/* bnx2x_main.c: Broadcom Everest network driver. * * Copyright (c) 2007-2013 Broadcom Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. * * Maintained by: Eilon Greenstein * Written by: Eliezer Tamir * Based on code from Michael Chan's bnx2 driver * UDP CSUM errata workaround by Arik Gendelman * Slowpath and fastpath rework by Vladislav Zolotarov * Statistics and Link management by Yitchak Gertner * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include /* for dev_info() */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bnx2x.h" #include "bnx2x_init.h" #include "bnx2x_init_ops.h" #include "bnx2x_cmn.h" #include "bnx2x_vfpf.h" #include "bnx2x_dcb.h" #include "bnx2x_sp.h" #include #include "bnx2x_fw_file_hdr.h" /* FW files */ #define FW_FILE_VERSION \ __stringify(BCM_5710_FW_MAJOR_VERSION) "." \ __stringify(BCM_5710_FW_MINOR_VERSION) "." \ __stringify(BCM_5710_FW_REVISION_VERSION) "." \ __stringify(BCM_5710_FW_ENGINEERING_VERSION) #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" /* Time in jiffies before concluding the transmitter is hung */ #define TX_TIMEOUT (5*HZ) static char version[] = "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver " DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; MODULE_AUTHOR("Eliezer Tamir"); MODULE_DESCRIPTION("Broadcom NetXtreme II " "BCM57710/57711/57711E/" "57712/57712_MF/57800/57800_MF/57810/57810_MF/" "57840/57840_MF Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_MODULE_VERSION); MODULE_FIRMWARE(FW_FILE_NAME_E1); MODULE_FIRMWARE(FW_FILE_NAME_E1H); MODULE_FIRMWARE(FW_FILE_NAME_E2); int num_queues; module_param(num_queues, int, 0); MODULE_PARM_DESC(num_queues, " Set number of queues (default is as a number of CPUs)"); static int disable_tpa; module_param(disable_tpa, int, 0); MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); int int_mode; module_param(int_mode, int, 0); MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " "(1 INT#x; 2 MSI)"); static int dropless_fc; module_param(dropless_fc, int, 0); MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); static int mrrs = -1; module_param(mrrs, int, 0); MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); static int debug; module_param(debug, int, 0); MODULE_PARM_DESC(debug, " Default debug msglevel"); struct workqueue_struct *bnx2x_wq; struct bnx2x_mac_vals { u32 xmac_addr; u32 xmac_val; u32 emac_addr; u32 emac_val; u32 umac_addr; u32 umac_val; u32 bmac_addr; u32 bmac_val[2]; }; enum bnx2x_board_type { BCM57710 = 0, BCM57711, BCM57711E, BCM57712, BCM57712_MF, BCM57712_VF, BCM57800, BCM57800_MF, BCM57800_VF, BCM57810, BCM57810_MF, BCM57810_VF, BCM57840_4_10, BCM57840_2_20, BCM57840_MF, BCM57840_VF, BCM57811, BCM57811_MF, BCM57840_O, BCM57840_MFO, BCM57811_VF }; /* indexed by board_type, above */ static struct { char *name; } board_info[] = { [BCM57710] = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" }, [BCM57711] = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" }, [BCM57711E] = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" }, [BCM57712] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" }, [BCM57712_MF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" }, [BCM57712_VF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" }, [BCM57800] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" }, [BCM57800_MF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" }, [BCM57800_VF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" }, [BCM57810] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" }, [BCM57810_MF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" }, [BCM57810_VF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" }, [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" }, [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" }, [BCM57840_MF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" }, [BCM57840_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }, [BCM57811] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" }, [BCM57811_MF] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" }, [BCM57840_O] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" }, [BCM57840_MFO] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" }, [BCM57811_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" } }; #ifndef PCI_DEVICE_ID_NX2_57710 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710 #endif #ifndef PCI_DEVICE_ID_NX2_57711 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711 #endif #ifndef PCI_DEVICE_ID_NX2_57711E #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E #endif #ifndef PCI_DEVICE_ID_NX2_57712 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712 #endif #ifndef PCI_DEVICE_ID_NX2_57712_MF #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF #endif #ifndef PCI_DEVICE_ID_NX2_57712_VF #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF #endif #ifndef PCI_DEVICE_ID_NX2_57800 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800 #endif #ifndef PCI_DEVICE_ID_NX2_57800_MF #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF #endif #ifndef PCI_DEVICE_ID_NX2_57800_VF #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF #endif #ifndef PCI_DEVICE_ID_NX2_57810 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810 #endif #ifndef PCI_DEVICE_ID_NX2_57810_MF #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF #endif #ifndef PCI_DEVICE_ID_NX2_57840_O #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE #endif #ifndef PCI_DEVICE_ID_NX2_57810_VF #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF #endif #ifndef PCI_DEVICE_ID_NX2_57840_4_10 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10 #endif #ifndef PCI_DEVICE_ID_NX2_57840_2_20 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20 #endif #ifndef PCI_DEVICE_ID_NX2_57840_MFO #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE #endif #ifndef PCI_DEVICE_ID_NX2_57840_MF #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF #endif #ifndef PCI_DEVICE_ID_NX2_57840_VF #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF #endif #ifndef PCI_DEVICE_ID_NX2_57811 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811 #endif #ifndef PCI_DEVICE_ID_NX2_57811_MF #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF #endif #ifndef PCI_DEVICE_ID_NX2_57811_VF #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF #endif static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = { { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF }, { 0 } }; MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); /* Global resources for unloading a previously loaded device */ #define BNX2X_PREV_WAIT_NEEDED 1 static DEFINE_SEMAPHORE(bnx2x_prev_sem); static LIST_HEAD(bnx2x_prev_list); /**************************************************************************** * General service functions ****************************************************************************/ static void __storm_memset_dma_mapping(struct bnx2x *bp, u32 addr, dma_addr_t mapping) { REG_WR(bp, addr, U64_LO(mapping)); REG_WR(bp, addr + 4, U64_HI(mapping)); } static void storm_memset_spq_addr(struct bnx2x *bp, dma_addr_t mapping, u16 abs_fid) { u32 addr = XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); __storm_memset_dma_mapping(bp, addr, mapping); } static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, u16 pf_id) { REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), pf_id); REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), pf_id); REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), pf_id); REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), pf_id); } static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, u8 enable) { REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), enable); REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), enable); REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), enable); REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), enable); } static void storm_memset_eq_data(struct bnx2x *bp, struct event_ring_data *eq_data, u16 pfid) { size_t size = sizeof(struct event_ring_data); u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); __storm_memset_struct(bp, addr, size, (u32 *)eq_data); } static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod, u16 pfid) { u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); REG_WR16(bp, addr, eq_prod); } /* used only at init * locking is done by mcp */ static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) { pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET); } static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr) { u32 val; pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET); return val; } #define DMAE_DP_SRC_GRC "grc src_addr [%08x]" #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]" #define DMAE_DP_DST_GRC "grc dst_addr [%08x]" #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]" #define DMAE_DP_DST_NONE "dst_addr [none]" static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae, int msglvl) { u32 src_type = dmae->opcode & DMAE_COMMAND_SRC; int i; switch (dmae->opcode & DMAE_COMMAND_DST) { case DMAE_CMD_DST_PCI: if (src_type == DMAE_CMD_SRC_PCI) DP(msglvl, "DMAE: opcode 0x%08x\n" "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" "comp_addr [%x:%08x], comp_val 0x%08x\n", dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, dmae->comp_addr_hi, dmae->comp_addr_lo, dmae->comp_val); else DP(msglvl, "DMAE: opcode 0x%08x\n" "src [%08x], len [%d*4], dst [%x:%08x]\n" "comp_addr [%x:%08x], comp_val 0x%08x\n", dmae->opcode, dmae->src_addr_lo >> 2, dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, dmae->comp_addr_hi, dmae->comp_addr_lo, dmae->comp_val); break; case DMAE_CMD_DST_GRC: if (src_type == DMAE_CMD_SRC_PCI) DP(msglvl, "DMAE: opcode 0x%08x\n" "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" "comp_addr [%x:%08x], comp_val 0x%08x\n", dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, dmae->len, dmae->dst_addr_lo >> 2, dmae->comp_addr_hi, dmae->comp_addr_lo, dmae->comp_val); else DP(msglvl, "DMAE: opcode 0x%08x\n" "src [%08x], len [%d*4], dst [%08x]\n" "comp_addr [%x:%08x], comp_val 0x%08x\n", dmae->opcode, dmae->src_addr_lo >> 2, dmae->len, dmae->dst_addr_lo >> 2, dmae->comp_addr_hi, dmae->comp_addr_lo, dmae->comp_val); break; default: