create_u32("cur", 0400, ent->dir, &ent->cur); if (!ent->fcur) return -ENOMEM; ent->fmiss = debugfs_create_u32("miss", 0600, ent->dir, &ent->miss); if (!ent->fmiss) return -ENOMEM; } return 0; } static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev) { if (!mlx5_debugfs_root) return; debugfs_remove_recursive(dev->cache.root); } static void delay_time_func(unsigned long ctx) { struct mlx5_ib_dev *dev = (struct mlx5_ib_dev *)ctx; dev->fill_delay = 0; } int mlx5_mr_cache_init(struct mlx5_ib_dev *dev) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent; int limit; int err; int i; mutex_init(&dev->slow_path_mutex); cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM); if (!cache->wq) { mlx5_ib_warn(dev, "failed to create work queue\n"); return -ENOMEM; } setup_timer(&dev->delay_timer, delay_time_func, (unsigned long)dev); for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { INIT_LIST_HEAD(&cache->ent[i].head); spin_lock_init(&cache->ent[i].lock); ent = &cache->ent[i]; INIT_LIST_HEAD(&ent->head); spin_lock_init(&ent->lock); ent->order = i + 2; ent->dev = dev; if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) && (mlx5_core_is_pf(dev->mdev))) limit = dev->mdev->profile->mr_cache[i].limit; else limit = 0; INIT_WORK(&ent->work, cache_work_func); INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func); ent->limit = limit; queue_work(cache->wq, &ent->work); } err = mlx5_mr_cache_debugfs_init(dev); if (err) mlx5_ib_warn(dev, "cache debugfs failure\n"); return 0; } static void wait_for_async_commands(struct mlx5_ib_dev *dev) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent; int total = 0; int i; int j; for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { ent = &cache->ent[i]; for (j = 0 ; j < 1000; j++) { if (!ent->pending) break; msleep(50); } } for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { ent = &cache->ent[i]; total += ent->pending; } if (total) mlx5_ib_warn(dev, "aborted while there are %d pending mr requests\n", total); else mlx5_ib_warn(dev, "done with all pending requests\n"); } int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev) { int i; dev->cache.stopped = 1; flush_workqueue(dev->cache.wq); mlx5_mr_cache_debugfs_cleanup(dev); for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) clean_keys(dev, i); destroy_workqueue(dev->cache.wq); wait_for_async_commands(dev); del_timer_sync(&dev->delay_timer); return 0; } struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); struct mlx5_core_dev *mdev = dev->mdev; struct mlx5_ib_mr *mr; void *mkc; u32 *in; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_free; } mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, access_mode, MLX5_MKC_ACCESS_MODE_PA); MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); MLX5_SET(mkc, mkc, lr, 1); MLX5_SET(mkc, mkc, length64, 1); MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); MLX5_SET(mkc, mkc, qpn, 0xffffff); MLX5_SET64(mkc, mkc, start_addr, 0); err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen); if (err) goto err_in; kfree(in); mr->ibmr.lkey = mr->mmkey.key; mr->ibmr.rkey = mr->mmkey.key; mr->umem = NULL; return &mr->ibmr; err_in: kfree(in); err_free: kfree(mr); return ERR_PTR(err); } static int get_octo_len(u64 addr, u64 len, int page_size) { u64 offset; int npages; offset = addr & (page_size - 1); npages = ALIGN(len + offset, page_size) >> ilog2(page_size); return (npages + 1) / 2; } static int use_umr(int order) { return order <= MLX5_MAX_UMR_SHIFT; } static int dma_map_mr_pas(struct mlx5_ib_dev *dev, struct ib_umem *umem, int npages, int page_shift, int *size, __be64 **mr_pas, dma_addr_t *dma) { __be64 *pas; struct device *ddev = dev->ib_dev.dma_device; /* * UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes. * To avoid copying garbage after the pas array, we allocate * a little more. */ *size = ALIGN(sizeof(u64) * npages, MLX5_UMR_MTT_ALIGNMENT); *mr_pas = kmalloc(*size + MLX5_UMR_ALIGN - 1, GFP_KERNEL); if (!