/* * Freescale eSDHC controller driver. * * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc. * Copyright (c) 2009 MontaVista Software, Inc. * * Authors: Xiaobo Xie * Anton Vorontsov * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include "sdhci-pltfm.h" #include "sdhci-esdhc.h" #define VENDOR_V_22 0x12 #define VENDOR_V_23 0x13 struct sdhci_esdhc { u8 vendor_ver; u8 spec_ver; bool quirk_incorrect_hostver; unsigned int peripheral_clock; }; /** * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register * to make it compatible with SD spec. * * @host: pointer to sdhci_host * @spec_reg: SD spec register address * @value: 32bit eSDHC register value on spec_reg address * * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC * registers are 32 bits. There are differences in register size, register * address, register function, bit position and function between eSDHC spec * and SD spec. * * Return a fixed up register value */ static u32 esdhc_readl_fixup(struct sdhci_host *host, int spec_reg, u32 value) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); u32 ret; /* * The bit of ADMA flag in eSDHC is not compatible with standard * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is * supported by eSDHC. * And for many FSL eSDHC controller, the reset value of field * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA, * only these vendor version is greater than 2.2/0x12 support ADMA. */ if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) { if (esdhc->vendor_ver > VENDOR_V_22) { ret = value | SDHCI_CAN_DO_ADMA2; return ret; } } /* * The DAT[3:0] line signal levels and the CMD line signal level are * not compatible with standard SDHC register. The line signal levels * DAT[7:0] are at bits 31:24 and the command line signal level is at * bit 23. All other bits are the same as in the standard SDHC * register. */ if (spec_reg == SDHCI_PRESENT_STATE) { ret = value & 0x000fffff; ret |= (value >> 4) & SDHCI_DATA_LVL_MASK; ret |= (value << 1) & SDHCI_CMD_LVL; return ret; } ret = value; return ret; } static u16 esdhc_readw_fixup(struct sdhci_host *host, int spec_reg, u32 value) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); u16 ret; int shift = (spec_reg & 0x2) * 8; if (spec_reg == SDHCI_HOST_VERSION) ret = value & 0xffff; else ret = (value >> shift) & 0xffff; /* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect * vendor version and spec version information. */ if ((spec_reg == SDHCI_HOST_VERSION) && (esdhc->quirk_incorrect_hostver)) ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200; return ret; } static u8 esdhc_readb_fixup(struct sdhci_host *host, int spec_reg, u32 value) { u8 ret; u8 dma_bits; int shift = (spec_reg & 0x3) * 8; ret = (value >> shift) & 0xff; /* * "DMA select" locates at offset 0x28 in SD specification, but on * P5020 or P3041, it locates at 0x29. */ if (spec_reg == SDHCI_HOST_CONTROL) { /* DMA select is 22,23 bits in Protocol Control Register */ dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK; /* fixup the result */ ret &= ~SDHCI_CTRL_DMA_MASK; ret |= dma_bits; } return ret; } /** * esdhc_write*_fixup - Fixup the SD spec register value so that it could be * written into eSDHC register. * * @host: pointer to sdhci_host * @spec_reg: SD spec register address * @value: 8/16/32bit SD spec register value that would be written * @old_value: 32bit eSDHC register value on spec_reg address * * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC * registers are 32 bits. There are differences in register size, register * address, register function, bit position and function between eSDHC spec * and SD spec. * * Return a fixed up register value */ static u32 esdhc_writel_fixup(struct sdhci_host *host, int spec_reg, u32 value, u32 old_value) { u32 ret; /* * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE] * when SYSCTL[RSTD] is set for some special operations. * No any impact on other operation. */ if (spec_reg == SDHCI_INT_ENABLE) ret = value | SDHCI_INT_BLK_GAP; else ret = value; return ret; } static u32 esdhc_writew_fixup(struct sdhci_host *host, int spec_reg, u16 value, u32 old_value) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); int shift = (spec_reg & 0x2) * 8; u32 ret; switch (spec_reg) { case SDHCI_TRANSFER_MODE: /* * Postpone this write, we must do it together with a * command write that is down below. Return old value. */ pltfm_host->xfer_mode_shadow = value; return old_value; case SDHCI_COMMAND: ret = (value << 16) | pltfm_host->xfer_mode_shadow; return ret; } ret = old_value & (~(0xffff << shift)); ret |= (value << shift); if (spec_reg == SDHCI_BLOCK_SIZE) { /* * Two last DMA bits are reserved, and first one is used for * non-standard blksz of 4096 bytes that we don't support * yet. So clear the DMA boundary bits. */ ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0)); } return ret; } static u32 esdhc_writeb_fixup(struct sdhci_host *host, int spec_reg, u8 value, u32 old_value) { u32 ret; u32 dma_bits; u8 tmp; int shift = (spec_reg & 0x3) * 8; /* * eSDHC doesn't have a standard power control register, so we do * nothing here to avoid incorrect operation. */ if (spec_reg == SDHCI_POWER_CONTROL) return old_value; /* * "DMA select" location is offset 0x28 in SD specification, but on * P5020 or P3041, it's located at 0x29. */ if (spec_reg == SDHCI_HOST_CONTROL) { /* * If host control register is not standard, exit * this function */ if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL) return old_value; /* DMA select is 22,23 bits in Protocol Control Register */ dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5; ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits; tmp = (value & (~SDHCI_CTRL_DMA_MASK)) | (old_value & SDHCI_CTRL_DMA_MASK); ret = (ret & (~0xff)) | tmp; /* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */ ret &= ~ESDHC_HOST_CONTROL_RES; return ret; } ret = (old_value & (~(0xff << shift))) | (value << shift); return ret; } static u32 esdhc_be_readl(struct sdhci_host *host, int reg) { u32 ret; u32 value; value = ioread32be(host->ioaddr + reg); ret = esdhc_readl_fixup(host, reg, value); return ret; } static u32 esdhc_le_readl(struct sdhci_host *host, int reg) { u32 ret; u32 value; value = ioread32(host->ioaddr + reg); ret = esdhc_readl_fixup(host, reg, value); return ret; } static u16 esdhc_be_readw(struct sdhci_host *host, int reg) { u16 ret; u32 value; int base = reg & ~0x3; value = ioread32be(host->ioaddr + base); ret = esdhc_readw_fixup(host, reg, value); return ret; } static u16 esdhc_le_readw(struct sdhci_host *host, int reg) { u16 ret; u32 value; int base = reg & ~0x3; value = ioread32(host->ioaddr + base); ret = esdhc_readw_fixup(host, reg, value); return ret; } static u8 esdhc_be_readb(struct sdhci_host *host, int reg) { u8 ret; u32 value; int base = reg & ~0x3; value = ioread32be(host->ioaddr + base); ret = esdhc_readb_fixup(host, reg, value); return ret; } static u8 esdhc_le_readb(struct sdhci_host *host, int reg) { u8 ret; u32 value; int base = reg & ~0x3; value = ioread32(host->ioaddr + base); ret = esdhc_readb_fixup(host, reg, value); return ret; } static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg) { u32 value; value = esdhc_writel_fixup(host, reg, val, 0); iowrite32be(value, host->ioaddr + reg); } static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg) { u32 value; value = esdhc_writel_fixup(host, reg, val, 0); iowrite32(value, host->ioaddr + reg); } static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg) { int base = reg & ~0x3; u32 value; u32 ret; value = ioread32be(host->ioaddr + base); ret = esdhc_writew_fixup(host, reg, val, value); if (reg != SDHCI_TRANSFER_MODE) iowrite32be(ret, host->ioaddr + base); } static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg) { int base = reg & ~0x3; u32 value; u32 ret; value = ioread32(host->ioaddr + base); ret = esdhc_writew_fixup(host, reg, val, value); if (reg != SDHCI_TRANSFER_MODE) iowrite32(ret, host->ioaddr + base); } static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg) { int base = reg & ~0x3; u32 value; u32 ret; value = ioread32be(host->ioaddr + base); ret = esdhc_writeb_fixup(host, reg, val, value); iowrite32be(ret, host->ioaddr + base); } static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg) { int base = reg & ~0x3; u32 value; u32 ret; value = ioread32(host->ioaddr + base); ret = esdhc_writeb_fixup(host, reg, val, value); iowrite32(ret, host->ioaddr + base); } /* * For Abort or Suspend after Stop at Block Gap, ignore the ADMA * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC]) * and Block Gap Event(IRQSTAT[BGE]) are also set. * For Continue, apply soft reset for data(SYSCTL[RSTD]); * and re-issue the entire read transaction from beginning. */ static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); bool applicable; dma_addr_t dmastart; dma_addr_t dmanow; applicable = (intmask & SDHCI_INT_DATA_END) && (intmask & SDHCI_INT_BLK_GAP) && (esdhc->vendor_ver == VENDOR_V_23); if (!applicable) return; host->data->error = 0; dmastart = sg_dma_address(host->data->sg); dmanow = dmastart + host->data->bytes_xfered; /* * Force update to the next DMA block boundary. */ dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) + SDHCI_DEFAULT_BOUNDARY_SIZE; host->data->bytes_xfered = dmanow - dmastart; sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS); } static int esdhc_of_enable_dma(struct sdhci_host *host) { u32 value; value = sdhci_readl(host, ESDHC_DMA_SYSCTL); value |= ESDHC_DMA_SNOOP; sdhci_writel(host, value, ESDHC_DMA_SYSCTL); return 0; } static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); if (esdhc->peripheral_clock) return esdhc->peripheral_clock; else return pltfm_host->clock; } static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); unsigned int clock; if (esdhc->peripheral_clock) clock = esdhc->peripheral_clock; else clock = pltfm_host->clock; return clock / 256 / 16; } static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host); int pre_div = 1; int div = 1; u32 timeout; u32 temp; host->mmc->actual_clock = 0; if (clock == 0) return; /* Workaround to start pre_div at 2 for VNN < VENDOR_V_23 */ if (esdhc->vendor_ver < VENDOR_V_23) pre_div = 2; /* Workaround to reduce the clock frequency for p1010 esdhc */ if (of_find_compatible_node(NULL, NULL, "fsl,p1010-esdhc")) { if (clock > 20000000) clock -= 5000000; if (clock > 40000000) clock -= 5000000; } temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); temp &= ~(ESDHC_CLOCK_SDCLKEN | ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN | ESDHC_CLOCK_MASK); sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL); while (host->max_clk / pre_div / 16 > clock && pre_div < 256) pre_div *= 2; while (host->max_clk / pre_div / div > clock && div < 16) div++; dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n", clock, host->max_clk / pre_div / div); host->mmc->actual_clock = host->max_clk / pre_div / div; pre_div >>= 1; div--; temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); temp |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN | ESDHC_CLOCK_PEREN | (div << ESDHC_DIVIDER_SHIFT) | (pre_div << ESDHC_PREDIV_SHIFT)); sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL); /* Wait max 20 ms */ timeout = 20; while (!(sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)) { if (timeout == 0) { pr_err("%s: Internal clock never stabilised.\n", mmc_hostname(host->mmc)); return; } timeout--; mdelay(1); } temp |= ESDHC_CLOCK_SDCLKEN; sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL); } static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width) { u32 ctrl; ctrl = sdhci_readl(host, ESDHC_PROCTL); ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK); switch (width) { case MMC_BUS_WIDTH_8: ctrl |= ESDHC_CTRL_8BITBUS; break; case MMC_BUS_WIDTH_4: ctrl |= ESDHC_CTRL_4BITBUS; break; default: break; } sdhci_writel(host, ctrl, ESDHC_PROCTL); } static void esdhc_clock_enable(struct sdhci_host *host, bool enable) { u32 val; ktime_t timeout; val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL); if (enable) val |= ESDHC_CLOCK_SDCLKEN; else val &= ~ESDHC_CLOCK_SDCLKEN; sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL); /* Wait max 20 ms */ timeout = ktime_add_ms(ktime_get(), 20); val = ESDHC_CLOCK_STABLE; while (!(sdhci_readl(host, ESDHC_PRSSTAT) & val)) { if (ktime_after(ktime_get(), timeout)) { pr_err("%s: Internal clock never stabilised.