if (src_type == DMAE_CMD_SRC_PCI) DP(msglvl, "DMAE: opcode 0x%08x\n" "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" "comp_addr [%x:%08x] comp_val 0x%08x\n", dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, dmae->comp_val); else DP(msglvl, "DMAE: opcode 0x%08x\n" "src_addr [%08x] len [%d * 4] dst_addr [none]\n" "comp_addr [%x:%08x] comp_val 0x%08x\n", dmae->opcode, dmae->src_addr_lo >> 2, dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, dmae->comp_val); break; } for (i = 0; i < (sizeof(struct dmae_command)/4); i++) DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n", i, *(((u32 *)dmae) + i)); } /* copy command into DMAE command memory and set DMAE command go */ void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) { u32 cmd_offset; int i; cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i)); } REG_WR(bp, dmae_reg_go_c[idx], 1); } u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type) { return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | DMAE_CMD_C_ENABLE); } u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode) { return opcode & ~DMAE_CMD_SRC_RESET; } u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, bool with_comp, u8 comp_type) { u32 opcode = 0; opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | (dst_type << DMAE_COMMAND_DST_SHIFT)); opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); #ifdef __BIG_ENDIAN opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; #else opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; #endif if (with_comp) opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); return opcode; } void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, u8 src_type, u8 dst_type) { memset(dmae, 0, sizeof(struct dmae_command)); /* set the opcode */ dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, true, DMAE_COMP_PCI); /* fill in the completion parameters */ dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); dmae->comp_val = DMAE_COMP_VAL; } /* issue a dmae command over the init-channel and wait for completion */ int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae) { u32 *wb_comp = bnx2x_sp(bp, wb_comp); int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; int rc = 0; bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE); /* Lock the dmae channel. Disable BHs to prevent a dead-lock * as long as this code is called both from syscall context and * from ndo_set_rx_mode() flow that may be called from BH. */ spin_lock_bh(&bp->dmae_lock); /* reset completion */ *wb_comp = 0; /* post the command on the channel used for initializations */ bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); /* wait for completion */ udelay(5); while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { if (!cnt || (bp->recovery_state != BNX2X_RECOVERY_DONE && bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { BNX2X_ERR("DMAE timeout!\n"); rc = DMAE_TIMEOUT; goto unlock; } cnt--; udelay(50); } if (*wb_comp & DMAE_PCI_ERR_FLAG) { BNX2X_ERR("DMAE PCI error!\n"); rc = DMAE_PCI_ERROR; } unlock: spin_unlock_bh(&bp->dmae_lock); return rc; } void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, u32 len32) { int rc; struct dmae_command dmae; if (!bp->dmae_ready) { u32 *data = bnx2x_sp(bp, wb_data[0]); if (CHIP_IS_E1(bp)) bnx2x_init_ind_wr(bp, dst_addr, data, len32); else bnx2x_init_str_wr(bp, dst_addr, data, len32); return; } /* set opcode and fixed command fields */ bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); /* fill in addresses and len */ dmae.src_addr_lo = U64_LO(dma_addr); dmae.src_addr_hi = U64_HI(dma_addr); dmae.dst_addr_lo = dst_addr >> 2; dmae.dst_addr_hi = 0; dmae.len = len32; /* issue the command and wait for completion */ rc = bnx2x_issue_dmae_with_comp(bp, &dmae); if (rc) { BNX2X_ERR("DMAE returned failure %d\n", rc); bnx2x_panic(); } } void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32) { int rc; struct dmae_command dmae; if (!bp->dmae_ready) { u32 *data = bnx2x_sp(bp, wb_data[0]); int i; if (CHIP_IS_E1(bp)) for (i = 0; i < len32; i++) data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); else for (i = 0; i < len32; i++) data[i] = REG_RD(bp, src_addr + i*4); return; } /* set opcode and fixed command fields */ bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); /* fill in addresses and len */ dmae.src_addr_lo = src_addr >> 2; dmae.src_addr_hi = 0; dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); dmae.len = len32; /* issue the command and wait for completion */ rc = bnx2x_issue_dmae_with_comp(bp, &dmae); if (rc) { BNX2X_ERR("DMAE returned failure %d\n", rc); bnx2x_panic(); } } static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, u32 addr, u32 len) { int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); int offset = 0; while (len > dmae_wr_max) { bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, dmae_wr_max); offset += dmae_wr_max * 4; len -= dmae_wr_max; } bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); } static int bnx2x_mc_assert(struct bnx2x *bp) { char last_idx; int i, rc = 0; u32 row0, row1, row2, row3; /* XSTORM */ last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); if (last_idx) BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); /* print the asserts */ for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { row0 = REG_RD(bp, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); row1 = REG_RD(bp, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); row2 = REG_RD(bp, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); row3 = REG_RD(bp, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", i, row3, row2, row1, row0); rc++; } else { break; } } /* TSTORM */ last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); if (last_idx) BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); /* print the asserts */ for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { row0 = REG_RD(bp, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); row1 = REG_RD(bp, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); row2 = REG_RD(bp, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); row3 = REG_RD(bp, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", i, row3, row2, row1, row0); rc++; } else { break; } } /* CSTORM */ last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); if (last_idx) BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); /* print the asserts */ for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { row0 = REG_RD(bp, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); row1 = REG_RD(bp, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); row2 = REG_RD(bp, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); row3 = REG_RD(bp, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", i, row3, row2, row1, row0); rc++; } else { break; } } /* USTORM */ last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); if (last_idx) BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); /* print the asserts */ for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { row0 = REG_RD(bp, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); row1 = REG_RD(bp, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); row2 = REG_RD(bp, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); row3 = REG_RD(bp, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", i, row3, row2, row1, row0); rc++; } else { break; } } return rc; } void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) { u32 addr, val; u32 mark, offset; __be32 data[9]; int word; u32 trace_shmem_base; if (BP_NOMCP(bp)) { BNX2X_ERR("NO MCP - can not dump\n"); return; } netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", (bp->common.bc_ver & 0xff0000) >> 16, (bp->common.bc_ver & 0xff00) >> 8, (bp->common.bc_ver & 0xff)); val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); if (BP_PATH(bp) == 0) trace_shmem_base = bp->common.shmem_base; else trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); addr = trace_shmem_base - 0x800; /* validate TRCB signature */ mark = REG_RD(bp, addr); if (mark != MFW_TRACE_SIGNATURE) { BNX2X_ERR("Trace buffer signature is missing."); return ; } /* read cyclic buffer pointer */ addr += 4; mark = REG_RD(bp, addr); mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH) + ((mark + 0x3) & ~0x3) - 0x08000000; printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); printk("%s", lvl); /* dump buffer after the mark */ for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) { for (word = 0; word < 8; word++) data[word] = htonl(REG_RD(bp, offset + 4*word)); data[8] = 0x0; pr_cont("%s", (char *)data); } /* dump buffer before the mark */ for (offset = addr + 4; offset <= mark; offset += 0x8*4) { for (word = 0; word < 8; word++) data[word] = htonl(REG_RD(bp, offset + 4*word)); data[8] = 0x0; pr_cont("%s", (char *)data); } printk("%s" "end of fw dump\n", lvl); } static void bnx2x_fw_dump(struct bnx2x *bp) { bnx2x_fw_dump_lvl(bp, KERN_ERR); } static void bnx2x_hc_int_disable(struct bnx2x *bp) { int port = BP_PORT(bp); u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; u32 val = REG_RD(bp, addr); /* in E1 we must use only PCI configuration space to disable * MSI/MSIX capability * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block */ if (CHIP_IS_E1(bp)) { /* Since IGU_PF_CONF_MSI_MSIX_EN still always on * Use mask register to prevent from HC sending interrupts * after we exit the function */ REG_WR(bp, HC_REG_INT_MASK + port*4, 0); val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0); } else val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0); DP(NETIF_MSG_IFDOWN, "write %x to HC %d (addr 0x%x)\n", val, port, addr); /* flush all outstanding writes */ mmiowb(); REG_WR(bp, addr, val); if (REG_RD(bp, addr) != val) BNX2X_ERR("BUG! Proper val not read from IGU!\n"); } static void bnx2x_igu_int_disable(struct bnx2x *bp) { u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); val &= ~(IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN); DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); /* flush all outstanding writes */ mmiowb(); REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) BNX2X_ERR("BUG! Proper val not read from IGU!