(*mr_pas)) return -ENOMEM; pas = PTR_ALIGN(*mr_pas, MLX5_UMR_ALIGN); mlx5_ib_populate_pas(dev, umem, page_shift, pas, MLX5_IB_MTT_PRESENT); /* Clear padding after the actual pages. */ memset(pas + npages, 0, *size - npages * sizeof(u64)); *dma = dma_map_single(ddev, pas, *size, DMA_TO_DEVICE); if (dma_mapping_error(ddev, *dma)) { kfree(*mr_pas); return -ENOMEM; } return 0; } static void prep_umr_wqe_common(struct ib_pd *pd, struct ib_send_wr *wr, struct ib_sge *sg, u64 dma, int n, u32 key, int page_shift) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_umr_wr *umrwr = umr_wr(wr); sg->addr = dma; sg->length = ALIGN(sizeof(u64) * n, 64); sg->lkey = dev->umrc.pd->local_dma_lkey; wr->next = NULL; wr->sg_list = sg; if (n) wr->num_sge = 1; else wr->num_sge = 0; wr->opcode = MLX5_IB_WR_UMR; umrwr->npages = n; umrwr->page_shift = page_shift; umrwr->mkey = key; } static void prep_umr_reg_wqe(struct ib_pd *pd, struct ib_send_wr *wr, struct ib_sge *sg, u64 dma, int n, u32 key, int page_shift, u64 virt_addr, u64 len, int access_flags) { struct mlx5_umr_wr *umrwr = umr_wr(wr); prep_umr_wqe_common(pd, wr, sg, dma, n, key, page_shift); wr->send_flags = 0; umrwr->target.virt_addr = virt_addr; umrwr->length = len; umrwr->access_flags = access_flags; umrwr->pd = pd; } static void prep_umr_unreg_wqe(struct mlx5_ib_dev *dev, struct ib_send_wr *wr, u32 key) { struct mlx5_umr_wr *umrwr = umr_wr(wr); wr->send_flags = MLX5_IB_SEND_UMR_UNREG | MLX5_IB_SEND_UMR_FAIL_IF_FREE; wr->opcode = MLX5_IB_WR_UMR; umrwr->mkey = key; } static int mr_umem_get(struct ib_pd *pd, u64 start, u64 length, int access_flags, struct ib_umem **umem, int *npages, int *page_shift, int *ncont, int *order) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int err; *umem = ib_umem_get(pd->uobject->context, start, length, access_flags, 0); err = PTR_ERR_OR_ZERO(*umem); if (err < 0) { mlx5_ib_err(dev, "umem get failed (%ld)\n", PTR_ERR(umem)); return err; } mlx5_ib_cont_pages(*umem, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages, page_shift, ncont, order); if (!*npages) { mlx5_ib_warn(dev, "avoid zero region\n"); ib_umem_release(*umem); return -EINVAL; } mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n", *npages, *ncont, *order, *page_shift); return 0; } static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc) { struct mlx5_ib_umr_context *context = container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe); context->status = wc->status; complete(&context->done); } static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context) { context->cqe.done = mlx5_ib_umr_done; context->status = -1; init_completion(&context->done); } static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev, struct mlx5_umr_wr *umrwr) { struct umr_common *umrc = &dev->umrc; struct ib_send_wr *bad; int err; struct mlx5_ib_umr_context umr_context; mlx5_ib_init_umr_context(&umr_context); umrwr->wr.wr_cqe = &umr_context.cqe; down(&umrc->sem); err = ib_post_send(umrc->qp, &umrwr->wr, &bad); if (err) { mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err); } else { wait_for_completion(&umr_context.done); if (umr_context.status != IB_WC_SUCCESS) { mlx5_ib_warn(dev, "reg umr failed (%u)\n", umr_context.status); err = -EFAULT; } } up(&umrc->sem); return err; } static struct mlx5_ib_mr *reg_umr(struct ib_pd *pd, struct ib_umem *umem, u64 virt_addr, u64 len, int npages, int page_shift, int order, int access_flags) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct device *ddev = dev->ib_dev.dma_device; struct mlx5_umr_wr umrwr = {}; struct mlx5_ib_mr *mr; struct ib_sge sg; int size; __be64 *mr_pas; dma_addr_t dma; int err = 0; int i; for (i = 0; i < 1; i++) { mr = alloc_cached_mr(dev, order); if (mr) break; err = add_keys(dev, order2idx(dev, order), 1); if (err && err != -EAGAIN) { mlx5_ib_warn(dev, "add_keys failed, err %d\n", err); break; } } if (!mr) return ERR_PTR(-EAGAIN); err = dma_map_mr_pas(dev, umem, npages, page_shift, &size, &mr_pas, &dma); if (err) goto