#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Ceph uses the messenger to exchange ceph_msg messages with other * hosts in the system. The messenger provides ordered and reliable * delivery. We tolerate TCP disconnects by reconnecting (with * exponential backoff) in the case of a fault (disconnection, bad * crc, protocol error). Acks allow sent messages to be discarded by * the sender. */ /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */ #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ /* static tag bytes (protocol control messages) */ static char tag_msg = CEPH_MSGR_TAG_MSG; static char tag_ack = CEPH_MSGR_TAG_ACK; static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; #ifdef CONFIG_LOCKDEP static struct lock_class_key socket_class; #endif /* * When skipping (ignoring) a block of input we read it into a "skip * buffer," which is this many bytes in size. */ #define SKIP_BUF_SIZE 1024 static void queue_con(struct ceph_connection *con); static void con_work(struct work_struct *); static void ceph_fault(struct ceph_connection *con); /* * Nicely render a sockaddr as a string. An array of formatted * strings is used, to approximate reentrancy. */ #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; static atomic_t addr_str_seq = ATOMIC_INIT(0); static struct page *zero_page; /* used in certain error cases */ const char *ceph_pr_addr(const struct sockaddr_storage *ss) { int i; char *s; struct sockaddr_in *in4 = (struct sockaddr_in *) ss; struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; s = addr_str[i]; switch (ss->ss_family) { case AF_INET: snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, ntohs(in4->sin_port)); break; case AF_INET6: snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, ntohs(in6->sin6_port)); break; default: snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", ss->ss_family); } return s; } EXPORT_SYMBOL(ceph_pr_addr); static void encode_my_addr(struct ceph_messenger *msgr) { memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); ceph_encode_addr(&msgr->my_enc_addr); } /* * work queue for all reading and writing to/from the socket. */ static struct workqueue_struct *ceph_msgr_wq; void _ceph_msgr_exit(void) { if (ceph_msgr_wq) { destroy_workqueue(ceph_msgr_wq); ceph_msgr_wq = NULL; } BUG_ON(zero_page == NULL); kunmap(zero_page); page_cache_release(zero_page); zero_page = NULL; } int ceph_msgr_init(void) { BUG_ON(zero_page != NULL); zero_page = ZERO_PAGE(0); page_cache_get(zero_page); ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0); if (ceph_msgr_wq) return 0; pr_err("msgr_init failed to create workqueue\n"); _ceph_msgr_exit(); return -ENOMEM; } EXPORT_SYMBOL(ceph_msgr_init); void ceph_msgr_exit(void) { BUG_ON(ceph_msgr_wq == NULL); _ceph_msgr_exit(); } EXPORT_SYMBOL(ceph_msgr_exit); void ceph_msgr_flush(void) { flush_workqueue(ceph_msgr_wq); } EXPORT_SYMBOL(ceph_msgr_flush); /* Connection socket state transition functions */ static void con_sock_state_init(struct ceph_connection *con) { int old_state; old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) printk("%s: unexpected old state %d\n", __func__, old_state); } static void con_sock_state_connecting(struct ceph_connection *con) { int old_state; old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) printk("%s: unexpected old state %d\n", __func__, old_state); } static void con_sock_state_connected(struct ceph_connection *con) { int old_state; old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) printk("%s: unexpected old state %d\n", __func__, old_state); } static void con_sock_state_closing(struct ceph_connection *con) { int old_state; old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && old_state != CON_SOCK_STATE_CONNECTED && old_state != CON_SOCK_STATE_CLOSING)) printk("%s: unexpected old state %d\n", __func__, old_state); } static void con_sock_state_closed(struct ceph_connection *con) { int old_state; old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && old_state != CON_SOCK_STATE_CLOSING)) printk("%s: unexpected old state %d\n", __func__, old_state); } /* * socket callback functions */ /* data available on socket, or listen socket received a connect */ static void ceph_sock_data_ready(struct sock *sk, int count_unused) { struct ceph_connection *con = sk->sk_user_data; if (sk->sk_state != TCP_CLOSE_WAIT) { dout("%s on %p state = %lu, queueing work\n", __func__, con, con->state); queue_con(con); } } /* socket has buffer space for writing */ static void ceph_sock_write_space(struct sock *sk) { struct ceph_connection *con = sk->sk_user_data; /* only queue to workqueue if there is data we want to write, * and there is sufficient space in the socket buffer to accept * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() * doesn't get called again until try_write() fills the socket * buffer. See net/ipv4/tcp_input.c:tcp_check_space() * and net/core/stream.c:sk_stream_write_space(). */ if (test_bit(WRITE_PENDING, &con->flags)) { if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { dout("%s %p queueing write work\n", __func__, con); clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); queue_con(con); } } else { dout("%s %p nothing to write\n", __func__, con); } } /* socket's state has changed */ static void ceph_sock_state_change(struct sock *sk) { struct ceph_connection *con = sk->sk_user_data; dout("%s %p state = %lu sk_state = %u\n", __func__, con, con->state, sk->sk_state); if (test_bit(CLOSED, &con->state)) return; switch (sk->sk_state) { case TCP_CLOSE: dout("%s TCP_CLOSE\n", __func__); case TCP_CLOSE_WAIT: dout("%s TCP_CLOSE_WAIT\n", __func__); con_sock_state_closing(con); set_bit(SOCK_CLOSED, &con->flags); queue_con(con); break; case TCP_ESTABLISHED: dout("%s TCP_ESTABLISHED\n", __func__); con_sock_state_connected(con); queue_con(con); break; default: /* Everything else is uninteresting */ break; } } /* * set up socket callbacks */ static void set_sock_callbacks(struct socket *sock, struct ceph_connection *con) { struct sock *sk = sock->sk; sk->sk_user_data = con; sk->sk_data_ready = ceph_sock_data_ready; sk->sk_write_space = ceph_sock_write_space; sk->sk_state_change = ceph_sock_state_change; } /* * socket helpers */ /* * initiate connection to a remote socket. */ static int ceph_tcp_connect(struct ceph_connection *con) { struct sockaddr_storage *paddr = &con->peer_addr.in_addr; struct socket *sock; int ret; BUG_ON(con->sock); ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM, IPPROTO_TCP, &sock); if (ret) return ret; sock->sk->sk_allocation = GFP_NOFS; #ifdef CONFIG_LOCKDEP lockdep_set_class(&sock->sk->sk_lock, &socket_class); #endif set_sock_callbacks(sock, con); dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); con_sock_state_connecting(con); ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), O_NONBLOCK); if (ret == -EINPROGRESS) { dout("connect %s EINPROGRESS sk_state = %u\n", ceph_pr_addr(&con->peer_addr.in_addr), sock->sk->sk_state); } else if (ret < 0) { pr_err("connect %s error %d\n", ceph_pr_addr(&con->peer_addr.in_addr), ret); sock_release(sock); con->error_msg = "connect error"; return ret; } con->sock = sock; return 0; } static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) { struct kvec iov = {buf, len}; struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; int r; r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); if (r == -EAGAIN) r = 0; return r; } /* * write something. @more is true if caller will be sending more data * shortly. */ static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, size_t kvlen, size_t len, int more) { struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; int r; if (more) msg.msg_flags |= MSG_MORE; else msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ r = kernel_sendmsg(sock, &msg, iov, kvlen, len); if (r == -EAGAIN) r = 0; return r; } static int ceph_tcp_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int more) { int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); int ret; ret = kernel_sendpage(sock, page, offset, size, flags); if (ret == -EAGAIN) ret = 0; return ret; } /* * Shutdown/close the socket for the given connection. */ static int con_close_socket(struct ceph_connection *con) { int rc; dout("con_close_socket on %p sock %p\n", con, con->sock); if (!con->sock) return 0; rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); sock_release(con->sock); con->sock = NULL; /* * Forcibly clear the SOCK_CLOSE flag. It gets set * independent of the connection mutex, and we could have * received a socket close event before we had the chance to * shut the socket down. */ clear_bit(SOCK_CLOSED, &con->flags); con_sock_state_closed(con); return rc; } /* * Reset a connection. Discard all incoming and outgoing messages * and clear *_seq state. */ static void ceph_msg_remove(struct ceph_msg *msg) { list_del_init(&msg->list_head); BUG_ON(msg->con == NULL); msg->con->ops->put(msg->con); msg->con = NULL; ceph_msg_put(msg); } static void ceph_msg_remove_list(struct list_head *head) { while (!list_empty(head)) { struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, list_head); ceph_msg_remove(msg); } } static void reset_connection(struct ceph_connection *con) { /* reset connection, out_queue, msg_ and connect_seq */ /* discard existing out_queue and msg_seq */ ceph_msg_remove_list(&con->out_queue); ceph_msg_remove_list(&con->out_sent); if (con->in_msg) { BUG_ON(con->in_msg->con != con); con->in_msg->con = NULL; ceph_msg_put(con->in_msg); con->in_msg = NULL; con->ops->put(con); } con->connect_seq = 0; con->out_seq = 0; if (con->out_msg) { ceph_msg_put(con->out_msg); con->out_msg = NULL; } con->in_seq = 0; con->in_seq_acked = 0; } /* * mark a peer down. drop any open connections. */ void ceph_con_close(struct ceph_connection *con) { dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr.in_addr)); clear_bit(NEGOTIATING, &con->state); clear_bit(CONNECTING, &con->state); clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */ set_bit(CLOSED, &con->state); clear_bit(LOSSYTX, &con->flags); /* so we retry next connect */ clear_bit(KEEPALIVE_PENDING, &con->flags); clear_bit(WRITE_PENDING, &con->flags); mutex_lock(&con->mutex); reset_connection(con); con->peer_global_seq = 0; cancel_delayed_work(&con->work); mutex_unlock(&con->mutex); queue_con(con); } EXPORT_SYMBOL(ceph_con_close); /* * Reopen a closed connection, with a new peer address. */ void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr) { dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); set_bit(OPENING, &con->state); WARN_ON(!test_and_clear_bit(CLOSED, &con->state)); memcpy(&con->peer_addr, addr, sizeof(*addr)); con->delay = 0; /* reset backoff memory */ queue_con(con); } EXPORT_SYMBOL(ceph_con_open); /* * return true if this connection ever successfully opened */ bool ceph_con_opened(struct ceph_connection *con) { return con->connect_seq > 0; } /* * initialize a new connection. */ void ceph_con_init(struct ceph_connection *con, void *private, const struct ceph_connection_operations *ops, struct ceph_messenger *msgr, __u8 entity_type, __u64 entity_num) { dout("con_init %p\n", con); memset(con, 0, sizeof(*con)); con->private = private; con->ops = ops; con->msgr = msgr; con_sock_state_init(con); con->peer_name.type = (__u8) entity_type; con->peer_name.num = cpu_to_le64(entity_num); mutex_init(&con->mutex); INIT_LIST_HEAD(&con->out_queue); INIT_LIST_HEAD(&con->out_sent); INIT_DELAYED_WORK(&con->work, con_work); set_bit(CLOSED, &con->state); } EXPORT_SYMBOL(ceph_con_init); /* * We maintain a global counter to order connection attempts. Get * a unique seq greater than @gt. */ static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) { u32 ret; spin_lock(&msgr->global_seq_lock); if (msgr->global_seq < gt) msgr->global_seq = gt; ret = ++msgr->global_seq; spin_unlock(&msgr->global_seq_lock); return ret; } static void con_out_kvec_reset(struct ceph_connection *con) { con->out_kvec_left = 0; con->out_kvec_bytes = 0; con->out_kvec_cur = &con->out_kvec[0]; } static void con_out_kvec_add(struct ceph_connection *con, size_t size, void *data) { int index; index = con->out_kvec_left; BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); con->out_kvec[index].iov_len = size; con->out_kvec[index].iov_base = data; con->out_kvec_left++; con->out_kvec_bytes += size; } #ifdef CONFIG_BLOCK static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg) { if (!bio) { *iter = NULL; *seg = 0; return; } *iter = bio; *seg = bio->bi_idx; } static void iter_bio_next(struct bio **bio_iter, int *seg) { if (*bio_iter == NULL) return; BUG_ON(*seg >= (*bio_iter)->bi_vcnt); (*seg)++; if (*seg == (*bio_iter)->bi_vcnt) init_bio_iter((*bio_iter)->bi_next, bio_iter, seg); } #endif static void prepare_write_message_data(struct ceph_connection *con) { struct ceph_msg *msg = con->out_msg; BUG_ON(!msg); BUG_ON(!msg->hdr.data_len); /* initialize page iterator */ con->out_msg_pos.page = 0; if (msg->pages) con->out_msg_pos.page_pos = msg->page_alignment; else con->out_msg_pos.page_pos = 0; #ifdef CONFIG_BLOCK if (msg->bio) init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg); #endif con->out_msg_pos.data_pos = 0; con->out_msg_pos.did_page_crc = false; con->out_more = 1; /* data + footer will follow */ } /* * Prepare footer for currently outgoing message, and finish things * off. Assumes out_kvec* are already valid.. we just add on to the end. */ static void prepare_write_message_footer(struct ceph_connection *con) { struct ceph_msg *m = con->out_msg; int v = con->out_kvec_left; m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; dout("prepare_write_message_footer %p\n", con); con->out_kvec_is_msg = true; con->out_kvec[v].iov_base = &m->footer; con->out_kvec[v].iov_len = sizeof(m->footer); con->out_kvec_bytes += sizeof(m->footer); con->out_kvec_left++; con->out_more = m->more_to_follow; con->out_msg_done = true; } /* * Prepare headers for the next outgoing message. */ static void prepare_write_message(struct ceph_connection *con) { struct ceph_msg *m; u32 crc; con_out_kvec_reset(con); con->out_kvec_is_msg = true; con->out_msg_done = false; /* Sneak an ack in there first? If we can get it into the same * TCP packet that's a good thing. */ if (con->in_seq > con->in_seq_acked) { con->in_seq_acked = con->in_seq; con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); con->out_temp_ack = cpu_to_le64(con->in_seq_acked); con_out_kvec_add(con, sizeof (con->out_temp_ack), &con->out_temp_ack); } BUG_ON(list_empty(&con->out_queue)); m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); con->out_msg = m; BUG_ON(m->con != con); /* put message on sent list */ ceph_msg_get(m); list_move_tail(&m->list_head, &con->out_sent); /* * only assign outgoing seq # if we haven't sent this message * yet. if it is requeued, resend with it's original seq. */ if (m->needs_out_seq) { m->hdr.seq = cpu_to_le64(++con->out_seq); m->needs_out_seq = false; } dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n", m, con->out_seq, le16_to_cpu(m->hdr.type), le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), le32_to_cpu(m->hdr.data_len), m->nr_pages); BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); /* tag + hdr + front + middle */ con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); con_out_kvec_add(con, sizeof (m->hdr), &m->hdr); con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); if (m->middle) con_out_kvec_add(con, m->middle->vec.iov_len, m->middle->vec.iov_base); /* fill in crc (except data pages), footer */ crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); con->out_msg->hdr.crc = cpu_to_le32(crc); con->out_msg->footer.flags = 0; crc = crc32c(0, m->front.iov_base, m->front.iov_len); con->out_msg->footer.front_crc = cpu_to_le32(crc); if (m->middle) { crc = crc32c(0, m->middle->vec.iov_base, m->middle->vec.iov_len); con->out_msg->footer.middle_crc = cpu_to_le32(crc); } else con->out_msg->footer.middle_crc = 0; dout("%s front_crc %u middle_crc %u\n", __func__, le32_to_cpu(con->out_msg->footer.front_crc), le32_to_cpu(con->out_msg->footer.middle_crc)); /* is there a data payload? */ con->out_msg->footer.data_crc = 0; if (m->hdr.data_len) prepare_write_message_data(con); else /* no, queue up footer too and be done */ prepare_write_message_footer(con); set_bit(WRITE_PENDING, &con->flags); } /* * Prepare an ack. */ static void prepare_write_ack(struct ceph_connection *con) { dout("prepare_write_ack %p %llu -> %llu\n", con, con->in_seq_acked, con->in_seq); con->in_seq_acked = con->in_seq; con_out_kvec_reset(con); con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); con->out_temp_ack = cpu_to_le64(con->in_seq_acked); con_out_kvec_add(con, sizeof (con->out_temp_ack), &con->out_temp_ack); con->out_more = 1; /* more will follow.. eventually.. */ set_bit(WRITE_PENDING, &con->flags); } /* * Prepare to write keepalive byte. */ static void prepare_write_keepalive(struct ceph_connection *con) { dout("prepare_write_keepalive %p\n", con); con_out_kvec_reset(con); con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive); set_bit(WRITE_PENDING, &con->flags); } /* * Connection negotiation. */ static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, int *auth_proto) { struct ceph_auth_handshake *auth; if (!con->ops->get_authorizer) { con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; con->out_connect.authorizer_len = 0; return NULL; } /* Can't hold the mutex while getting authorizer */ mutex_unlock(&con->mutex); auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); mutex_lock(&con->mutex); if (IS_ERR(auth)) return auth; if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags)) return ERR_PTR(-EAGAIN); con->auth_reply_buf = auth->authorizer_reply_buf; con->auth_reply_buf_len = auth->authorizer_reply_buf_len; return auth; } /* * We connected to a peer and are saying hello. */ static void prepare_write_banner(struct ceph_connection *con) { con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), &con->msgr->my_enc_addr); con->out_more = 0; set_bit(WRITE_PENDING, &con->flags); } static int prepare_write_connect(struct ceph_connection *con) { unsigned int global_seq = get_global_seq(con->msgr, 0); int proto; int auth_proto; struct ceph_auth_handshake *auth; switch (con->peer_name.type) { case CEPH_ENTITY_TYPE_MON: proto = CEPH_MONC_PROTOCOL; break; case CEPH_ENTITY_TYPE_OSD: proto = CEPH_OSDC_PROTOCOL; break; case CEPH_ENTITY_TYPE_MDS: proto = CEPH_MDSC_PROTOCOL; break; default: BUG(); } dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, con->connect_seq, global_seq, proto); con->out_connect.features = cpu_to_le64(con->msgr->supported_features); con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); con->out_connect.global_seq = cpu_to_le32(global_seq); con->out_connect.protocol_version = cpu_to_le32(proto); con->out_connect.flags = 0; auth_proto = CEPH_AUTH_UNKNOWN; auth = get_connect_authorizer(con, &auth_proto); if (IS_ERR(auth)) return PTR_ERR(auth); con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); con->out_connect.authorizer_len = auth ? cpu_to_le32(auth->authorizer_buf_len) : 0; con_out_kvec_add(con, sizeof (con->out_connect), &con->out_connect); if (auth && auth->authorizer_buf_len) con_out_kvec_add(con, auth->authorizer_buf_len, auth->authorizer_buf); con->out_more = 0; set_bit(WRITE_PENDING, &con->flags); return 0; } /* * write as much of pending kvecs to the socket as we can. * 1 -> done * 0 -> socket full, but more to do * <0 -> error */ static int write_partial_kvec(struct ceph_connection *con) { int ret; dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); while (con->out_kvec_bytes > 0) { ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, con->out_kvec_left, con->out_kvec_bytes, con->out_more); if (ret <= 0) goto out; con->out_kvec_bytes -= ret; if (con->out_kvec_bytes == 0) break; /* done */ /* account for full iov entries consumed */ while (ret >= con->out_kvec_cur->iov_len) { BUG_ON(!con->out_kvec_left); ret -= con->out_kvec_cur->iov_len; con->out_kvec_cur++; con->out_kvec_left--; } /* and for a partially-consumed entry */ if (ret) { con->out_kvec_cur->iov_len -= ret; con->out_kvec_cur->iov_base += ret; } } con->out_kvec_left = 0; con->out_kvec_is_msg = false; ret = 1; out: dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, con->out_kvec_bytes, con->out_kvec_left, ret); return ret; /* done! */ } static void out_msg_pos_next(struct ceph_connection *con, struct page *page, size_t len, size_t sent, bool in_trail) { struct ceph_msg *msg = con->out_msg; BUG_ON(!msg); BUG_ON(!sent); con->out_msg_pos.data_pos += sent; con->out_msg_pos.page_pos += sent; if (sent == len) { con->out_msg_pos.page_pos = 0; con->out_msg_pos.page++; con->out_msg_pos.did_page_crc = false; if (in_trail) list_move_tail(&page->lru, &msg->trail->head); else if (msg->pagelist) list_move_tail(&page->lru, &msg->pagelist->head); #ifdef CONFIG_BLOCK else if (msg->bio) iter_bio_next(&msg->bio_iter, &msg->bio_seg); #endif } } /* * Write as much message data payload as we can. If we finish, queue * up the footer. * 1 -> done, footer is now queued in out_kvec[]. * 0 -> socket full, but more to do * <0 -> error */ static int write_partial_msg_pages(struct ceph_connection *con) { struct ceph_msg *msg = con->out_msg; unsigned int data_len = le32_to_cpu(msg->hdr.data_len); size_t len; bool do_datacrc = !con->msgr->nocrc; int ret; int total_max_write; bool in_trail = false; size_t trail_len = (msg->trail ? msg->trail->length : 0); dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n", con, msg, con->out_msg_pos.page, msg->nr_pages, con->out_msg_pos.page_pos); while (data_len > con->out_msg_pos.data_pos) { struct page *page = NULL; int max_write = PAGE_SIZE; int bio_offset = 0; total_max_write = data_len - trail_len - con->out_msg_pos.data_pos; /* * if we are calculating the data crc (the default), we need * to map the page. if our pages[] has been revoked, use the * zero page. */ /* have we reached the trail part of the data? */ if (con->out_msg_pos.data_pos >= data_len - trail_len) { in_trail = true; total_max_write = data_len - con->out_msg_pos.data_pos; page = list_first_entry(&msg->trail->head, struct page, lru); } else if (msg->pages) { page = msg->pages[con->out_msg_pos.page]; } else if (msg->pagelist) { page = list_first_entry(&msg->pagelist->head, struct page, lru); #ifdef CONFIG_BLOCK } else if (msg->bio) { struct bio_vec *bv; bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg); page = bv->bv_page; bio_offset = bv->bv_offset; max_write = bv->bv_len; #endif } else { page = zero_page; } len = min_t(int, max_write - con->out_msg_pos.page_pos, total_max_write); if (do_datacrc && !con->out_msg_pos.did_page_crc) { void *base; u32 crc; u32 tmpcrc = le32_to_cpu(msg->footer.data_crc); char *kaddr; kaddr = kmap(page); BUG_ON(kaddr == NULL); base = kaddr + con->out_msg_pos.page_pos + bio_offset; crc = crc32c(tmpcrc, base, len); msg->footer.data_crc = cpu_to_le32(crc); con->out_msg_pos.did_page_crc = true; } ret = ceph_tcp_sendpage(con->sock, page, con->out_msg_pos.page_pos + bio_offset, len, 1); if (do_datacrc) kunmap(page); if (ret <= 0) goto out; out_msg_pos_next(con, page, len, (size_t) ret, in_trail); } dout("write_partial_msg_pages %p msg %p done\n", con, msg); /* prepare and queue up footer, too */ if (!do_datacrc) msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; con_out_kvec_reset(con); prepare_write_message_footer(con); ret = 1; out: return ret; } /* * write some zeros */ static int write_partial_skip(struct ceph_connection *con) { int ret; while (con->out_skip > 0) { size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE); ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1); if (ret <= 0) goto out; con->out_skip -= ret; } ret = 1; out: return ret; } /* * Prepare to read connection handshake, or an ack. */ static void prepare_read_banner(struct ceph_connection *con) { dout("prepare_read_banner %p\n", con); con->in_base_pos = 0; } static void prepare_read_connect(struct ceph_connection *con) { dout("prepare_read_connect %p\n", con); con->in_base_pos = 0; } static void prepare_read_ack(struct ceph_connection *con) { dout("prepare_read_ack %p\n", con); con->in_base_pos = 0; } static void prepare_read_tag(struct ceph_connection *con) { dout("prepare_read_tag %p\n", con); con->in_base_pos = 0; con->in_tag = CEPH_MSGR_TAG_READY; } /* * Prepare to read a message. */ static int prepare_read_message(struct ceph_connection *con) { dout("prepare_read_message %p\n", con); BUG_ON(con->in_msg != NULL); con->in_base_pos = 0; con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; return 0; } static int read_partial(struct ceph_connection *con, int end, int size, void *object) { while (con->in_base_pos < end) { int left = end - con->in_base_pos; int have = size - left; int ret = ceph_tcp_recvmsg(con->sock, object + have, left); if (ret <= 0) return ret; con->in_base_pos += ret; } return 1; } /* * Read all or part of the connect-side handshake on a new connection */ static int read_partial_banner(struct ceph_connection *con) { int size; int end; int ret; dout("read_partial_banner %p at %d\n", con, con->in_base_pos); /* peer's banner */ size = strlen(CEPH_BANNER); end = size; ret = read_partial(con, end, size, con->in_banner); if (ret <= 0) goto out; size = sizeof (con->actual_peer_addr); end += size; ret = read_partial(con, end, size, &con->actual_peer_addr); if (ret <= 0) goto out; size = sizeof (con->peer_addr_for_me); end += size; ret = read_partial(con, end, size, &con->peer_addr_for_me); if (ret <= 0) goto out; out: return ret; } static int read_partial_connect(struct ceph_connection *con) { int size; int end; int ret; dout("read_partial_connect %p at %d\n", con, con->in_base_pos); size = sizeof (con->in_reply); end = size; ret = read_partial(con, end, size, &con->in_reply); if (ret <= 0) goto out; size = le32_to_cpu(con->in_reply.authorizer_len); end += size; ret = read_partial(con, end, size, con->auth_reply_buf); if (ret <= 0) goto out; dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", con, (int)con->in_reply.tag, le32_to_cpu(con->in_reply.connect_seq), le32_to_cpu(con->in_reply.global_seq)); out: return ret; } /* * Verify the hello banner looks okay. */ static int verify_hello(struct ceph_connection *con) { if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { pr_err("connect to %s got bad banner\n", ceph_pr_addr(&con->peer_addr.in_addr)); con->error_msg = "protocol error, bad banner"; return -1; } return 0; } static bool addr_is_blank(struct sockaddr_storage *ss) { switch (ss->ss_family) { case AF_INET: return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; case AF_INET6: return ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; } return false; } static int addr_port(struct sockaddr_storage *ss) { switch (ss->ss_family) { case AF_INET: return ntohs(((struct sockaddr_in *)ss)->sin_port); case AF_INET6: return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); } return 0; } static void addr_set_port(struct sockaddr_storage *ss, int p) { switch (ss->ss_family) { case AF_INET: ((struct sockaddr_in *)ss)->sin_port = htons(p); break; case AF_INET6: ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); break; } } /* * Unlike other *_pton function semantics, zero indicates success. */ static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, char delim, const char **ipend) { struct sockaddr_in *in4 = (struct sockaddr_in *) ss; struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; memset(ss, 0, sizeof(*ss)); if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { ss->ss_family = AF_INET; return 0; } if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { ss->ss_family = AF_INET6; return 0; } return -EINVAL; } /* * Extract hostname string and resolve using kernel DNS facility. */ #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER static int ceph_dns_resolve_name(const char *name, size_t namelen, struct sockaddr_storage *ss, char delim, const char **ipend) { const char *end, *delim_p; char *colon_p, *ip_addr = NULL; int ip_len, ret; /* * The end of the hostname occurs immediately preceding the delimiter or * the port marker (':') where the delimiter takes precedence. */ delim_p = memchr(name, delim, namelen); colon_p = memchr(name, ':', namelen); if (delim_p && colon_p) end = delim_p < colon_p ? delim_p : colon_p; else if (!delim_p && colon_p) end = colon_p; else { end = delim_p; if (!end) /* case: hostname:/ */ end = name + namelen; } if (end <= name) return -EINVAL; /* do dns_resolve upcall */ ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); if (ip_len > 0) ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); else ret = -ESRCH; kfree(ip_addr); *ipend = end; pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, ret, ret ? "failed" : ceph_pr_addr(ss)); return ret; } #else static inline int ceph_dns_resolve_name(const char *name, size_t namelen, struct sockaddr_storage *ss, char delim, const char **ipend) { return -EINVAL; } #endif /* * Parse a server name (IP or hostname). If a valid IP address is not found * then try to extract a hostname to resolve using userspace DNS upcall. */ static int ceph_parse_server_name(const char *name, size_t namelen, struct sockaddr_storage *ss, char delim, const char **ipend) { int ret; ret = ceph_pton(name, namelen, ss, delim, ipend); if (ret) ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); return ret; } /* * Parse an ip[:port] list into an addr array. Use the default * monitor port if a port isn't specified. */ int ceph_parse_ips(const char *c, const char *end, struct ceph_entity_addr *addr, int max_count, int *count) { int i, ret = -EINVAL; const char *p = c; dout("parse_ips on '%.*s'\n", (int)(end-c), c); for (i = 0; i < max_count; i++) { const char *ipend; struct sockaddr_storage *ss = &addr[i].in_addr; int port; char delim = ','; if (*p == '[') { delim = ']'; p++; } ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); if (ret) goto bad; ret = -EINVAL; p = ipend; if (delim == ']') { if (*p != ']') { dout("missing matching ']'\n"); goto bad; } p++; } /* port? */ if (p < end && *p == ':') { port = 0; p++; while (p < end && *p >= '0' && *p <= '9') { port = (port * 10) + (*p - '0'); p++; } if (port > 65535 || port == 0) goto bad; } else { port = CEPH_MON_PORT; } addr_set_port(ss, port); dout("parse_ips got %s\n", ceph_pr_addr(ss)); if (p == end) break; if (*p != ',') goto bad; p++; } if (p != end) goto bad; if (count) *count = i + 1; return 0; bad: pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); return ret; } EXPORT_SYMBOL(ceph_parse_ips); static int process_banner(struct ceph_connection *con) { dout("process_banner on %p\n", con); if (verify_hello(con) < 0) return -1; ceph_decode_addr(&con->actual_peer_addr); ceph_decode_addr(&con->peer_addr_for_me); /* * Make sure the other end is who we wanted. note that the other * end may not yet know their ip address, so if it's 0.0.0.0, give * them the benefit of the doubt. */ if (memcmp(&con->peer_addr, &con->actual_peer_addr, sizeof(con->peer_addr)) != 0 && !