\n"); } static void bnx2x_int_disable(struct bnx2x *bp) { if (bp->common.int_block == INT_BLOCK_HC) bnx2x_hc_int_disable(bp); else bnx2x_igu_int_disable(bp); } void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int) { int i; u16 j; struct hc_sp_status_block_data sp_sb_data; int func = BP_FUNC(bp); #ifdef BNX2X_STOP_ON_ERROR u16 start = 0, end = 0; u8 cos; #endif if (disable_int) bnx2x_int_disable(bp); bp->stats_state = STATS_STATE_DISABLED; bp->eth_stats.unrecoverable_error++; DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); BNX2X_ERR("begin crash dump -----------------\n"); /* Indices */ /* Common */ BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", bp->def_idx, bp->def_att_idx, bp->attn_state, bp->spq_prod_idx, bp->stats_counter); BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n", bp->def_status_blk->atten_status_block.attn_bits, bp->def_status_blk->atten_status_block.attn_bits_ack, bp->def_status_blk->atten_status_block.status_block_id, bp->def_status_blk->atten_status_block.attn_bits_index); BNX2X_ERR(" def ("); for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) pr_cont("0x%x%s", bp->def_status_blk->sp_sb.index_values[i], (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " "); for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM + CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + i*sizeof(u32)); pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n", sp_sb_data.igu_sb_id, sp_sb_data.igu_seg_id, sp_sb_data.p_func.pf_id, sp_sb_data.p_func.vnic_id, sp_sb_data.p_func.vf_id, sp_sb_data.p_func.vf_valid, sp_sb_data.state); for_each_eth_queue(bp, i) { struct bnx2x_fastpath *fp = &bp->fp[i]; int loop; struct hc_status_block_data_e2 sb_data_e2; struct hc_status_block_data_e1x sb_data_e1x; struct hc_status_block_sm *hc_sm_p = CHIP_IS_E1x(bp) ? sb_data_e1x.common.state_machine : sb_data_e2.common.state_machine; struct hc_index_data *hc_index_p = CHIP_IS_E1x(bp) ? sb_data_e1x.index_data : sb_data_e2.index_data; u8 data_size, cos; u32 *sb_data_p; struct bnx2x_fp_txdata txdata; /* Rx */ BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n", i, fp->rx_bd_prod, fp->rx_bd_cons, fp->rx_comp_prod, fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n", fp->rx_sge_prod, fp->last_max_sge, le16_to_cpu(fp->fp_hc_idx)); /* Tx */ for_each_cos_in_tx_queue(fp, cos) { txdata = *fp->txdata_ptr[cos]; BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n", i, txdata.tx_pkt_prod, txdata.tx_pkt_cons, txdata.tx_bd_prod, txdata.tx_bd_cons, le16_to_cpu(*txdata.tx_cons_sb)); } loop = CHIP_IS_E1x(bp) ? HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; /* host sb data */ if (IS_FCOE_FP(fp)) continue; BNX2X_ERR(" run indexes ("); for (j = 0; j < HC_SB_MAX_SM; j++) pr_cont("0x%x%s", fp->sb_running_index[j], (j == HC_SB_MAX_SM - 1) ? ")" : " "); BNX2X_ERR(" indexes ("); for (j = 0; j < loop; j++) pr_cont("0x%x%s", fp->sb_index_values[j], (j == loop - 1) ? ")" : " "); /* fw sb data */ data_size = CHIP_IS_E1x(bp) ? sizeof(struct hc_status_block_data_e1x) : sizeof(struct hc_status_block_data_e2); data_size /= sizeof(u32); sb_data_p = CHIP_IS_E1x(bp) ? (u32 *)&sb_data_e1x : (u32 *)&sb_data_e2; /* copy sb data in here */ for (j = 0; j < data_size; j++) *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + j * sizeof(u32)); if (!CHIP_IS_E1x(bp)) { pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", sb_data_e2.common.p_func.pf_id, sb_data_e2.common.p_func.vf_id, sb_data_e2.common.p_func.vf_valid, sb_data_e2.common.p_func.vnic_id, sb_data_e2.common.same_igu_sb_1b, sb_data_e2.common.state); } else { pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", sb_data_e1x.common.p_func.pf_id, sb_data_e1x.common.p_func.vf_id, sb_data_e1x.common.p_func.vf_valid, sb_data_e1x.common.p_func.vnic_id, sb_data_e1x.common.same_igu_sb_1b, sb_data_e1x.common.state); } /* SB_SMs data */ for (j = 0; j < HC_SB_MAX_SM; j++) { pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", j, hc_sm_p[j].__flags, hc_sm_p[j].igu_sb_id, hc_sm_p[j].igu_seg_id, hc_sm_p[j].time_to_expire, hc_sm_p[j].timer_value); } /* Indices data */ for (j = 0; j < loop; j++) { pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, hc_index_p[j].flags, hc_index_p[j].timeout); } } #ifdef BNX2X_STOP_ON_ERROR /* event queue */ BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod); for (i = 0; i < NUM_EQ_DESC; i++) { u32 *data = (u32 *)&bp->eq_ring[i].message.data; BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n", i, bp->eq_ring[i].message.opcode, bp->eq_ring[i].message.error); BNX2X_ERR("data: %x %x %x\n", data[0], data[1], data[2]); } /* Rings */ /* Rx */ for_each_valid_rx_queue(bp, i) { struct bnx2x_fastpath *fp = &bp->fp[i]; start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); for (j = start; j != end; j = RX_BD(j + 1)) { u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j]; struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n", i, j, rx_bd[1], rx_bd[0], sw_bd->data); } start = RX_SGE(fp->rx_sge_prod); end = RX_SGE(fp->last_max_sge); for (j = start; j != end; j = RX_SGE(j + 1)) { u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j]; struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n", i, j, rx_sge[1], rx_sge[0], sw_page->page); } start = RCQ_BD(fp->rx_comp_cons - 10); end = RCQ_BD(fp->rx_comp_cons + 503); for (j = start; j != end; j = RCQ_BD(j + 1)) { u32 *cqe = (u32 *)&fp->rx_comp_ring[j]; BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", i, j, cqe[0], cqe[1], cqe[2], cqe[3]); } } /* Tx */ for_each_valid_tx_queue(bp, i) { struct bnx2x_fastpath *fp = &bp->fp[i]; for_each_cos_in_tx_queue(fp, cos) { struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); for (j = start; j != end; j = TX_BD(j + 1)) { struct sw_tx_bd *sw_bd = &txdata->tx_buf_ring[j]; BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", i, cos, j, sw_bd->skb, sw_bd->first_bd); } start = TX_BD(txdata->tx_bd_cons - 10); end = TX_BD(txdata->tx_bd_cons + 254); for (j = start; j != end; j = TX_BD(j + 1)) { u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j]; BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", i, cos, j, tx_bd[0], tx_bd[1], tx_bd[2], tx_bd[3]); } } } #endif bnx2x_fw_dump(bp); bnx2x_mc_assert(bp); BNX2X_ERR("end crash dump -----------------\n"); } /* * FLR Support for E2 * * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW * initialization. */ #define FLR_WAIT_USEC 10000 /* 10 milliseconds */ #define FLR_WAIT_INTERVAL 50 /* usec */ #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ struct pbf_pN_buf_regs { int pN; u32 init_crd; u32 crd; u32 crd_freed; }; struct pbf_pN_cmd_regs { int pN; u32 lines_occup; u32 lines_freed; }; static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, struct pbf_pN_buf_regs *regs, u32 poll_count) { u32 init_crd, crd, crd_start, crd_freed, crd_freed_start; u32 cur_cnt = poll_count; crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); crd = crd_start = REG_RD(bp, regs->crd); init_crd = REG_RD(bp, regs->init_crd); DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd); DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) < (init_crd - crd_start))) { if (cur_cnt--) { udelay(FLR_WAIT_INTERVAL); crd = REG_RD(bp, regs->crd); crd_freed = REG_RD(bp, regs->crd_freed); } else { DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", regs->pN); DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n", regs->pN, crd); DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); break; } } DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); } static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, struct pbf_pN_cmd_regs *regs, u32 poll_count) { u32 occup, to_free, freed, freed_start; u32 cur_cnt = poll_count; occup = to_free = REG_RD(bp, regs->lines_occup); freed = freed_start = REG_RD(bp, regs->lines_freed); DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) { if (cur_cnt--) { udelay(FLR_WAIT_INTERVAL); occup = REG_RD(bp, regs->lines_occup); freed = REG_RD(bp, regs->lines_freed); } else { DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", regs->pN); DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); break; } } DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); } static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg, u32 expected, u32 poll_count) { u32 cur_cnt = poll_count; u32 val; while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) udelay(FLR_WAIT_INTERVAL); return val; } int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, char *msg, u32 poll_cnt) { u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); if (val != 0) { BNX2X_ERR("%s usage count=%d\n", msg, val); return 1; } return 0; } /* Common routines with VF FLR cleanup */ u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp) { /* adjust polling timeout */ if (CHIP_REV_IS_EMUL(bp)) return FLR_POLL_CNT * 2000; if (CHIP_REV_IS_FPGA(bp)) return FLR_POLL_CNT * 120; return FLR_POLL_CNT; } void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count) { struct pbf_pN_cmd_regs cmd_regs[] = { {0, (CHIP_IS_E3B0(bp)) ? PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY, (CHIP_IS_E3B0(bp)) ? PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT}, {1, (CHIP_IS_E3B0(bp)) ? PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY, (CHIP_IS_E3B0(bp)) ? PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT}, {4, (CHIP_IS_E3B0(bp)) ? PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY, (CHIP_IS_E3B0(bp)) ? PBF_REG_TQ_LINES_FREED_CNT_LB_Q : PBF_REG_P4_TQ_LINES_FREED_CNT} }; struct pbf_pN_buf_regs buf_regs[] = { {0, (CHIP_IS_E3B0(bp)) ? PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD , (CHIP_IS_E3B0(bp)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT, (CHIP_IS_E3B0(bp)) ? PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, {1, (CHIP_IS_E3B0(bp)) ? PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD, (CHIP_IS_E3B0(bp)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT, (CHIP_IS_E3B0(bp)) ? PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, {4, (CHIP_IS_E3B0(bp)) ? PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD, (CHIP_IS_E3B0(bp)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT, (CHIP_IS_E3B0(bp)) ? PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, }; int i; /* Verify the command queues are flushed P0, P1, P4 */ for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); /* Verify the transmission buffers are flushed P0, P1, P4 */ for (i = 0; i < ARRAY_SIZE(buf_regs); i++) bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); } #define OP_GEN_PARAM(param) \ (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) #define OP_GEN_TYPE(type) \ (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) #define OP_GEN_AGG_VECT(index) \ (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt) { u32 op_gen_command = 0; u32 comp_addr = BAR_CSTRORM_INTMEM + CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); int ret = 0; if (REG_RD(bp, comp_addr)) { BNX2X_ERR("Cleanup complete was not 0 before sending\n"); return 1; } op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); op_gen_command |= OP_GEN_AGG_VECT(clnup_func); op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command); if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { BNX2X_ERR("FW final cleanup did not succeed\n"); DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", (REG_RD(bp, comp_addr))); bnx2x_panic(); return 1; } /* Zero completion for next FLR */ REG_WR(bp, comp_addr, 0); return ret; } u8 bnx2x_is_pcie_pending(struct pci_dev *dev) { u16 status; pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); return status & PCI_EXP_DEVSTA_TRPND; } /* PF FLR specific routines */ static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt) { /* wait for CFC PF usage-counter to zero (includes all the VFs) */ if (bnx2x_flr_clnup_poll_hw_counter(bp, CFC_REG_NUM_LCIDS_INSIDE_PF, "CFC PF usage counter timed out", poll_cnt)) return 1; /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ if (bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_PF_USAGE_CNT, "DQ PF usage counter timed out", poll_cnt)) return 1; /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ if (bnx2x_flr_clnup_poll_hw_counter(bp, QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), "QM PF usage counter timed out", poll_cnt)) return 1; /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ if (bnx2x_flr_clnup_poll_hw_counter(bp, TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), "Timers VNIC usage counter timed out", poll_cnt)) return 1; if (bnx2x_flr_clnup_poll_hw_counter(bp, TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), "Timers NUM_SCANS usage counter timed out", poll_cnt)) return 1; /* Wait DMAE PF usage counter to zero */ if (bnx2x_flr_clnup_poll_hw_counter(bp, dmae_reg_go_c[INIT_DMAE_C(bp)], "DMAE command register timed out", poll_cnt)) return 1; return 0; } static void bnx2x_hw_enable_status(struct bnx2x *bp) { u32 val; val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); val = REG_RD(bp, PBF_REG_DISABLE_PF); DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); } static int bnx2x_pf_flr_clnup(struct bnx2x *bp) { u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); /* Re-enable PF target read access */ REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); /* Poll HW usage counters */ DP(BNX2X_MSG_SP, "Polling usage counters\n"); if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) return -EBUSY; /* Zero the igu 'trailing edge' and 'leading edge' */ /* Send the FW cleanup command */ if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt)) return -EBUSY; /* ATC cleanup */ /* Verify TX hw is flushed */ bnx2x_tx_hw_flushed(bp, poll_cnt); /* Wait 100ms (not adjusted according to platform) */ msleep(100); /* Verify no pending pci transactions */ if (bnx2x_is_pcie_pending(bp->pdev)) BNX2X_ERR("PCIE Transactions still pending\n"); /* Debug */ bnx2x_hw_enable_status(bp); /* * Master enable - Due to WB DMAE writes performed before this * register is re-initialized as part of the regular function init */ REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); return 0; } static void bnx2x_hc_int_enable(struct bnx2x *bp) { int port = BP_PORT(bp); u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; u32 val = REG_RD(bp, addr); bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; if (msix) { val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | HC_CONFIG_0_REG_INT_LINE_EN_0); val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0); if (single_msix) val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; } else if (msi) { val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0); } else { val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0); if (!CHIP_IS_E1(bp)) { DP(NETIF_MSG_IFUP, "write %x to HC %d (addr 0x%x)\n", val, port, addr); REG_WR(bp, addr, val); val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; } } if (CHIP_IS_E1(bp)) REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); DP(NETIF_MSG_IFUP, "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); REG_WR(bp, addr, val); /* * Ensure that HC_CONFIG is written before leading/trailing edge config */ mmiowb(); barrier(); if (!CHIP_IS_E1(bp)) { /* init leading/trailing edge */ if (IS_MF(bp)) { val = (0xee0f | (1 << (BP_VN(bp) + 4))); if (bp->port.pmf) /* enable nig and gpio3 attention */ val |= 0x1100; } else val = 0xffff; REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); } /* Make sure that interrupts are indeed enabled from here on */ mmiowb(); } static void bnx2x_igu_int_enable(struct bnx2x *bp) { u32 val; bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); if (msix) { val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN); val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN); if (single_msix) val |= IGU_PF_CONF_SINGLE_ISR_EN; } else if (msi) { val &= ~IGU_PF_CONF_INT_LINE_EN; val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN); } else { val &= ~IGU_PF_CONF_MSI_MSIX_EN; val |= (IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN); } /* Clean previous status - need to configure igu prior to ack*/ if ((!msix) || single_msix) { REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); bnx2x_ack_int(bp); } val |= IGU_PF_CONF_FUNC_EN; DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n", val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); if (val & IGU_PF_CONF_INT_LINE_EN) pci_intx(bp->pdev, true); barrier(); /* init leading/trailing edge */ if (IS_MF(bp)) { val = (0xee0f | (1 << (BP_VN(bp) + 4))); if (bp->port.pmf) /* enable nig and gpio3 attention */ val |= 0x1100; } else val = 0xffff; REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); /* Make sure that interrupts are indeed enabled from here on */ mmiowb(); } void bnx2x_int_enable(struct bnx2x *bp) { if (bp->common.int_block == INT_BLOCK_HC) bnx2x_hc_int_enable(bp); else bnx2x_igu_int_enable(bp); } void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) { int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; int i, offset; if (disable_hw) /* prevent the HW from sending interrupts */ bnx2x_int_disable(bp); /* make sure all ISRs are done */ if (msix) { synchronize_irq(bp->msix_table[0].vector); offset = 1; if (CNIC_SUPPORT(bp)) offset++; for_each_eth_queue(bp, i) synchronize_irq(bp->msix_table[offset++].vector); } else synchronize_irq(bp->pdev->irq); /* make sure sp_task is not running */ cancel_delayed_work(&bp->sp_task); cancel_delayed_work(&bp->period_task); flush_workqueue(bnx2x_wq); } /* fast path */ /* * General service functions */ /* Return true if succeeded to acquire the lock */ static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource) { u32 lock_status; u32 resource_bit = (1 << resource); int func = BP_FUNC(bp); u32 hw_lock_control_reg; DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Trying to take a lock on resource %d\n", resource); /* Validating that the resource is within range */ if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", resource, HW_LOCK_MAX_RESOURCE_VALUE); return false; } if (func <= 5) hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); else hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); /* Try to acquire the lock */ REG_WR(bp, hw_lock_control_reg + 4, resource_bit); lock_status = REG_RD(bp, hw_lock_control_reg); if (lock_status & resource_bit) return true; DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Failed to get a lock on resource %d\n", resource); return false; } /** * bnx2x_get_leader_lock_resource - get the recovery leader resource id * * @bp: driver handle * * Returns the recovery leader resource id according to the engine this function * belongs to. Currently only only 2 engines is supported. */ static int bnx2x_get_leader_lock_resource(struct bnx2x *bp) { if (BP_PATH(bp)) return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; else return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; } /** * bnx2x_trylock_leader_lock- try to acquire a leader lock. * * @bp: driver handle * * Tries to acquire a leader lock for current engine. */ static bool bnx2x_trylock_leader_lock(struct bnx2x *bp) { return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); } static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err); /* schedule the sp task and mark that interrupt occurred (runs from ISR) */ static int bnx2x_schedule_sp_task(struct bnx2x *bp) { /* Set the interrupt occurred bit for the sp-task to recognize it * must ack the interrupt and transition according to the IGU * state machine. */ atomic_set(&bp->interrupt_occurred, 1); /* The sp_task must execute only after this bit * is set, otherwise we will get out of sync and miss all * further interrupts. Hence, the barrier. */ smp_wmb(); /* schedule sp_task to workqueue */ return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); } void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) { struct bnx2x *bp = fp->bp; int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj; DP(BNX2X_MSG_SP, "fp %d cid %d got ramrod #%d state is %x type is %d\n", fp->index, cid, command, bp->state, rr_cqe->ramrod_cqe.ramrod_type); /* If cid is within VF range, replace the slowpath object with the * one corresponding to this VF */ if (cid >= BNX2X_FIRST_VF_CID && cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS) bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj); switch (command) { case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); drv_cmd = BNX2X_Q_CMD_UPDATE; break; case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); drv_cmd = BNX2X_Q_CMD_SETUP; break; case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; break; case (RAMROD_CMD_ID_ETH_HALT): DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); drv_cmd = BNX2X_Q_CMD_HALT; break; case (RAMROD_CMD_ID_ETH_TERMINATE): DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid); drv_cmd = BNX2X_Q_CMD_TERMINATE; break; case (RAMROD_CMD_ID_ETH_EMPTY): DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); drv_cmd = BNX2X_Q_CMD_EMPTY; break; default: BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", command, fp->index); return; } if ((drv_cmd != BNX2X_Q_CMD_MAX) && q_obj->complete_cmd(bp, q_obj, drv_cmd)) /* q_obj->complete_cmd() failure means that this was * an unexpected completion. * * In this case we don't want to increase the bp->spq_left * because apparently we haven't sent this command the first * place. */ #ifdef BNX2X_STOP_ON_ERROR bnx2x_panic(); #else return; #endif /* SRIOV: reschedule any 'in_progress' operations */ bnx2x_iov_sp_event(bp, cid, true); smp_mb__before_atomic_inc(); atomic_inc(&bp->cq_spq_left); /* push the change in bp->spq_left and towards the memory */ smp_mb__after_atomic_inc(); DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) { /* if Q update ramrod is completed for last Q in AFEX vif set * flow, then ACK MCP at the end * * mark pending ACK to MCP bit. * prevent case that both bits are cleared. * At the end of load/unload driver checks that * sp_state is cleared, and this order prevents * races */ smp_mb__before_clear_bit(); set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state); wmb(); clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); smp_mb__after_clear_bit(); /* schedule the sp task as mcp ack is required */ bnx2x_schedule_sp_task(bp); } return; } irqreturn_t bnx2x_interrupt(int irq, void *dev_instance) { struct bnx2x *bp = netdev_priv(dev_instance); u16 status = bnx2x_ack_int(bp); u16 mask; int i; u8 cos; /* Return here if interrupt is shared and it's not for us */ if (unlikely(status == 0)) { DP(NETIF_MSG_INTR, "not our interrupt!\n"); return IRQ_NONE; } DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status); #ifdef BNX2X_STOP_ON_ERROR if (unlikely(bp->panic)) return IRQ_HANDLED; #endif for_each_eth_queue(bp, i) { struct bnx2x_fastpath *fp = &bp->fp[i]; mask = 0x2 << (fp->index + CNIC_SUPPORT(bp)); if (status & mask) { /* Handle Rx or Tx according to SB id */ for_each_cos_in_tx_queue(fp, cos) prefetch(fp->txdata_ptr[cos]->tx_cons_sb); prefetch(&fp->sb_running_index[SM_RX_ID]); napi_schedule(&bnx2x_fp(bp, fp->index, napi)); status &= ~mask; } } if (CNIC_SUPPORT(bp)) { mask = 0x2; if (status & (mask | 0x1)) { struct cnic_ops *c_ops = NULL; rcu_read_lock(); c_ops = rcu_dereference(bp->cnic_ops); if (c_ops && (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_HANDLES_IRQ)) c_ops->cnic_handler(bp->cnic_data, NULL); rcu_read_unlock(); status &= ~mask; } } if (unlikely(status & 0x1)) { /* schedule sp task to perform default status block work, ack * attentions and enable interrupts. */ bnx2x_schedule_sp_task(bp); status &= ~0x1; if (!status) return IRQ_HANDLED; } if (unlikely(status)) DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", status); return IRQ_HANDLED; } /* Link */ /* * General service functions */ int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource) { u32 lock_status; u32 resource_bit = (1 << resource); int func = BP_FUNC(bp); u32 hw_lock_control_reg; int cnt; /* Validating that the resource is within range */ if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", resource, HW_LOCK_MAX_RESOURCE_VALUE); return -EINVAL; } if (func <= 5) { hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); } else { hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); } /* Validating that the resource is not already taken */ lock_status = REG_RD(bp, hw_lock_control_reg); if (lock_status & resource_bit) { BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n", lock_status, resource_bit); return -EEXIST; } /* Try for 5 second every 5ms */ for (cnt = 0; cnt < 1000; cnt++) { /* Try to acquire the lock */ REG_WR(bp, hw_lock_control_reg + 4, resource_bit); lock_status = REG_RD(bp, hw_lock_control_reg); if (lock_status & resource_bit) return 0; usleep_range(5000, 10000); } BNX2X_ERR("Timeout\n"); return -EAGAIN; } int bnx2x_release_leader_lock(struct bnx2x *bp) { return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); } int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource) { u32 lock_status; u32 resource_bit = (1 << resource); int func = BP_FUNC(bp); u32 hw_lock_control_reg; /* Validating that the resource is within range */ if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", resource, HW_LOCK_MAX_RESOURCE_VALUE); return -EINVAL; } if (func <= 5) { hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); } else { hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); } /* Validating that the resource is currently taken */ lock_status = REG_RD(bp, hw_lock_control_reg); if (!(lock_status & resource_bit)) { BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n", lock_status, resource_bit); return -EFAULT; } REG_WR(bp, hw_lock_control_reg, resource_bit); return 0; } int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port) { /* The GPIO should be swapped if swap register is set and active */ int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; int gpio_shift = gpio_num + (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); u32 gpio_mask = (1 << gpio_shift); u32 gpio_reg; int value; if (gpio_num > MISC_REGISTERS_GPIO_3) { BNX2X_ERR("Invalid GPIO %d\n", gpio_num); return -EINVAL; } /* read GPIO value */ gpio_reg = REG_RD(bp, MISC_REG_GPIO); /* get the requested pin value */ if ((gpio_reg & gpio_mask) == gpio_mask) value = 1; else value = 0; DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value); return value; } int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) { /* The GPIO should be swapped if swap register is set and active */ int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; int gpio_shift = gpio_num + (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); u32 gpio_mask = (1 << gpio_shift); u32 gpio_reg; if (gpio_num > MISC_REGISTERS_GPIO_3) { BNX2X_ERR("Invalid GPIO %d\n", gpio_num); return -EINVAL; } bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); /* read GPIO and mask except the float bits */ gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); switch (mode) { case MISC_REGISTERS_GPIO_OUTPUT_LOW: DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n", gpio_num, gpio_shift); /* clear FLOAT and set CLR */ gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); break; case MISC_REGISTERS_GPIO_OUTPUT_HIGH: DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n", gpio_num, gpio_shift); /* clear FLOAT and set SET */ gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); break; case MISC_REGISTERS_GPIO_INPUT_HI_Z: DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n", gpio_num, gpio_shift); /* set FLOAT */ gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); break; default: break; } REG_WR(bp, MISC_REG_GPIO, gpio_reg); bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); return 0; } int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode) { u32 gpio_reg = 0; int rc = 0; /* Any port swapping should be handled by caller. */ bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); /* read GPIO and mask except the float bits */ gpio_reg = REG_RD(bp, MISC_REG_GPIO); gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); switch (mode) { case MISC_REGISTERS_GPIO_OUTPUT_LOW: DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); /* set CLR */ gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); break; case MISC_REGISTERS_GPIO_OUTPUT_HIGH: DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); /* set SET */ gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); break; case MISC_REGISTERS_GPIO_INPUT_HI_Z: DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); /* set FLOAT */ gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); break; default: BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); rc = -EINVAL; break; } if (rc == 0) REG_WR(bp, MISC_REG_GPIO, gpio_reg); bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); return rc; } int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) { /* The GPIO should be swapped if swap register is set and active */ int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; int gpio_shift = gpio_num + (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); u32 gpio_mask = (1 << gpio_shift); u32 gpio_reg; if (gpio_num > MISC_REGISTERS_GPIO_3) { BNX2X_ERR("Invalid GPIO %d\n", gpio_num); return -EINVAL; } bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); /* read GPIO int */ gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); switch (mode) { case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> output low\n", gpio_num, gpio_shift); /* clear SET and set CLR */ gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); break; case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> output high\n", gpio_num, gpio_shift); /* clear CLR and set SET */ gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); break; default: break; } REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); return 0; } static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode) { u32 spio_reg; /* Only 2 SPIOs are configurable */ if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { BNX2X_ERR("Invalid SPIO 0x%x\n", spio); return -EINVAL; } bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); /* read SPIO and mask except the float bits */ spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT); switch (mode) { case MISC_SPIO_OUTPUT_LOW: DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio); /* clear FLOAT and set CLR */ spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); spio_reg |= (spio << MISC_SPIO_CLR_POS); break; case MISC_SPIO_OUTPUT_HIGH: DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio); /* clear FLOAT and set SET */ spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); spio_reg |= (spio << MISC_SPIO_SET_POS); break; case MISC_SPIO_INPUT_HI_Z: DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio); /* set FLOAT */ spio_reg |= (spio << MISC_SPIO_FLOAT_POS); break; default: break; } REG_WR(bp, MISC_REG_SPIO, spio_reg); bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); return 0; } void bnx2x_calc_fc_adv(struct bnx2x *bp) { u8 cfg_idx = bnx2x_get_link_cfg_idx(bp); switch (bp->link_vars.ieee_fc & MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause); break; case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | ADVERTISED_Pause); break; case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; break; default: bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause); break; } } static void bnx2x_set_requested_fc(struct bnx2x *bp) { /* Initialize link parameters structure variables * It is recommended to turn off RX FC for jumbo frames * for better performance */ if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; else bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; } static void bnx2x_init_dropless_fc(struct bnx2x *bp) { u32 pause_enabled = 0; if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) { if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) pause_enabled = 1; REG_WR(bp, BAR_USTRORM_INTMEM + USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)), pause_enabled); } DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n", pause_enabled ? "enabled" : "disabled"); } int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) { int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp); u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx]; if (!BP_NOMCP(bp)) { bnx2x_set_requested_fc(bp); bnx2x_acquire_phy_lock(bp); if (load_mode == LOAD_DIAG) { struct link_params *lp = &bp->link_params; lp->loopback_mode = LOOPBACK_XGXS; /* do PHY loopback at 10G speed, if possible */ if (lp->req_line_speed[cfx_idx] < SPEED_10000) { if (lp->speed_cap_mask[cfx_idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) lp->req_line_speed[cfx_idx] = SPEED_10000; else lp->req_line_speed[cfx_idx] = SPEED_1000; } } if (load_mode == LOAD_LOOPBACK_EXT) { struct link_params *lp = &bp->link_params; lp->loopback_mode = LOOPBACK_EXT; } rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); bnx2x_release_phy_lock(bp); bnx2x_init_dropless_fc(bp); bnx2x_calc_fc_adv(bp); if (bp->link_vars.link_up) { bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); bnx2x_link_report(bp); } queue_delayed_work(bnx2x_wq, &bp->period_task, 0); bp->link_params.req_line_speed[cfx_idx] = req_line_speed; return rc; } BNX2X_ERR("Bootcode is missing - can not initialize link\n"); return -EINVAL; } void bnx2x_link_set(struct bnx2x *bp) { if (!BP_NOMCP(bp)) { bnx2x_acquire_phy_lock(bp); bnx2x_phy_init(&bp->link_params, &bp->link_vars); bnx2x_release_phy_lock(bp); bnx2x_init_dropless_fc(bp); bnx2x_calc_fc_adv(bp); } else BNX2X_ERR("Bootcode is missing - can not set link\n"); } static void bnx2x__link_reset(struct bnx2x *bp) { if (!BP_NOMCP(bp)) { bnx2x_acquire_phy_lock(bp); bnx2x_lfa_reset(&bp->link_params, &bp->link_vars); bnx2x_release_phy_lock(bp); } else BNX2X_ERR("Bootcode is missing - can not reset link\n"); } void bnx2x_force_link_reset(struct bnx2x *bp) { bnx2x_acquire_phy_lock(bp); bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); bnx2x_release_phy_lock(bp); } u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes) { u8 rc = 0; if (!BP_NOMCP(bp)) { bnx2x_acquire_phy_lock(bp); rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, is_serdes); bnx2x_release_phy_lock(bp); } else BNX2X_ERR("Bootcode is missing - can not test link\n"); return rc; } /* Calculates the sum of vn_min_rates. It's needed for further normalizing of the min_rates. Returns: sum of vn_min_rates. or 0 - if all the min_rates are 0. In the later case fairness algorithm should be deactivated. If not all min_rates are zero then those that are zeroes will be set to 1. */ static void bnx2x_calc_vn_min(struct bnx2x *bp, struct cmng_init_input *input) { int all_zero = 1; int vn; for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { u32 vn_cfg = bp->mf_config[vn]; u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT) * 100; /* Skip hidden vns */ if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) vn_min_rate = 0; /* If min rate is zero - set it to 1 */ else if (!vn_min_rate) vn_min_rate = DEF_MIN_RATE; else all_zero = 0; input->vnic_min_rate[vn] = vn_min_rate; } /* if ETS or all min rates are zeros - disable fairness */ if (BNX2X_IS_ETS_ENABLED(bp)) { input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); } else if (all_zero) { input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; DP(NETIF_MSG_IFUP, "All MIN values are zeroes fairness will be disabled\n"); } else input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; } static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, struct cmng_init_input *input) { u16 vn_max_rate; u32 vn_cfg = bp->mf_config[vn]; if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) vn_max_rate = 0; else { u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); if (IS_MF_SI(bp)) { /* maxCfg in percents of linkspeed */ vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; } else /* SD modes */ /* maxCfg is absolute in 100Mb units */ vn_max_rate = maxCfg * 100; } DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); input->vnic_max_rate[vn] = vn_max_rate; } static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) { if (CHIP_REV_IS_SLOW(bp)) return CMNG_FNS_NONE; if (IS_MF(bp)) return CMNG_FNS_MINMAX; return CMNG_FNS_NONE; } void bnx2x_read_mf_cfg(struct bnx2x *bp) { int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); if (BP_NOMCP(bp)) return; /* what should be the default value in this case */ /* For 2 port configuration the absolute function number formula * is: * abs_func = 2 * vn + BP_PORT + BP_PATH * * and there are 4 functions per port * * For 4 port configuration it is * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH * * and there are 2 functions per port */ for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); if (func >= E1H_FUNC_MAX) break; bp->mf_config[vn] = MF_CFG_RD(bp, func_mf_config[func].config); } if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); bp->flags |= MF_FUNC_DIS; } else { DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n"); bp->flags &= ~MF_FUNC_DIS; } } static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type) { struct cmng_init_input input; memset(&input, 0, sizeof(struct cmng_init_input)); input.port_rate = bp->link_vars.line_speed; if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) { int vn; /* read mf conf from shmem */ if (read_cfg) bnx2x_read_mf_cfg(bp); /* vn_weight_sum and enable fairness if not 0 */ bnx2x_calc_vn_min(bp, &input); /* calculate and set min-max rate for each vn */ if (bp->port.pmf) for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) bnx2x_calc_vn_max(bp, vn, &input); /* always enable rate shaping and fairness */ input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; bnx2x_init_cmng(&input, &bp->cmng); return; } /* rate shaping and fairness are disabled */ DP(NETIF_MSG_IFUP, "rate shaping and fairness are disabled\n"); } static void storm_memset_cmng(struct bnx2x *bp, struct cmng_init *cmng, u8 port) { int vn; size_t size = sizeof(struct cmng_struct_per_port); u32 addr = BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port); for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { int func = func_by_vn(bp, vn); addr = BAR_XSTRORM_INTMEM + XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func); size = sizeof(struct rate_shaping_vars_per_vn); __storm_memset_struct(bp, addr, size, (u32 *)&cmng->vnic.vnic_max_rate[vn]); addr = BAR_XSTRORM_INTMEM + XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func); size = sizeof(struct fairness_vars_per_vn); __storm_memset_struct(bp, addr, size, (u32 *)&cmng->vnic.vnic_min_rate[vn]); } } /* init cmng mode in HW according to local configuration */ void bnx2x_set_local_cmng(struct bnx2x *bp) { int cmng_fns = bnx2x_get_cmng_fns_mode(bp); if (cmng_fns != CMNG_FNS_NONE) { bnx2x_cmng_fns_init(bp, false, cmng_fns); storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); } else { /* rate shaping and fairness are disabled */ DP(NETIF_MSG_IFUP, "single function mode without fairness\n"); } } /* This function is called upon link interrupt */ static void bnx2x_link_attn(struct bnx2x *bp) { /* Make sure that we are synced with the current statistics */ bnx2x_stats_handle(bp, STATS_EVENT_STOP); bnx2x_link_update(&bp->link_params, &bp->link_vars); bnx2x_init_dropless_fc(bp); if (bp->link_vars.link_up) { if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { struct host_port_stats *pstats; pstats = bnx2x_sp(bp, port_stats); /* reset old mac stats */ memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); } if (bp->state == BNX2X_STATE_OPEN) bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); } if (bp->link_vars.link_up && bp->link_vars.line_speed) bnx2x_set_local_cmng(bp); __bnx2x_link_report(bp); if (IS_MF(bp)) bnx2x_link_sync_notify(bp); } void bnx2x__link_status_update(struct bnx2x *bp) { if (bp->state != BNX2X_STATE_OPEN) return; /* read updated dcb configuration */ if (IS_PF(bp)) { bnx2x_dcbx_pmf_update(bp); bnx2x_link_status_update(&bp->link_params, &bp->link_vars); if (bp->link_vars.link_up) bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); else bnx2x_stats_handle(bp, STATS_EVENT_STOP); /* indicate link status */ bnx2x_link_report(bp); } else { /* VF */ bp->port.supported[0] |= (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | SUPPORTED_2500baseX_Full | SUPPORTED_10000baseT_Full | SUPPORTED_TP | SUPPORTED_FIBRE | SUPPORTED_Autoneg | SUPPORTED_Pause | SUPPORTED_Asym_Pause); bp->port.advertising[0] = bp->port.supported[0]; bp->link_params.bp = bp; bp->link_params.port = BP_PORT(bp); bp->link_params.req_duplex[0] = DUPLEX_FULL; bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE; bp->link_params.req_line_speed[0] = SPEED_10000; bp->link_params.speed_cap_mask[0] = 0x7f0000; bp->link_params.switch_cfg = SWITCH_CFG_10G; bp->link_vars.mac_type = MAC_TYPE_BMAC; bp->link_vars.line_speed = SPEED_10000; bp->link_vars.link_status = (LINK_STATUS_LINK_UP | LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); bp->link_vars.link_up = 1; bp->link_vars.duplex = DUPLEX_FULL; bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE; __bnx2x_link_report(bp); bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); } } static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid, u16 vlan_val, u8 allowed_prio) { struct bnx2x_func_state_params func_params = {NULL}; struct bnx2x_func_afex_update_params *f_update_params = &func_params.params.afex_update; func_params.f_obj = &bp->func_obj; func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE; /* no need to wait for RAMROD completion, so don't * set RAMROD_COMP_WAIT flag */ f_update_params->vif_id = vifid; f_update_params->afex_default_vlan = vlan_val; f_update_params->allowed_priorities = allowed_prio; /* if ramrod can not be sent, response to MCP immediately */ if (bnx2x_func_state_change(bp, &func_params) < 0) bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); return 0; } static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type, u16 vif_index, u8 func_bit_map) { struct bnx2x_func_state_params func_params = {NULL}; struct bnx2x_func_afex_viflists_params *update_params = &func_params.params.afex_viflists; int rc; u32 drv_msg_code; /* validate only LIST_SET and LIST_GET are received from switch */ if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET)) BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n", cmd_type); func_params.f_obj = &bp->func_obj; func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS; /* set parameters according to cmd_type */ update_params->afex_vif_list_command = cmd_type; update_params->vif_list_index = vif_index; update_params->func_bit_map = (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map; update_params->func_to_clear = 0; drv_msg_code = (cmd_type == VIF_LIST_RULE_GET) ? DRV_MSG_CODE_AFEX_LISTGET_ACK : DRV_MSG_CODE_AFEX_LISTSET_ACK; /* if ramrod can not be sent, respond to MCP immediately for * SET and GET requests (other are not triggered from MCP) */ rc = bnx2x_func_state_change(bp, &func_params); if (rc < 0) bnx2x_fw_command(bp, drv_msg_code, 0); return 0; } static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd) { struct afex_stats afex_stats; u32 func = BP_ABS_FUNC(bp); u32 mf_config; u16 vlan_val; u32 vlan_prio; u16 vif_id; u8 allowed_prio; u8 vlan_mode; u32 addr_to_write, vifid, addrs, stats_type, i; if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) { vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); DP(BNX2X_MSG_MCP, "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid); bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0); } if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) { vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]); DP(BNX2X_MSG_MCP, "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n", vifid, addrs); bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid, addrs); } if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) { addr_to_write = SHMEM2_RD(bp, afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]); stats_type = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); DP(BNX2X_MSG_MCP, "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n", addr_to_write); bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type); /* write response to scratchpad, for MCP */ for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++) REG_WR(bp, addr_to_write + i*sizeof(u32), *(((u32 *)(&afex_stats))+i)); /* send ack message to MCP */ bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0); } if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) { mf_config = MF_CFG_RD(bp, func_mf_config[func].config); bp->mf_config[BP_VN(bp)] = mf_config; DP(BNX2X_MSG_MCP, "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n", mf_config); /* if VIF_SET is "enabled" */ if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) { /* set rate limit directly to internal RAM */ struct cmng_init_input cmng_input; struct rate_shaping_vars_per_vn m_rs_vn; size_t size = sizeof(struct rate_shaping_vars_per_vn); u32 addr = BAR_XSTRORM_INTMEM + XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp)); bp->mf_config[BP_VN(bp)] = mf_config; bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input); m_rs_vn.vn_counter.rate = cmng_input.vnic_max_rate[BP_VN(bp)]; m_rs_vn.vn_counter.quota = (m_rs_vn.vn_counter.rate * RS_PERIODIC_TIMEOUT_USEC) / 8; __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn); /* read relevant values from mf_cfg struct in shmem */ vif_id = (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & FUNC_MF_CFG_E1HOV_TAG_MASK) >> FUNC_MF_CFG_E1HOV_TAG_SHIFT; vlan_val = (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & FUNC_MF_CFG_AFEX_VLAN_MASK) >> FUNC_MF_CFG_AFEX_VLAN_SHIFT; vlan_prio = (mf_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT; vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT); vlan_mode = (MF_CFG_RD(bp, func_mf_config[func].afex_config) & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT; allowed_prio = (MF_CFG_RD(bp, func_mf_config[func].afex_config) & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT; /* send ramrod to FW, return in case of failure */ if (bnx2x_afex_func_update(bp, vif_id, vlan_val, allowed_prio)) return; bp->afex_def_vlan_tag = vlan_val; bp->afex_vlan_mode = vlan_mode; } else { /* notify link down because BP->flags is disabled */ bnx2x_link_report(bp); /* send INVALID VIF ramrod to FW */ bnx2x_afex_func_update(bp, 0xFFFF, 0, 0); /* Reset the default afex VLAN */ bp->afex_def_vlan_tag = -1; } } } static void bnx2x_pmf_update(struct bnx2x *bp) { int port = BP_PORT(bp); u32 val; bp->port.pmf = 1; DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); /* * We need the mb() to ensure the ordering between the writing to * bp->port.pmf here and reading it from the bnx2x_periodic_task(). */ smp_mb(); /* queue a periodic task */ queue_delayed_work(bnx2x_wq, &bp->period_task, 0); bnx2x_dcbx_pmf_update(bp); /* enable nig attention */ val = (0xff0f | (1 << (BP_VN(bp) + 4))); if (bp->common.int_block == INT_BLOCK_HC) { REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); } else if (!CHIP_IS_E1x(bp)) { REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); } bnx2x_stats_handle(bp, STATS_EVENT_PMF); } /* end of Link */ /* slow path */ /* * General service functions */ /* send the MCP a request, block until there is a reply */ u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param) { int mb_idx = BP_FW_MB_IDX(bp); u32 seq; u32 rc = 0; u32 cnt = 1; u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; mutex_lock(&bp->fw_mb_mutex); seq = ++bp->fw_seq; SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", (command | seq), param); do { /* let the FW do it's magic ... */ msleep(delay); rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); /* Give the FW up to 5 second (500*10ms) */ } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", cnt*delay, rc, seq); /* is this a reply to our command? */ if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) rc &= FW_MSG_CODE_MASK; else { /* FW BUG! */ BNX2X_ERR("FW failed to respond!\n"); bnx2x_fw_dump(bp); rc = 0; } mutex_unlock(&bp->fw_mb_mutex); return rc; } static void storm_memset_func_cfg(struct bnx2x *bp, struct tstorm_eth_function_common_config *tcfg, u16 abs_fid) { size_t size = sizeof(struct tstorm_eth_function_common_config); u32 addr = BAR_TSTRORM_INTMEM + TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); __storm_memset_struct(bp, addr, size, (u32 *)tcfg); } void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) { if (CHIP_IS_E1x(bp)) { struct tstorm_eth_function_common_config tcfg = {0}; storm_memset_func_cfg(bp, &tcfg, p->func_id); } /* Enable the function in the FW */ storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); storm_memset_func_en(bp, p->func_id, 1); /* spq */ if (p->func_flgs & FUNC_FLG_SPQ) { storm_memset_spq_addr(bp, p->spq_map, p->func_id); REG_WR(bp, XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); } } /** * bnx2x_get_common_flags - Return common flags * * @bp device handle * @fp queue handle * @zero_stats TRUE if statistics zeroing is needed * * Return the flags that are common for the Tx-only and not normal connections. */ static unsigned long bnx2x_get_common_flags(struct bnx2x *bp, struct bnx2x_fastpath *fp, bool zero_stats) { unsigned long flags = 0; /* PF driver will always initialize the Queue to an ACTIVE state */ __set_bit(BNX2X_Q_FLG_ACTIVE, &flags); /* tx only connections collect statistics (on the same index as the * parent connection). The statistics are zeroed when the parent * connection is initialized. */ __set_bit(BNX2X_Q_FLG_STATS, &flags); if (zero_stats) __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags); __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags); #ifdef BNX2X_STOP_ON_ERROR __set_bit(BNX2X_Q_FLG_TX_SEC, &flags); #endif return flags; } static unsigned long bnx2x_get_q_flags(struct bnx2x *bp, struct bnx2x_fastpath *fp, bool leading) { unsigned long flags = 0; /* calculate other queue flags */ if (IS_MF_SD(bp)) __set_bit(BNX2X_Q_FLG_OV, &flags); if (IS_FCOE_FP(fp)) { __set_bit(BNX2X_Q_FLG_FCOE, &flags); /* For FCoE - force usage of default priority (for afex) */ __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags); } if (!fp->disable_tpa) { __set_bit(BNX2X_Q_FLG_TPA, &flags); __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); if (fp->mode == TPA_MODE_GRO) __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); } if (leading) { __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); __set_bit(BNX2X_Q_FLG_MCAST, &flags); } /* Always set HW VLAN stripping */ __set_bit(BNX2X_Q_FLG_VLAN, &flags); /* configure silent vlan removal */ if (IS_MF_AFEX(bp)) __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags); return flags | bnx2x_get_common_flags(bp, fp, true); } static void bnx2x_pf_q_prep_general(struct bnx2x *bp, struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, u8 cos) { gen_init->stat_id = bnx2x_stats_id(fp); gen_init->spcl_id = fp->cl_id; /* Always use mini-jumbo MTU for FCoE L2 ring */ if (IS_FCOE_FP(fp)) gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; else gen_init->mtu = bp->dev->mtu; gen_init->cos = cos; } static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, struct bnx2x_rxq_setup_params *rxq_init) { u8 