free_mr; prep_umr_reg_wqe(pd, &umrwr.wr, &sg, dma, npages, mr->mmkey.key, page_shift, virt_addr, len, access_flags); err = mlx5_ib_post_send_wait(dev, &umrwr); if (err && err != -EFAULT) goto unmap_dma; mr->mmkey.iova = virt_addr; mr->mmkey.size = len; mr->mmkey.pd = to_mpd(pd)->pdn; mr->live = 1; unmap_dma: dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE); kfree(mr_pas); free_mr: if (err) { free_cached_mr(dev, mr); return ERR_PTR(err); } return mr; } #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING int mlx5_ib_update_mtt(struct mlx5_ib_mr *mr, u64 start_page_index, int npages, int zap) { struct mlx5_ib_dev *dev = mr->dev; struct device *ddev = dev->ib_dev.dma_device; struct ib_umem *umem = mr->umem; int size; __be64 *pas; dma_addr_t dma; struct mlx5_umr_wr wr; struct ib_sge sg; int err = 0; const int page_index_alignment = MLX5_UMR_MTT_ALIGNMENT / sizeof(u64); const int page_index_mask = page_index_alignment - 1; size_t pages_mapped = 0; size_t pages_to_map = 0; size_t pages_iter = 0; int use_emergency_buf = 0; /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes, * so we need to align the offset and length accordingly */ if (start_page_index & page_index_mask) { npages += start_page_index & page_index_mask; start_page_index &= ~page_index_mask; } pages_to_map = ALIGN(npages, page_index_alignment); if (start_page_index + pages_to_map > MLX5_MAX_UMR_PAGES) return -EINVAL; size = sizeof(u64) * pages_to_map; size = min_t(int, PAGE_SIZE, size); /* We allocate with GFP_ATOMIC to avoid recursion into page-reclaim * code, when we are called from an invalidation. The pas buffer must * be 2k-aligned for Connect-IB. */ pas = (__be64 *)get_zeroed_page(GFP_ATOMIC); if (!pas) { mlx5_ib_warn(dev, "unable to allocate memory during MTT update, falling back to slower chunked mechanism.\n"); pas = mlx5_ib_update_mtt_emergency_buffer; size = MLX5_UMR_MTT_MIN_CHUNK_SIZE; use_emergency_buf = 1; mutex_lock(&mlx5_ib_update_mtt_emergency_buffer_mutex); memset(pas, 0, size); } pages_iter = size / sizeof(u64); dma = dma_map_single(ddev, pas, size, DMA_TO_DEVICE); if (dma_mapping_error(ddev, dma)) { mlx5_ib_err(dev, "unable to map DMA during MTT update.\n"); err = -ENOMEM; goto free_pas; } for (pages_mapped = 0; pages_mapped < pages_to_map && !err; pages_mapped += pages_iter, start_page_index += pages_iter) { dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE); npages = min_t(size_t, pages_iter, ib_umem_num_pages(umem) - start_page_index); if (!zap) { __mlx5_ib_populate_pas(dev, umem, PAGE_SHIFT, start_page_index, npages, pas, MLX5_IB_MTT_PRESENT); /* Clear padding after the pages brought from the * umem. */ memset(pas + npages, 0, size - npages * sizeof(u64)); } dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE); memset(&wr, 0, sizeof(wr)); sg.addr = dma; sg.length = ALIGN(npages * sizeof(u64), MLX5_UMR_MTT_ALIGNMENT); sg.lkey = dev->umrc.pd->local_dma_lkey; wr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE | MLX5_IB_SEND_UMR_UPDATE_MTT; wr.wr.sg_list = &sg; wr.wr.num_sge = 1; wr.wr.opcode = MLX5_IB_WR_UMR; wr.npages = sg.length / sizeof(u64); wr.page_shift = PAGE_SHIFT; wr.mkey = mr->mmkey.key; wr.target.offset = start_page_index; err = mlx5_ib_post_send_wait(dev, &wr); } dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE); free_pas: if (!use_emergency_buf) free_page((unsigned long)pas); else mutex_unlock(&mlx5_ib_update_mtt_emergency_buffer_mutex); return err; } #endif /* * If ibmr is NULL it will be allocated by reg_create. * Else, the given ibmr will be used. */ static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd, u64 virt_addr, u64 length, struct ib_umem *umem, int npages, int page_shift, int access_flags) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_ib_mr *mr; __be64 *pas; void *mkc; int inlen; u32 *in; int err; bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)); mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); inlen = MLX5_ST_SZ_BYTES(create_mkey_in) + sizeof(*pas) * ((npages + 1) / 2) * 2; in = mlx5_vzalloc(inlen); if (!in) { err = -ENOMEM; goto err_1; } pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt); mlx5_ib_populate_pas(dev, umem, page_shift, pas, pg_cap ? MLX5_IB_MTT_PRESENT : 0); /* The pg_access bit allows setting the access flags * in the page list submitted with the command. */ MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap)); mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, access_mode, MLX5_MKC_ACCESS_MODE_MTT); MLX5_SET(mkc, mkc, a, !!