\n", mmc_hostname(host->mmc)); break; } udelay(10); } } static void esdhc_reset(struct sdhci_host *host, u8 mask) { sdhci_reset(host, mask); sdhci_writel(host, host->ier, SDHCI_INT_ENABLE); sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE); } /* The SCFG, Supplemental Configuration Unit, provides SoC specific * configuration and status registers for the device. There is a * SDHC IO VSEL control register on SCFG for some platforms. It's * used to support SDHC IO voltage switching. */ static const struct of_device_id scfg_device_ids[] = { { .compatible = "fsl,t1040-scfg", }, { .compatible = "fsl,ls1012a-scfg", }, { .compatible = "fsl,ls1046a-scfg", }, {} }; /* SDHC IO VSEL control register definition */ #define SCFG_SDHCIOVSELCR 0x408 #define SDHCIOVSELCR_TGLEN 0x80000000 #define SDHCIOVSELCR_VSELVAL 0x60000000 #define SDHCIOVSELCR_SDHC_VS 0x00000001 static int esdhc_signal_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host = mmc_priv(mmc); struct device_node *scfg_node; void __iomem *scfg_base = NULL; u32 sdhciovselcr; u32 val; /* * Signal Voltage Switching is only applicable for Host Controllers * v3.00 and above. */ if (host->version < SDHCI_SPEC_300) return 0; val = sdhci_readl(host, ESDHC_PROCTL); switch (ios->signal_voltage) { case MMC_SIGNAL_VOLTAGE_330: val &= ~ESDHC_VOLT_SEL; sdhci_writel(host, val, ESDHC_PROCTL); return 0; case MMC_SIGNAL_VOLTAGE_180: scfg_node = of_find_matching_node(NULL, scfg_device_ids); if (scfg_node) scfg_base = of_iomap(scfg_node, 0); if (scfg_base) { sdhciovselcr = SDHCIOVSELCR_TGLEN | SDHCIOVSELCR_VSELVAL; iowrite32be(sdhciovselcr, scfg_base + SCFG_SDHCIOVSELCR); val |= ESDHC_VOLT_SEL; sdhci_writel(host, val, ESDHC_PROCTL); mdelay(5); sdhciovselcr = SDHCIOVSELCR_TGLEN | SDHCIOVSELCR_SDHC_VS; iowrite32be(sdhciovselcr, scfg_base + SCFG_SDHCIOVSELCR); iounmap(scfg_base); } else { val |= ESDHC_VOLT_SEL; sdhci_writel(host, val, ESDHC_PROCTL); } return 0; default: return 0; } } static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode) { struct sdhci_host *host = mmc_priv(mmc); u32 val; /* Use tuning block for tuning procedure */ esdhc_clock_enable(host, false); val = sdhci_readl(host, ESDHC_DMA_SYSCTL); val |= ESDHC_FLUSH_ASYNC_FIFO; sdhci_writel(host, val, ESDHC_DMA_SYSCTL); val = sdhci_readl(host, ESDHC_TBCTL); val |= ESDHC_TB_EN; sdhci_writel(host, val, ESDHC_TBCTL); esdhc_clock_enable(host, true); return sdhci_execute_tuning(mmc, opcode); } #ifdef CONFIG_PM_SLEEP static u32 esdhc_proctl; static int esdhc_of_suspend(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL); if (host->tuning_mode != SDHCI_TUNING_MODE_3) mmc_retune_needed(host->mmc); return sdhci_suspend_host(host); } static int esdhc_of_resume(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); int ret = sdhci_resume_host(host); if (ret == 0) { /* Isn't this already done by sdhci_resume_host() ? --rmk */ esdhc_of_enable_dma(host); sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL); } return ret; } #endif static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops, esdhc_of_suspend, esdhc_of_resume); static const struct sdhci_ops sdhci_esdhc_be_ops = { .read_l = esdhc_be_readl, .read_w = esdhc_be_readw, .read_b = esdhc_be_readb, .write_l = esdhc_be_writel, .write_w = esdhc_be_writew, .write_b = esdhc_be_writeb, .set_clock = esdhc_of_set_clock, .enable_dma = esdhc_of_enable_dma, .get_max_clock = esdhc_of_get_max_clock, .get_min_clock = esdhc_of_get_min_clock, .adma_workaround = esdhc_of_adma_workaround, .set_bus_width = esdhc_pltfm_set_bus_width, .reset = esdhc_reset, .set_uhs_signaling = sdhci_set_uhs_signaling, }; static const struct sdhci_ops sdhci_esdhc_le_ops = { .read_l = esdhc_le_readl, .read_w = esdhc_le_readw, .read_b = esdhc_le_readb, .write_l = esdhc_le_writel, .write_w = esdhc_le_writew, .write_b = esdhc_le_writeb, .set_clock = esdhc_of_set_clock, .enable_dma = esdhc_of_enable_dma, .get_max_clock = esdhc_of_get_max_clock, .get_min_clock = esdhc_of_get_min_clock, .adma_workaround = esdhc_of_adma_workaround, .set_bus_width = esdhc_pltfm_set_bus_width, .reset = esdhc_reset, .set_uhs_signaling = sdhci_set_uhs_signaling, }; static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = { .quirks = ESDHC_DEFAULT_QUIRKS | #ifdef CONFIG_PPC SDHCI_QUIRK_BROKEN_CARD_DETECTION | #endif SDHCI_QUIRK_NO_CARD_NO_RESET | SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .ops = &sdhci_esdhc_be_ops, }; static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = { .quirks = ESDHC_DEFAULT_QUIRKS | SDHCI_QUIRK_NO_CARD_NO_RESET | SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC, .ops = &sdhci_esdhc_le_ops, }; static struct soc_device_attribute soc_incorrect_hostver[] = { { .family = "QorIQ T4240", .revision = "1.0", }, { .family = "QorIQ T4240", .revision = "2.0", }, { }, }; static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host; struct sdhci_esdhc *esdhc; struct device_node *np; struct clk *clk; u32 val; u16 host_ver; pltfm_host = sdhci_priv(host); esdhc = sdhci_pltfm_priv(pltfm_host); host_ver = sdhci_readw(host, SDHCI_HOST_VERSION); esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >> SDHCI_VENDOR_VER_SHIFT; esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK; if (soc_device_match(soc_incorrect_hostver)) esdhc->quirk_incorrect_hostver = true; else esdhc->quirk_incorrect_hostver = false; np = pdev->dev.of_node; clk = of_clk_get(np, 0); if (!IS_ERR(clk)) { /* * esdhc->peripheral_clock would be assigned with a value * which is eSDHC base clock when use periperal clock. * For ls1046a, the clock value got by common clk API is * peripheral clock while the eSDHC base clock is 1/2 * peripheral clock. */ if (of_device_is_compatible(np, "fsl,ls1046a-esdhc")) esdhc->peripheral_clock = clk_get_rate(clk) / 2; else esdhc->peripheral_clock = clk_get_rate(clk); clk_put(clk); } if (esdhc->peripheral_clock) { esdhc_clock_enable(host, false); val = sdhci_readl(host, ESDHC_DMA_SYSCTL); val |= ESDHC_PERIPHERAL_CLK_SEL; sdhci_writel(host, val, ESDHC_DMA_SYSCTL); esdhc_clock_enable(host, true); } } static int sdhci_esdhc_probe(struct platform_device *pdev) { struct sdhci_host *host; struct device_node *np; struct sdhci_pltfm_host *pltfm_host; struct sdhci_esdhc *esdhc; int ret; np = pdev->dev.of_node; if (of_property_read_bool(np, "little-endian")) host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata, sizeof(struct sdhci_esdhc)); else host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata, sizeof(struct sdhci_esdhc)); if (IS_ERR(host)) return PTR_ERR(host); host->mmc_host_ops.start_signal_voltage_switch = esdhc_signal_voltage_switch; host->mmc_host_ops.execute_tuning = esdhc_execute_tuning; esdhc_init(pdev, host); sdhci_get_of_property(pdev); pltfm_host = sdhci_priv(host); esdhc = sdhci_pltfm_priv(pltfm_host); if (esdhc->vendor_ver == VENDOR_V_22) host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23; if (esdhc->vendor_ver > VENDOR_V_22) host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ; if (of_device_is_compatible(np, "fsl,p5040-esdhc") || of_device_is_compatible(np, "fsl,p5020-esdhc") || of_device_is_compatible(np, "fsl,p4080-esdhc") || of_device_is_compatible(np, "fsl,p1020-esdhc") || of_device_is_compatible(np, "fsl,t1040-esdhc")) host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION; if (of_device_is_compatible(np, "fsl,ls1021a-esdhc")) host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; if (of_device_is_compatible(np, "fsl,p2020-esdhc")) { /* * Freescale messed up with P2020 as it has a non-standard * host control register */ host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL; } /* call to generic mmc_of_parse to support additional capabilities */ ret = mmc_of_parse(host->mmc); if (ret) goto err; mmc_of_parse_voltage(np, &host->ocr_mask); ret = sdhci_add_host(host); if (ret) goto err; return 0; err: sdhci_pltfm_free(pdev); return ret; } static const struct of_device_id sdhci_esdhc_of_match[] = { { .compatible = "fsl,mpc8379-esdhc" }, { .compatible = "fsl,mpc8536-esdhc" }, { .compatible = "fsl,esdhc" }, { } }; MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match); static struct platform_driver sdhci_esdhc_driver = { .driver = { .name = "sdhci-esdhc", .of_match_table = sdhci_esdhc_of_match, .pm = &esdhc_of_dev_pm_ops, }, .probe = sdhci_esdhc_probe, .remove = sdhci_pltfm_unregister, }; module_platform_driver(sdhci_esdhc_driver); MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC"); MODULE_AUTHOR("Xiaobo Xie , " "Anton Vorontsov "); MODULE_LICENSE("GPL v2");