(addr_is_blank(&con->actual_peer_addr.in_addr) && con->actual_peer_addr.nonce == con->peer_addr.nonce)) { pr_warning("wrong peer, want %s/%d, got %s/%d\n", ceph_pr_addr(&con->peer_addr.in_addr), (int)le32_to_cpu(con->peer_addr.nonce), ceph_pr_addr(&con->actual_peer_addr.in_addr), (int)le32_to_cpu(con->actual_peer_addr.nonce)); con->error_msg = "wrong peer at address"; return -1; } /* * did we learn our address? */ if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { int port = addr_port(&con->msgr->inst.addr.in_addr); memcpy(&con->msgr->inst.addr.in_addr, &con->peer_addr_for_me.in_addr, sizeof(con->peer_addr_for_me.in_addr)); addr_set_port(&con->msgr->inst.addr.in_addr, port); encode_my_addr(con->msgr); dout("process_banner learned my addr is %s\n", ceph_pr_addr(&con->msgr->inst.addr.in_addr)); } set_bit(NEGOTIATING, &con->state); prepare_read_connect(con); return 0; } static void fail_protocol(struct ceph_connection *con) { reset_connection(con); set_bit(CLOSED, &con->state); /* in case there's queued work */ } static int process_connect(struct ceph_connection *con) { u64 sup_feat = con->msgr->supported_features; u64 req_feat = con->msgr->required_features; u64 server_feat = le64_to_cpu(con->in_reply.features); int ret; dout("process_connect on %p tag %d\n", con, (int)con->in_tag); switch (con->in_reply.tag) { case CEPH_MSGR_TAG_FEATURES: pr_err("%s%lld %s feature set mismatch," " my %llx < server's %llx, missing %llx\n", ENTITY_NAME(con->peer_name), ceph_pr_addr(&con->peer_addr.in_addr), sup_feat, server_feat, server_feat & ~sup_feat); con->error_msg = "missing required protocol features"; fail_protocol(con); return -1; case CEPH_MSGR_TAG_BADPROTOVER: pr_err("%s%lld %s protocol version mismatch," " my %d != server's %d\n", ENTITY_NAME(con->peer_name), ceph_pr_addr(&con->peer_addr.in_addr), le32_to_cpu(con->out_connect.protocol_version), le32_to_cpu(con->in_reply.protocol_version)); con->error_msg = "protocol version mismatch"; fail_protocol(con); return -1; case CEPH_MSGR_TAG_BADAUTHORIZER: con->auth_retry++; dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, con->auth_retry); if (con->auth_retry == 2) { con->error_msg = "connect authorization failure"; return -1; } con->auth_retry = 1; con_out_kvec_reset(con); ret = prepare_write_connect(con); if (ret < 0) return ret; prepare_read_connect(con); break; case CEPH_MSGR_TAG_RESETSESSION: /* * If we connected with a large connect_seq but the peer * has no record of a session with us (no connection, or * connect_seq == 0), they will send RESETSESION to indicate * that they must have reset their session, and may have * dropped messages. */ dout("process_connect got RESET peer seq %u\n", le32_to_cpu(con->in_connect.connect_seq)); pr_err("%s%lld %s connection reset\n", ENTITY_NAME(con->peer_name), ceph_pr_addr(&con->peer_addr.in_addr)); reset_connection(con); con_out_kvec_reset(con); ret = prepare_write_connect(con); if (ret < 0) return ret; prepare_read_connect(con); /* Tell ceph about it. */ mutex_unlock(&con->mutex); pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); if (con->ops->peer_reset) con->ops->peer_reset(con); mutex_lock(&con->mutex); if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->state)) return -EAGAIN; break; case CEPH_MSGR_TAG_RETRY_SESSION: /* * If we sent a smaller connect_seq than the peer has, try * again with a larger value. */ dout("process_connect got RETRY my seq = %u, peer_seq = %u\n", le32_to_cpu(con->out_connect.connect_seq), le32_to_cpu(con->in_connect.connect_seq)); con->connect_seq = le32_to_cpu(con->in_connect.connect_seq); con_out_kvec_reset(con); ret = prepare_write_connect(con); if (ret < 0) return ret; prepare_read_connect(con); break; case CEPH_MSGR_TAG_RETRY_GLOBAL: /* * If we sent a smaller global_seq than the peer has, try * again with a larger value. */ dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", con->peer_global_seq, le32_to_cpu(con->in_connect.global_seq)); get_global_seq(con->msgr, le32_to_cpu(con->in_connect.global_seq)); con_out_kvec_reset(con); ret = prepare_write_connect(con); if (ret < 0) return ret; prepare_read_connect(con); break; case CEPH_MSGR_TAG_READY: if (req_feat & ~server_feat) { pr_err("%s%lld %s protocol feature mismatch," " my required %llx > server's %llx, need %llx\n", ENTITY_NAME(con->peer_name), ceph_pr_addr(&con->peer_addr.in_addr), req_feat, server_feat, req_feat & ~server_feat); con->error_msg = "missing required protocol features"; fail_protocol(con); return -1; } clear_bit(CONNECTING, &con->state); con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); con->connect_seq++; con->peer_features = server_feat; dout("process_connect got READY gseq %d cseq %d (%d)\n", con->peer_global_seq, le32_to_cpu(con->in_reply.connect_seq), con->connect_seq); WARN_ON(con->connect_seq != le32_to_cpu(con->in_reply.connect_seq)); if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) set_bit(LOSSYTX, &con->flags); prepare_read_tag(con); break; case CEPH_MSGR_TAG_WAIT: /* * If there is a connection race (we are opening * connections to each other), one of us may just have * to WAIT. This shouldn't happen if we are the * client. */ pr_err("process_connect got WAIT as client\n"); con->error_msg = "protocol error, got WAIT as client"; return -1; default: pr_err("connect protocol error, will retry\n"); con->error_msg = "protocol error, garbage tag during connect"; return -1; } return 0; } /* * read (part of) an ack */ static int read_partial_ack(struct ceph_connection *con) { int size = sizeof (con->in_temp_ack); int end = size; return read_partial(con, end, size, &con->in_temp_ack); } /* * We can finally discard anything that's been acked. */ static void process_ack(struct ceph_connection *con) { struct ceph_msg *m; u64 ack = le64_to_cpu(con->in_temp_ack); u64 seq; while (!list_empty(&con->out_sent)) { m = list_first_entry(&con->out_sent, struct ceph_msg, list_head); seq = le64_to_cpu(m->hdr.seq); if (seq > ack) break; dout("got ack for seq %llu type %d at %p\n", seq, le16_to_cpu(m->hdr.type), m); m->ack_stamp = jiffies; ceph_msg_remove(m); } prepare_read_tag(con); } static int read_partial_message_section(struct ceph_connection *con, struct kvec *section, unsigned int sec_len, u32 *crc) { int ret, left; BUG_ON(!section); while (section->iov_len < sec_len) { BUG_ON(section->iov_base == NULL); left = sec_len - section->iov_len; ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + section->iov_len, left); if (ret <= 0) return ret; section->iov_len += ret; } if (section->iov_len == sec_len) *crc = crc32c(0, section->iov_base, section->iov_len); return 1; } static bool ceph_con_in_msg_alloc(struct ceph_connection *con, struct ceph_msg_header *hdr); static int read_partial_message_pages(struct ceph_connection *con, struct page **pages, unsigned int data_len, bool do_datacrc) { void *p; int ret; int left; left = min((int)(data_len - con->in_msg_pos.data_pos), (int)(PAGE_SIZE - con->in_msg_pos.page_pos)); /* (page) data */ BUG_ON(pages == NULL); p = kmap(pages[con->in_msg_pos.page]); ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, left); if (ret > 0 && do_datacrc) con->in_data_crc = crc32c(con->in_data_crc, p + con->in_msg_pos.page_pos, ret); kunmap(pages[con->in_msg_pos.page]); if (ret <= 0) return ret; con->in_msg_pos.data_pos += ret; con->in_msg_pos.page_pos += ret; if (con->in_msg_pos.page_pos == PAGE_SIZE) { con->in_msg_pos.page_pos = 