(access_flags & IB_ACCESS_REMOTE_ATOMIC)); MLX5_SET(mkc, mkc, rw, !!(access_flags & IB_ACCESS_REMOTE_WRITE)); MLX5_SET(mkc, mkc, rr, !!(access_flags & IB_ACCESS_REMOTE_READ)); MLX5_SET(mkc, mkc, lw, !!(access_flags & IB_ACCESS_LOCAL_WRITE)); MLX5_SET(mkc, mkc, lr, 1); MLX5_SET64(mkc, mkc, start_addr, virt_addr); MLX5_SET64(mkc, mkc, len, length); MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); MLX5_SET(mkc, mkc, bsf_octword_size, 0); MLX5_SET(mkc, mkc, translations_octword_size, get_octo_len(virt_addr, length, 1 << page_shift)); MLX5_SET(mkc, mkc, log_page_size, page_shift); MLX5_SET(mkc, mkc, qpn, 0xffffff); MLX5_SET(create_mkey_in, in, translations_octword_actual_size, get_octo_len(virt_addr, length, 1 << page_shift)); err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen); if (err) { mlx5_ib_warn(dev, "create mkey failed\n"); goto err_2; } mr->umem = umem; mr->dev = dev; mr->live = 1; kvfree(in); mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key); return mr; err_2: kvfree(in); err_1: if (!ibmr) kfree(mr); return ERR_PTR(err); } static void set_mr_fileds(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, int npages, u64 length, int access_flags) { mr->npages = npages; atomic_add(npages, &dev->mdev->priv.reg_pages); mr->ibmr.lkey = mr->mmkey.key; mr->ibmr.rkey = mr->mmkey.key; mr->ibmr.length = length; mr->access_flags = access_flags; } struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, u64 virt_addr, int access_flags, struct ib_udata *udata) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_ib_mr *mr = NULL; struct ib_umem *umem; int page_shift; int npages; int ncont; int order; int err; mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n", start, virt_addr, length, access_flags); err = mr_umem_get(pd, start, length, access_flags, &umem, &npages, &page_shift, &ncont, &order); if (err < 0) return ERR_PTR(err); if (use_umr(order)) { mr = reg_umr(pd, umem, virt_addr, length, ncont, page_shift, order, access_flags); if (PTR_ERR(mr) == -EAGAIN) { mlx5_ib_dbg(dev, "cache empty for order %d", order); mr = NULL; } } else if (access_flags & IB_ACCESS_ON_DEMAND) { err = -EINVAL; pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB"); goto error; } if (!mr) { mutex_lock(&dev->slow_path_mutex); mr = reg_create(NULL, pd, virt_addr, length, umem, ncont, page_shift, access_flags); mutex_unlock(&dev->slow_path_mutex); } if (IS_ERR(mr)) { err = PTR_ERR(mr); goto error; } mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); mr->umem = umem; set_mr_fileds(dev, mr, npages, length, access_flags); #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING update_odp_mr(mr); #endif return &mr->ibmr; error: ib_umem_release(umem); return ERR_PTR(err); } static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) { struct mlx5_core_dev *mdev = dev->mdev; struct mlx5_umr_wr umrwr = {}; if (mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR) return 0; prep_umr_unreg_wqe(dev, &umrwr.wr, mr->mmkey.key); return mlx5_ib_post_send_wait(dev, &umrwr); } static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr, u64 virt_addr, u64 length, int npages, int page_shift, int order, int access_flags, int flags) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct device *ddev = dev->ib_dev.dma_device; struct mlx5_umr_wr umrwr = {}; struct ib_sge sg; dma_addr_t dma = 0; __be64 *mr_pas = NULL; int size; int err; umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE; if (flags & IB_MR_REREG_TRANS) { err = dma_map_mr_pas(dev, mr->umem, npages, page_shift, &size, &mr_pas, &dma); if (err) return err; umrwr.target.virt_addr = virt_addr; umrwr.length = length; umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; } prep_umr_wqe_common(pd, &umrwr.wr, &sg, dma, npages, mr->mmkey.key, page_shift); if (flags & IB_MR_REREG_PD) { umrwr.pd = pd; umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD; } if (flags & IB_MR_REREG_ACCESS) { umrwr.access_flags = access_flags; umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_ACCESS; } /* post send request to UMR QP */ err = mlx5_ib_post_send_wait(dev, &umrwr); if (flags & IB_MR_REREG_TRANS) { dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE); kfree(mr_pas); } return err; } int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start, u64 length, u64 virt_addr, int new_access_flags, struct ib_pd *new_pd, struct ib_udata *udata) { struct mlx5_ib_dev *dev = to_mdev(ib_mr->device); struct mlx5_ib_mr *mr = to_mmr(ib_mr); struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd; int access_flags = flags & IB_MR_REREG_ACCESS ? new_access_flags : mr->access_flags; u64 addr = (flags & IB_MR_REREG_TRANS) ? virt_addr : mr->umem->address; u64 len = (flags & IB_MR_REREG_TRANS) ? length : mr->umem->length; int page_shift = 0; int npages = 0; int ncont = 0; int order = 0; int err; mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n", start, virt_addr, length, access_flags); if (flags != IB_MR_REREG_PD) { /* * Replace umem. This needs to be done whether or not UMR is * used. */ flags |= IB_MR_REREG_TRANS; ib_umem_release(mr->umem); err = mr_umem_get(pd, addr, len, access_flags, &mr->umem, &npages, &page_shift, &ncont, &order); if (err < 0) { mr->umem = NULL; return err; } } if (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len)) { /* * UMR can't be used - MKey needs to be replaced. */ if (mr->umred) { err = unreg_umr(dev, mr); if (err) mlx5_ib_warn(dev, "Failed to unregister MR\n"); } else { err = destroy_mkey(dev, mr); if (err) mlx5_ib_warn(dev, "Failed to destroy MKey\n"); } if (err) return err; mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont, page_shift, access_flags); if (IS_ERR(mr)) return PTR_ERR(mr); mr->umred = 0; } else { /* * Send a UMR WQE */ err = rereg_umr(pd, mr, addr, len, npages, page_shift, order, access_flags, flags); if (err) { mlx5_ib_warn(dev, "Failed to rereg UMR\n"); return err; } } if (flags & IB_MR_REREG_PD) { ib_mr->pd = pd; mr->mmkey.pd = to_mpd(pd)->pdn; } if (flags & IB_MR_REREG_ACCESS) mr->access_flags = access_flags; if (flags & IB_MR_REREG_TRANS) { atomic_sub(mr->npages, &dev->mdev->priv.reg_pages); set_mr_fileds(dev, mr, npages, len, access_flags); mr->mmkey.iova = addr; mr->mmkey.size = len; } #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING update_odp_mr(mr); #endif return 0; } static int mlx5_alloc_priv_descs(struct ib_device *device, struct mlx5_ib_mr *mr, int ndescs, int desc_size) { int size = ndescs * desc_size; int add_size; int ret; add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0); mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL); if (!mr->descs_alloc) return -ENOMEM; mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN); mr->desc_map = dma_map_single(device->dma_device, mr->descs, size, DMA_TO_DEVICE); if (dma_mapping_error(device->dma_device, mr->desc_map)) { ret = -ENOMEM; goto err; } return 0; err: kfree(mr->descs_alloc); return ret; } static void mlx5_free_priv_descs(struct mlx5_ib_mr *mr) { if (mr->descs) { struct ib_device *device = mr->ibmr.device; int size = mr->max_descs * mr->desc_size; dma_unmap_single(device->dma_device, mr->desc_map, size, DMA_TO_DEVICE); kfree(mr->descs_alloc); mr->descs = NULL; } } static int clean_mr(struct mlx5_ib_mr *mr) { struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); int umred = mr->umred; int err; if (mr->sig) { if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", mr->sig->psv_memory.psv_idx); if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", mr->sig->psv_wire.psv_idx); kfree(mr->sig); mr->sig = NULL; } mlx5_free_priv_descs(mr); if (!umred) { err = destroy_mkey(dev, mr); if (err) { mlx5_ib_warn(dev, "failed to destroy mkey 0x%x (%d)\n", mr->mmkey.key, err); return err; } } else { err = unreg_umr(dev, mr); if (err) { mlx5_ib_warn(dev, "failed unregister\n"); return err; } free_cached_mr(dev, mr); } if (!umred) kfree(mr); return 0; } int mlx5_ib_dereg_mr(struct ib_mr *ibmr) { struct mlx5_ib_dev *dev = to_mdev(ibmr->device); struct mlx5_ib_mr *mr = to_mmr(ibmr); int npages = mr->npages; struct ib_umem *umem = mr->umem; #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING if (umem && umem->odp_data) { /* Prevent new page faults from succeeding */ mr->live = 0; /* Wait for all running page-fault handlers to finish. */ synchronize_srcu(&dev->mr_srcu); /* Destroy all page mappings */ mlx5_ib_invalidate_range(umem, ib_umem_start(umem), ib_umem_end(umem)); /* * We kill the umem before the MR for ODP, * so that there will not be any invalidations in * flight, looking at the *mr struct. */ ib_umem_release(umem); atomic_sub(npages, &dev->mdev->priv.reg_pages); /* Avoid double-freeing the umem. */ umem = NULL; } #endif clean_mr(mr); if (umem) { ib_umem_release(umem); atomic_sub(npages, &dev->mdev->priv.reg_pages); } return 0; } struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); int ndescs = ALIGN(max_num_sg, 4); struct mlx5_ib_mr *mr; void *mkc; u32 *in; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_free; } mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, free, 1); MLX5_SET(mkc, mkc, translations_octword_size, ndescs); MLX5_SET(mkc, mkc, qpn, 0xffffff); MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); if (mr_type == IB_MR_TYPE_MEM_REG) { mr->access_mode = MLX5_MKC_ACCESS_MODE_MTT; MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT); err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, sizeof(u64)); if (err) goto err_free_in; mr->desc_size = sizeof(u64); mr->max_descs = ndescs; } else if (mr_type == IB_MR_TYPE_SG_GAPS) { mr->access_mode = MLX5_MKC_ACCESS_MODE_KLMS; err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, sizeof(struct mlx5_klm)); if (err) goto err_free_in; mr->desc_size = sizeof(struct mlx5_klm); mr->max_descs = ndescs; } else if (mr_type == IB_MR_TYPE_SIGNATURE) { u32 psv_index[2]; MLX5_SET(mkc, mkc, bsf_en, 1); MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE); mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL); if (!mr->sig) { err = -ENOMEM; goto err_free_in; } /* create mem & wire PSVs */ err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index); if (err) goto err_free_sig; mr->access_mode = MLX5_MKC_ACCESS_MODE_KLMS; mr->sig->psv_memory.psv_idx = psv_index[0]; mr->sig->psv_wire.psv_idx = psv_index[1]; mr->sig->sig_status_checked = true; mr->sig->sig_err_exists = false; /* Next UMR, Arm SIGERR */ ++mr->sig->sigerr_count; } else { mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type); err = -EINVAL; goto err_free_in; } MLX5_SET(mkc, mkc, access_mode, mr->access_mode); MLX5_SET(mkc, mkc, umr_en, 1); err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen); if (err) goto err_destroy_psv; mr->ibmr.lkey = mr->mmkey.key; mr->ibmr.rkey = mr->mmkey.key; mr->umem = NULL; kfree(in); return &mr->ibmr; err_destroy_psv: if (mr->sig) { if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", mr->sig->psv_memory.psv_idx); if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", mr->sig->psv_wire.psv_idx); } mlx5_free_priv_descs(mr); err_free_sig: kfree(mr->sig); err_free_in: kfree(in); err_free: kfree(mr); return ERR_PTR(err); } struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type, struct ib_udata *udata) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); struct mlx5_ib_mw *mw = NULL; u32 *in = NULL; void *mkc; int ndescs; int err; struct mlx5_ib_alloc_mw req = {}; struct { __u32 comp_mask; __u32 response_length; } resp = {}; err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req))); if (err) return ERR_PTR(err); if (req.comp_mask || req.reserved1 || req.reserved2) return ERR_PTR(-EOPNOTSUPP); if (udata->inlen > sizeof(req) && !ib_is_udata_cleared(udata, sizeof(req), udata->inlen - sizeof(req))) return ERR_PTR(-EOPNOTSUPP); ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4); mw = kzalloc(sizeof(*mw), GFP_KERNEL); in = kzalloc(inlen, GFP_KERNEL); if (!mw || !in) { err = -ENOMEM; goto free; } mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, free, 1); MLX5_SET(mkc, mkc, translations_octword_size, ndescs); MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); MLX5_SET(mkc, mkc, umr_en, 1); MLX5_SET(mkc, mkc, lr, 1); MLX5_SET(mkc, mkc, access_mode, MLX5_MKC_ACCESS_MODE_KLMS); MLX5_SET(mkc, mkc, en_rinval, !!((type == IB_MW_TYPE_2))); MLX5_SET(mkc, mkc, qpn, 0xffffff); err = mlx5_core_create_mkey(dev->mdev, &mw->mmkey, in, inlen); if (err) goto free; mw->ibmw.rkey = mw->mmkey.key; resp.response_length = min(offsetof(typeof(resp), response_length) + sizeof(resp.response_length), udata->outlen); if (resp.response_length) { err = ib_copy_to_udata(udata, &resp, resp.response_length); if (err) { mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey); goto free; } } kfree(in); return &mw->ibmw; free: kfree(mw); kfree(in); return ERR_PTR(err); } int mlx5_ib_dealloc_mw(struct ib_mw *mw) { struct mlx5_ib_mw *mmw = to_mmw(mw); int err; err = mlx5_core_destroy_mkey((to_mdev(mw->device))->mdev, &mmw->mmkey); if (!err) kfree(mmw); return err; } int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask, struct ib_mr_status *mr_status) { struct mlx5_ib_mr *mmr = to_mmr(ibmr); int ret = 0; if (check_mask & ~IB_MR_CHECK_SIG_STATUS) { pr_err("Invalid status check mask\n"); ret = -EINVAL; goto done; } mr_status->fail_status = 0; if (check_mask & IB_MR_CHECK_SIG_STATUS) { if (!mmr->sig) { ret = -EINVAL; pr_err("signature status check requested on a non-signature enabled MR\n"); goto done; } mmr->sig->sig_status_checked = true; if (!mmr->sig->sig_err_exists) goto done; if (ibmr->lkey == mmr->sig->err_item.key) memcpy(&mr_status->sig_err, &mmr->sig->err_item, sizeof(mr_status->sig_err)); else { mr_status->sig_err.err_type = IB_SIG_BAD_GUARD; mr_status->sig_err.sig_err_offset = 0; mr_status->sig_err.key = mmr->sig->err_item.key; } mmr->sig->sig_err_exists = false; mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS; } done: return ret; } static int mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr, struct scatterlist *sgl, unsigned short sg_nents, unsigned int *sg_offset_p) { struct scatterlist *sg = sgl; struct mlx5_klm *klms = mr->descs; unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; u32 lkey = mr->ibmr.pd->local_dma_lkey; int i; mr->ibmr.iova = sg_dma_address(sg) + sg_offset; mr->ibmr.length = 0; mr->ndescs = sg_nents; for_each_sg(sgl, sg, sg_nents, i) { if (unlikely(i > mr->max_descs)) break; klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); klms[i].key = cpu_to_be32(lkey); mr->ibmr.length += sg_dma_len(sg); sg_offset = 0; } if (sg_offset_p) *sg_offset_p = sg_offset; return i; } static int mlx5_set_page(struct ib_mr *ibmr, u64 addr) { struct mlx5_ib_mr *mr = to_mmr(ibmr); __be64 *descs; if (unlikely(mr->ndescs == mr->max_descs)) return -ENOMEM; descs = mr->descs; descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); return 0; } int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, unsigned int *sg_offset) { struct mlx5_ib_mr *mr = to_mmr(ibmr); int n; mr->ndescs = 0; ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map, mr->desc_size * mr->max_descs, DMA_TO_DEVICE); if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS) n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset); else n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx5_set_page); ib_dma_sync_single_for_device(ibmr->device, mr->desc_map, mr->desc_size * mr->max_descs, DMA_TO_DEVICE); return n; }