0; con->in_msg_pos.page++; } return ret; } #ifdef CONFIG_BLOCK static int read_partial_message_bio(struct ceph_connection *con, struct bio **bio_iter, int *bio_seg, unsigned int data_len, bool do_datacrc) { struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg); void *p; int ret, left; if (IS_ERR(bv)) return PTR_ERR(bv); left = min((int)(data_len - con->in_msg_pos.data_pos), (int)(bv->bv_len - con->in_msg_pos.page_pos)); p = kmap(bv->bv_page) + bv->bv_offset; ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, left); if (ret > 0 && do_datacrc) con->in_data_crc = crc32c(con->in_data_crc, p + con->in_msg_pos.page_pos, ret); kunmap(bv->bv_page); if (ret <= 0) return ret; con->in_msg_pos.data_pos += ret; con->in_msg_pos.page_pos += ret; if (con->in_msg_pos.page_pos == bv->bv_len) { con->in_msg_pos.page_pos = 0; iter_bio_next(bio_iter, bio_seg); } return ret; } #endif /* * read (part of) a message. */ static int read_partial_message(struct ceph_connection *con) { struct ceph_msg *m = con->in_msg; int size; int end; int ret; unsigned int front_len, middle_len, data_len; bool do_datacrc = !con->msgr->nocrc; u64 seq; u32 crc; dout("read_partial_message con %p msg %p\n", con, m); /* header */ size = sizeof (con->in_hdr); end = size; ret = read_partial(con, end, size, &con->in_hdr); if (ret <= 0) return ret; crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); if (cpu_to_le32(crc) != con->in_hdr.crc) { pr_err("read_partial_message bad hdr " " crc %u != expected %u\n", crc, con->in_hdr.crc); return -EBADMSG; } front_len = le32_to_cpu(con->in_hdr.front_len); if (front_len > CEPH_MSG_MAX_FRONT_LEN) return -EIO; middle_len = le32_to_cpu(con->in_hdr.middle_len); if (middle_len > CEPH_MSG_MAX_DATA_LEN) return -EIO; data_len = le32_to_cpu(con->in_hdr.data_len); if (data_len > CEPH_MSG_MAX_DATA_LEN) return -EIO; /* verify seq# */ seq = le64_to_cpu(con->in_hdr.seq); if ((s64)seq - (s64)con->in_seq < 1) { pr_info("skipping %s%lld %s seq %lld expected %lld\n", ENTITY_NAME(con->peer_name), ceph_pr_addr(&con->peer_addr.in_addr), seq, con->in_seq + 1); con->in_base_pos = -front_len - middle_len - data_len - sizeof(m->footer); con->in_tag = CEPH_MSGR_TAG_READY; return 0; } else if ((s64)seq - (s64)con->in_seq > 1) { pr_err("read_partial_message bad seq %lld expected %lld\n", seq, con->in_seq + 1); con->error_msg = "bad message sequence # for incoming message"; return -EBADMSG; } /* allocate message? */ if (!con->in_msg) { dout("got hdr type %d front %d data %d\n", con->in_hdr.type, con->in_hdr.front_len, con->in_hdr.data_len); if (ceph_con_in_msg_alloc(con, &con->in_hdr)) { /* skip this message */ dout("alloc_msg said skip message\n"); BUG_ON(con->in_msg); con->in_base_pos = -front_len - middle_len - data_len - sizeof(m->footer); con->in_tag = CEPH_MSGR_TAG_READY; con->in_seq++; return 0; } if (!con->in_msg) { con->error_msg = "error allocating memory for incoming message"; return -ENOMEM; } BUG_ON(con->in_msg->con != con); m = con->in_msg; m->front.iov_len = 0; /* haven't read it yet */ if (m->middle) m->middle->vec.iov_len = 0; con->in_msg_pos.page = 0; if (m->pages) con->in_msg_pos.page_pos = m->page_alignment; else con->in_msg_pos.page_pos = 0; con->in_msg_pos.data_pos = 0; } /* front */ ret = read_partial_message_section(con, &m->front, front_len, &con->in_front_crc); if (ret <= 0) return ret; /* middle */ if (m->middle) { ret = read_partial_message_section(con, &m->middle->vec, middle_len, &con->in_middle_crc); if (ret <= 0) return ret; } #ifdef CONFIG_BLOCK if (m->bio && !m->bio_iter) init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg); #endif /* (page) data */ while (con->in_msg_pos.data_pos < data_len) { if (m->pages) { ret = read_partial_message_pages(con, m->pages, data_len, do_datacrc); if (ret <= 0) return ret; #ifdef CONFIG_BLOCK } else if (m->bio) { ret = read_partial_message_bio(con, &m->bio_iter, &m->bio_seg, data_len, do_datacrc); if (ret <= 0) return ret; #endif } else { BUG_ON(1); } } /* footer */ size = sizeof (m->footer); end += size; ret = read_partial(con, end, size, &m->footer); if (ret <= 0) return ret; dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", m, front_len, m->footer.front_crc, middle_len, m->footer.middle_crc, data_len, m->footer.data_crc); /* crc ok? */ if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { pr_err("read_partial_message %p front crc %u != exp. %u\n", m, con->in_front_crc, m->footer.front_crc); return -EBADMSG; } if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { pr_err("read_partial_message %p middle crc %u != exp %u\n", m, con->in_middle_crc, m->footer.middle_crc); return -EBADMSG; } if (do_datacrc && (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { pr_err("read_partial_message %p data crc %u != exp. %u\n", m, con->in_data_crc, le32_to_cpu(m->footer.data_crc)); return -EBADMSG; } return 1; /* done! */ } /* * Process message. This happens in the worker thread. The callback should * be careful not to do anything that waits on other incoming messages or it * may deadlock. */ static void process_message(struct ceph_connection *con) { struct ceph_msg *msg; BUG_ON(con->in_msg->con != con); con->in_msg->con = NULL; msg = con->in_msg; con->in_msg = NULL; con->ops->put(con); /* if first message, set peer_name */ if (con->peer_name.type == 0) con->peer_name = msg->hdr.src; con->in_seq++; mutex_unlock(&con->mutex); dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", msg, le64_to_cpu(msg->hdr.seq), ENTITY_NAME(msg->hdr.src), le16_to_cpu(msg->hdr.type), ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), le32_to_cpu(msg->hdr.front_len), le32_to_cpu(msg->hdr.data_len), con->in_front_crc, con->in_middle_crc, con->in_data_crc); con->ops->dispatch(con, msg); mutex_lock(&con->mutex); prepare_read_tag(con); } /* * Write something to the socket. Called in a worker thread when the * socket appears to be writeable and we have something ready to send. */ static int try_write(struct ceph_connection *con) { int ret = 1; dout("try_write start %p state %lu\n", con, con->state); more: dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); /* open the socket first? */ if (con->sock == NULL) { clear_bit(NEGOTIATING, &con->state); set_bit(CONNECTING, &con->state); con_out_kvec_reset(con); prepare_write_banner(con); ret = prepare_write_connect(con); if (ret < 0) goto out; prepare_read_banner(con); BUG_ON(con->in_msg); con->in_tag = CEPH_MSGR_TAG_READY; dout("try_write initiating connect on %p new state %lu\n", con, con->state); ret = ceph_tcp_connect(con); if (ret < 0) { con->error_msg = "connect error"; goto out; } } more_kvec: /* kvec data queued? */ if (con->out_skip) { ret = write_partial_skip(con); if (ret <= 0) goto out; } if (con->out_kvec_left) { ret = write_partial_kvec(con); if (ret <= 0) goto out; } /* msg pages? */ if (con->out_msg) { if (con->out_msg_done) { ceph_msg_put(con->out_msg); con->out_msg = NULL; /* we're done with this one */ goto do_next; } ret = write_partial_msg_pages(con); if (ret == 1) goto more_kvec; /* we need to send the footer, too! */ if (ret == 0) goto out; if (ret < 0) { dout("try_write write_partial_msg_pages err %d\n", ret); goto out; } } do_next: if (!test_bit(CONNECTING, &con->state)) { /* is anything else pending? */ if (!list_empty(&con->out_queue)) { prepare_write_message(con); goto more; } if (con->in_seq > con->in_seq_acked) { prepare_write_ack(con); goto more; } if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) { prepare_write_keepalive(con); goto more; } } /* Nothing to do! */ clear_bit(WRITE_PENDING, &con->flags); dout("try_write nothing else to write.\n"); ret = 0; out: dout("try_write done on %p ret %d\n", con, ret); return ret; } /* * Read what we can from the socket. */ static int try_read(struct ceph_connection *con) { int ret = -1; if (!con->sock) return 0; if (test_bit(STANDBY, &con->state)) return 0; dout("try_read start on %p\n", con); more: dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, con->in_base_pos); /* * process_connect and process_message drop and re-take * con->mutex. make sure we handle a racing close or reopen. */ if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->state)) { ret = -EAGAIN; goto out; } if (test_bit(CONNECTING, &con->state)) { if (!test_bit(NEGOTIATING, &con->state)) { dout("try_read connecting\n"); ret = read_partial_banner(con); if (ret <= 0) goto out; ret = process_banner(con); if (ret < 0) goto out; } ret = read_partial_connect(con); if (ret <= 0) goto out; ret = process_connect(con); if (ret < 0) goto out; goto more; } if (con->in_base_pos < 0) { /* * skipping + discarding content. * * FIXME: there must be a better way to do this! */ static char buf[SKIP_BUF_SIZE]; int skip = min((int) sizeof (buf), -con->in_base_pos); dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); ret = ceph_tcp_recvmsg(con->sock, buf, skip); if (ret <= 0) goto out; con->in_base_pos += ret; if (con->in_base_pos) goto more; } if (con->in_tag == CEPH_MSGR_TAG_READY) { /* * what's next? */ ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); if (ret <= 0) goto out; dout("try_read got tag %d\n", (int)con->in_tag); switch (con->in_tag) { case CEPH_MSGR_TAG_MSG: prepare_read_message(con); break; case CEPH_MSGR_TAG_ACK: prepare_read_ack(con); break; case CEPH_MSGR_TAG_CLOSE: set_bit(CLOSED, &con->state); /* fixme */ goto out; default: goto bad_tag; } } if (con->in_tag == CEPH_MSGR_TAG_MSG) { ret = read_partial_message(con); if (ret <= 0) { switch (ret) { case -EBADMSG: con->error_msg = "bad crc"; ret = -EIO; break; case -EIO: con->error_msg = "io error"; break; } goto out; } if (con->in_tag == CEPH_MSGR_TAG_READY) goto more; process_message(con); goto more; } if (con->in_tag == CEPH_MSGR_TAG_ACK) { ret = read_partial_ack(con); if (ret <= 0) goto out; process_ack(con); goto more; } out: dout("try_read done on %p ret %d\n", con, ret); return ret; bad_tag: pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); con->error_msg = "protocol error, garbage tag"; ret = -1; goto out; } /* * Atomically queue work on a connection. Bump @con reference to * avoid races with connection teardown. */ static void queue_con(struct ceph_connection *con) { if (!con->ops->get(con)) { dout("queue_con %p ref count 0\n", con); return; } if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) { dout("queue_con %p - already queued\n", con); con->ops->put(con); } else { dout("queue_con %p\n", con); } } /* * Do some work on a connection. Drop a connection ref when we're done. */ static void con_work(struct work_struct *work) { struct ceph_connection *con = container_of(work, struct ceph_connection, work.work); int ret; mutex_lock(&con->mutex); restart: if (test_and_clear_bit(SOCK_CLOSED, &con->flags)) { if (test_and_clear_bit(CONNECTING, &con->state)) con->error_msg = "connection failed"; else con->error_msg = "socket closed"; goto fault; } if (test_and_clear_bit(BACKOFF, &con->flags)) { dout("con_work %p backing off\n", con); if (queue_delayed_work(ceph_msgr_wq, &con->work, round_jiffies_relative(con->delay))) { dout("con_work %p backoff %lu\n", con, con->delay); mutex_unlock(&con->mutex); return; } else { con->ops->put(con); dout("con_work %p FAILED to back off %lu\n", con, con->delay); } } if (test_bit(STANDBY, &con->state)) { dout("con_work %p STANDBY\n", con); goto done; } if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */ dout("con_work CLOSED\n"); con_close_socket(con); goto done; } if (test_and_clear_bit(OPENING, &con->state)) { /* reopen w/ new peer */ dout("con_work OPENING\n"); con_close_socket(con); } ret = try_read(con); if (ret == -EAGAIN) goto restart; if (ret < 0) goto fault; ret = try_write(con); if (ret == -EAGAIN) goto restart; if (ret < 0) goto fault; done: mutex_unlock(&con->mutex); done_unlocked: con->ops->put(con); return; fault: mutex_unlock(&con->mutex); ceph_fault(con); /* error/fault path */ goto done_unlocked; } /* * Generic error/fault handler. A retry mechanism is used with * exponential backoff */ static void ceph_fault(struct ceph_connection *con) { pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); dout("fault %p state %lu to peer %s\n", con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); if (test_bit(LOSSYTX, &con->flags)) { dout("fault on LOSSYTX channel\n"); goto out; } mutex_lock(&con->mutex); if (test_bit(CLOSED, &con->state)) goto out_unlock; con_close_socket(con); if (con->in_msg) { BUG_ON(con->in_msg->con != con); con->in_msg->con = NULL; ceph_msg_put(con->in_msg); con->in_msg = NULL; con->ops->put(con); } /* Requeue anything that hasn't been acked */ list_splice_init(&con->out_sent, &con->out_queue); /* If there are no messages queued or keepalive pending, place * the connection in a STANDBY state */ if (list_empty(&con->out_queue) && !test_bit(KEEPALIVE_PENDING, &con->flags)) { dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); clear_bit(WRITE_PENDING, &con->flags); set_bit(STANDBY, &con->state); } else { /* retry after a delay. */ if (con->delay == 0) con->delay = BASE_DELAY_INTERVAL; else if (con->delay < MAX_DELAY_INTERVAL) con->delay *= 2; con->ops->get(con); if (queue_delayed_work(ceph_msgr_wq, &con->work, round_jiffies_relative(con->delay))) { dout("fault queued %p delay %lu\n", con, con->delay); } else { con->ops->put(con); dout("fault failed to queue %p delay %lu, backoff\n", con, con->delay); /* * In many cases we see a socket state change * while con_work is running and end up * queuing (non-delayed) work, such that we * can't backoff with a delay. Set a flag so * that when con_work restarts we schedule the * delay then. */ set_bit(BACKOFF, &con->flags); } } out_unlock: mutex_unlock(&con->mutex); out: /* * in case we faulted due to authentication, invalidate our * current tickets so that we can get new ones. */ if (con->auth_retry && con->ops->invalidate_authorizer) { dout("calling invalidate_authorizer()\n"); con->ops->invalidate_authorizer(con); } if (con->ops->fault) con->ops->fault(con); } /* * initialize a new messenger instance */ void ceph_messenger_init(struct ceph_messenger *msgr, struct ceph_entity_addr *myaddr, u32 supported_features, u32 required_features, bool nocrc) { msgr->supported_features = supported_features; msgr->required_features = required_features; spin_lock_init(&msgr->global_seq_lock); if (myaddr) msgr->inst.addr = *myaddr; /* select a random nonce */ msgr->inst.addr.type = 0; get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); encode_my_addr(msgr); msgr->nocrc = nocrc; dout("%s %p\n", __func__, msgr); } EXPORT_SYMBOL(ceph_messenger_init); static void clear_standby(struct ceph_connection *con) { /* come back from STANDBY? */ if (test_and_clear_bit(STANDBY, &con->state)) { mutex_lock(&con->mutex); dout("clear_standby %p and ++connect_seq\n", con); con->connect_seq++; WARN_ON(test_bit(WRITE_PENDING, &con->flags)); WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags)); mutex_unlock(&con->mutex); } } /* * Queue up an outgoing message on the given connection. */ void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) { if (test_bit(CLOSED, &con->state)) { dout("con_send %p closed, dropping %p\n", con, msg); ceph_msg_put(msg); return; } /* set src+dst */ msg->hdr.src = con->msgr->inst.name; BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); msg->needs_out_seq = true; /* queue */ mutex_lock(&con->mutex); BUG_ON(msg->con != NULL); msg->con = con->ops->get(con); BUG_ON(msg->con == NULL); BUG_ON(!list_empty(&msg->list_head)); list_add_tail(&msg->list_head, &con->out_queue); dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), le32_to_cpu(msg->hdr.front_len), le32_to_cpu(msg->hdr.middle_len), le32_to_cpu(msg->hdr.data_len)); mutex_unlock(&con->mutex); /* if there wasn't anything waiting to send before, queue * new work */ clear_standby(con); if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0) queue_con(con); } EXPORT_SYMBOL(ceph_con_send); /* * Revoke a message that was previously queued for send */ void ceph_msg_revoke(struct ceph_msg *msg) { struct ceph_connection *con = msg->con; if (!con) return; /* Message not in our possession */ mutex_lock(&con->mutex); if (!list_empty(&msg->list_head)) { dout("%s %p msg %p - was on queue\n", __func__, con, msg); list_del_init(&msg->list_head); BUG_ON(msg->con == NULL); msg->con->ops->put(msg->con); msg->con = NULL; msg->hdr.seq = 0; ceph_msg_put(msg); } if (con->out_msg == msg) { dout("%s %p msg %p - was sending\n", __func__, con, msg); con->out_msg = NULL; if (con->out_kvec_is_msg) { con->out_skip = con->out_kvec_bytes; con->out_kvec_is_msg = false; } msg->hdr.seq = 0; ceph_msg_put(msg); } mutex_unlock(&con->mutex); } /* * Revoke a message that we may be reading data into */ void ceph_msg_revoke_incoming(struct ceph_msg *msg) { struct ceph_connection *con; BUG_ON(msg == NULL); if (!msg->con) { dout("%s msg %p null con\n", __func__, msg); return; /* Message not in our possession */ } con = msg->con; mutex_lock(&con->mutex); if (con->in_msg == msg) { unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); /* skip rest of message */ dout("%s %p msg %p revoked\n", __func__, con, msg); con->in_base_pos = con->in_base_pos - sizeof(struct ceph_msg_header) - front_len - middle_len - data_len - sizeof(struct ceph_msg_footer); ceph_msg_put(con->in_msg); con->in_msg = NULL; con->in_tag = CEPH_MSGR_TAG_READY; con->in_seq++; } else { dout("%s %p in_msg %p msg %p no-op\n", __func__, con, con->in_msg, msg); } mutex_unlock(&con->mutex); } /* * Queue a keepalive byte to ensure the tcp connection is alive. */ void ceph_con_keepalive(struct ceph_connection *con) { dout("con_keepalive %p\n", con); clear_standby(con); if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 && test_and_set_bit(WRITE_PENDING, &con->flags) == 0) queue_con(con); } EXPORT_SYMBOL(ceph_con_keepalive); /* * construct a new message with given type, size * the new msg has a ref count of 1. */ struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, bool can_fail) { struct ceph_msg *m; m = kmalloc(sizeof(*m), flags); if (m == NULL) goto out; kref_init(&m->kref); m->con = NULL; INIT_LIST_HEAD(&m->list_head); m->hdr.tid = 0; m->hdr.type = cpu_to_le16(type); m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); m->hdr.version = 0; m->hdr.front_len = cpu_to_le32(front_len); m->hdr.middle_len = 0; m->hdr.data_len = 0; m->hdr.data_off = 0; m->hdr.reserved = 0; m->footer.front_crc = 0; m->footer.middle_crc = 0; m->footer.data_crc = 0; m->footer.flags = 0; m->front_max = front_len; m->front_is_vmalloc = false; m->more_to_follow = false; m->ack_stamp = 0; m->pool = NULL; /* middle */ m->middle = NULL; /* data */ m->nr_pages = 0; m->page_alignment = 0; m->pages = NULL; m->pagelist = NULL; m->bio = NULL; m->bio_iter = NULL; m->bio_seg = 0; m->trail = NULL; /* front */ if (front_len) { if (front_len > PAGE_CACHE_SIZE) { m->front.iov_base = __vmalloc(front_len, flags, PAGE_KERNEL); m->front_is_vmalloc = true; } else { m->front.iov_base = kmalloc(front_len, flags); } if (m->front.iov_base == NULL) { dout("ceph_msg_new can't allocate %d bytes\n", front_len); goto out2; } } else { m->front.iov_base = NULL; } m->front.iov_len = front_len; dout("ceph_msg_new %p front %d\n", m, front_len); return m; out2: ceph_msg_put(m); out: if (!can_fail) { pr_err("msg_new can't create type %d front %d\n", type, front_len); WARN_ON(1); } else { dout("msg_new can't create type %d front %d\n", type, front_len); } return NULL; } EXPORT_SYMBOL(ceph_msg_new); /* * Allocate "middle" portion of a message, if it is needed and wasn't * allocated by alloc_msg. This allows us to read a small fixed-size * per-type header in the front and then gracefully fail (i.e., * propagate the error to the caller based on info in the front) when * the middle is too large. */ static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) { int type = le16_to_cpu(msg->hdr.type); int middle_len = le32_to_cpu(msg->hdr.middle_len); dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, ceph_msg_type_name(type), middle_len); BUG_ON(!middle_len); BUG_ON(msg->middle); msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); if (!msg->middle) return -ENOMEM; return 0; } /* * Allocate a message for receiving an incoming message on a * connection, and save the result in con->in_msg. Uses the * connection's private alloc_msg op if available. * * Returns true if the message should be skipped, false otherwise. * If true is returned (skip message), con->in_msg will be NULL. * If false is returned, con->in_msg will contain a pointer to the * newly-allocated message, or NULL in case of memory exhaustion. */ static bool ceph_con_in_msg_alloc(struct ceph_connection *con, struct ceph_msg_header *hdr) { int type = le16_to_cpu(hdr->type); int front_len = le32_to_cpu(hdr->front_len); int middle_len = le32_to_cpu(hdr->middle_len); int ret; BUG_ON(con->in_msg != NULL); if (con->ops->alloc_msg) { int skip = 0; mutex_unlock(&con->mutex); con->in_msg = con->ops->alloc_msg(con, hdr, &skip); mutex_lock(&con->mutex); if (con->in_msg) { con->in_msg->con = con->ops->get(con); BUG_ON(con->in_msg->con == NULL); } if (skip) con->in_msg = NULL; if (!con->in_msg) return skip != 0; } if (!con->in_msg) { con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false); if (!con->in_msg) { pr_err("unable to allocate msg type %d len %d\n", type, front_len); return false; } con->in_msg->con = con->ops->get(con); BUG_ON(con->in_msg->con == NULL); con->in_msg->page_alignment = le16_to_cpu(hdr->data_off); } memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); if (middle_len && !con->in_msg->middle) { ret = ceph_alloc_middle(con, con->in_msg); if (ret < 0) { ceph_msg_put(con->in_msg); con->in_msg = NULL; } } return false; } /* * Free a generically kmalloc'd message. */ void ceph_msg_kfree(struct ceph_msg *m) { dout("msg_kfree %p\n", m); if (m->front_is_vmalloc) vfree(m->front.iov_base); else kfree(m->front.iov_base); kfree(m); } /* * Drop a msg ref. Destroy as needed. */ void ceph_msg_last_put(struct kref *kref) { struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); dout("ceph_msg_put last one on %p\n", m); WARN_ON(!list_empty(&m->list_head)); /* drop middle, data, if any */ if (m->middle) { ceph_buffer_put(m->middle); m->middle = NULL; } m->nr_pages = 0; m->pages = NULL; if (m->pagelist) { ceph_pagelist_release(m->pagelist); kfree(m->pagelist); m->pagelist = NULL; } m->trail = NULL; if (m->pool) ceph_msgpool_put(m->pool, m); else ceph_msg_kfree(m); } EXPORT_SYMBOL(ceph_msg_last_put); void ceph_msg_dump(struct ceph_msg *msg) { pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg, msg->front_max, msg->nr_pages); print_hex_dump(KERN_DEBUG, "header: ", DUMP_PREFIX_OFFSET, 16, 1, &msg->hdr, sizeof(msg->hdr), true); print_hex_dump(KERN_DEBUG, " front: ", DUMP_PREFIX_OFFSET, 16, 1, msg->front.iov_base, msg->front.iov_len, true); if (msg->middle) print_hex_dump(KERN_DEBUG, "middle: ", DUMP_PREFIX_OFFSET, 16, 1, msg->middle->vec.iov_base, msg->middle->vec.iov_len, true); print_hex_dump(KERN_DEBUG, "footer: ", DUMP_PREFIX_OFFSET, 16, 1, &msg->footer, sizeof(msg->footer), true); } EXPORT_SYMBOL(ceph_msg_dump);