max_sge = 0; u16 sge_sz = 0; u16 tpa_agg_size = 0; if (!fp->disable_tpa) { pause->sge_th_lo = SGE_TH_LO(bp); pause->sge_th_hi = SGE_TH_HI(bp); /* validate SGE ring has enough to cross high threshold */ WARN_ON(bp->dropless_fc && pause->sge_th_hi + FW_PREFETCH_CNT > MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); tpa_agg_size = TPA_AGG_SIZE; max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> SGE_PAGE_SHIFT; max_sge = ((max_sge + PAGES_PER_SGE - 1) & (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff); } /* pause - not for e1 */ if (!CHIP_IS_E1(bp)) { pause->bd_th_lo = BD_TH_LO(bp); pause->bd_th_hi = BD_TH_HI(bp); pause->rcq_th_lo = RCQ_TH_LO(bp); pause->rcq_th_hi = RCQ_TH_HI(bp); /* * validate that rings have enough entries to cross * high thresholds */ WARN_ON(bp->dropless_fc && pause->bd_th_hi + FW_PREFETCH_CNT > bp->rx_ring_size); WARN_ON(bp->dropless_fc && pause->rcq_th_hi + FW_PREFETCH_CNT > NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); pause->pri_map = 1; } /* rxq setup */ rxq_init->dscr_map = fp->rx_desc_mapping; rxq_init->sge_map = fp->rx_sge_mapping; rxq_init->rcq_map = fp->rx_comp_mapping; rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; /* This should be a maximum number of data bytes that may be * placed on the BD (not including paddings). */ rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING; rxq_init->cl_qzone_id = fp->cl_qzone_id; rxq_init->tpa_agg_sz = tpa_agg_size; rxq_init->sge_buf_sz = sge_sz; rxq_init->max_sges_pkt = max_sge; rxq_init->rss_engine_id = BP_FUNC(bp); rxq_init->mcast_engine_id = BP_FUNC(bp); /* Maximum number or simultaneous TPA aggregation for this Queue. * * For PF Clients it should be the maximum available number. * VF driver(s) may want to define it to a smaller value. */ rxq_init->max_tpa_queues = MAX_AGG_QS(bp); rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; rxq_init->fw_sb_id = fp->fw_sb_id; if (IS_FCOE_FP(fp)) rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; else rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; /* configure silent vlan removal * if multi function mode is afex, then mask default vlan */ if (IS_MF_AFEX(bp)) { rxq_init->silent_removal_value = bp->afex_def_vlan_tag; rxq_init->silent_removal_mask = VLAN_VID_MASK; } } static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, u8 cos) { txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping; txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; txq_init->fw_sb_id = fp->fw_sb_id; /* * set the tss leading client id for TX classification == * leading RSS client id */ txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); if (IS_FCOE_FP(fp)) { txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; } } static void bnx2x_pf_init(struct bnx2x *bp) { struct bnx2x_func_init_params func_init = {0}; struct event_ring_data eq_data = { {0} }; u16 flags; if (!CHIP_IS_E1x(bp)) { /* reset IGU PF statistics: MSIX + ATTN */ /* PF */ REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + BNX2X_IGU_STAS_MSG_VF_CNT*4 + (CHIP_MODE_IS_4_PORT(bp) ? BP_FUNC(bp) : BP_VN(bp))*4, 0); /* ATTN */ REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + BNX2X_IGU_STAS_MSG_VF_CNT*4 + BNX2X_IGU_STAS_MSG_PF_CNT*4 + (CHIP_MODE_IS_4_PORT(bp) ? BP_FUNC(bp) : BP_VN(bp))*4, 0); } /* function setup flags */ flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); /* This flag is relevant for E1x only. * E2 doesn't have a TPA configuration in a function level. */ flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0; func_init.func_flgs = flags; func_init.pf_id = BP_FUNC(bp); func_init.func_id = BP_FUNC(bp); func_init.spq_map = bp->spq_mapping; func_init.spq_prod = bp->spq_prod_idx; bnx2x_func_init(bp, &func_init); memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); /* * Congestion management values depend on the link rate * There is no active link so initial link rate is set to 10 Gbps. * When the link comes up The congestion management values are * re-calculated according to the actual link rate. */ bp->link_vars.line_speed = SPEED_10000; bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); /* Only the PMF sets the HW */ if (bp->port.pmf) storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); /* init Event Queue - PCI bus guarantees correct endianity*/ eq_data.base_addr.hi = U64_HI(bp->eq_mapping); eq_data.base_addr.lo = U64_LO(bp->eq_mapping); eq_data.producer = bp->eq_prod; eq_data.index_id = HC_SP_INDEX_EQ_CONS; eq_data.sb_id = DEF_SB_ID; storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); } static void bnx2x_e1h_disable(struct bnx2x *bp) { int port = BP_PORT(bp); bnx2x_tx_disable(bp); REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); } static void bnx2x_e1h_enable(struct bnx2x *bp) { int port = BP_PORT(bp); REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1); /* Tx queue should be only re-enabled */ netif_tx_wake_all_queues(bp->dev); /* * Should not call netif_carrier_on since it will be called if the link * is up when checking for link state */ } #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) { struct eth_stats_info *ether_stat = &bp->slowpath->drv_info_to_mcp.ether_stat; struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; int i; strlcpy(ether_stat->version, DRV_MODULE_VERSION, ETH_STAT_INFO_VERSION_LEN); /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the * mac_local field in ether_stat struct. The base address is offset by 2 * bytes to account for the field being 8 bytes but a mac address is * only 6 bytes. Likewise, the stride for the get_n_elements function is * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes * allocated by the ether_stat struct, so the macs will land in their * proper positions. */ for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++) memset(ether_stat->mac_local + i, 0, sizeof(ether_stat->mac_local[0])); mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj, DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, ether_stat->mac_local + MAC_PAD, MAC_PAD, ETH_ALEN); ether_stat->mtu_size = bp->dev->mtu; if (bp->dev->features & NETIF_F_RXCSUM) ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; if (bp->dev->features & NETIF_F_TSO) ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; ether_stat->feature_flags |= bp->common.boot_mode; ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; ether_stat->txq_size = bp->tx_ring_size; ether_stat->rxq_size = bp->rx_ring_size; } static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) { struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; struct fcoe_stats_info *fcoe_stat = &bp->slowpath->drv_info_to_mcp.fcoe_stat; if (!CNIC_LOADED(bp)) return; memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN); fcoe_stat->qos_priority = app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; /* insert FCoE stats from ramrod response */ if (!NO_FCOE(bp)) { struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. tstorm_queue_statistics; struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. xstorm_queue_statistics; struct fcoe_statistics_params *fw_fcoe_stat = &bp->fw_stats_data->fcoe; ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0, fcoe_stat->rx_bytes_lo, fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); ADD_64_LE(fcoe_stat->rx_bytes_hi, fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, fcoe_stat->rx_bytes_lo, fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); ADD_64_LE(fcoe_stat->rx_bytes_hi, fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, fcoe_stat->rx_bytes_lo, fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); ADD_64_LE(fcoe_stat->rx_bytes_hi, fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, fcoe_stat->rx_bytes_lo, fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, fcoe_stat->rx_frames_lo, fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, fcoe_stat->rx_frames_lo, fcoe_q_tstorm_stats->rcv_ucast_pkts); ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, fcoe_stat->rx_frames_lo, fcoe_q_tstorm_stats->rcv_bcast_pkts); ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, fcoe_stat->rx_frames_lo, fcoe_q_tstorm_stats->rcv_mcast_pkts); ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0, fcoe_stat->tx_bytes_lo, fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); ADD_64_LE(fcoe_stat->tx_bytes_hi, fcoe_q_xstorm_stats->ucast_bytes_sent.hi, fcoe_stat->tx_bytes_lo, fcoe_q_xstorm_stats->ucast_bytes_sent.lo); ADD_64_LE(fcoe_stat->tx_bytes_hi, fcoe_q_xstorm_stats->bcast_bytes_sent.hi, fcoe_stat->tx_bytes_lo, fcoe_q_xstorm_stats->bcast_bytes_sent.lo); ADD_64_LE(fcoe_stat->tx_bytes_hi, fcoe_q_xstorm_stats->mcast_bytes_sent.hi, fcoe_stat->tx_bytes_lo, fcoe_q_xstorm_stats->mcast_bytes_sent.lo); ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, fcoe_stat->tx_frames_lo, fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, fcoe_stat->tx_frames_lo, fcoe_q_xstorm_stats->ucast_pkts_sent); ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, fcoe_stat->tx_frames_lo, fcoe_q_xstorm_stats->bcast_pkts_sent); ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, fcoe_stat->tx_frames_lo, fcoe_q_xstorm_stats->mcast_pkts_sent); } /* ask L5 driver to add data to the struct */ bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); } static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) { struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; struct iscsi_stats_info *iscsi_stat = &bp->slowpath->drv_info_to_mcp.iscsi_stat; if (!CNIC_LOADED(bp)) return; memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN); iscsi_stat->qos_priority = app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; /* ask L5 driver to add data to the struct */ bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); } /* called due to MCP event (on pmf): * reread new bandwidth configuration * configure FW * notify others function about the change */ static void bnx2x_config_mf_bw(struct bnx2x *bp) { if (bp->link_vars.link_up) { bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); bnx2x_link_sync_notify(bp); } storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); } static void bnx2x_set_mf_bw(struct bnx2x *bp) { bnx2x_config_mf_bw(bp); bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); } static void bnx2x_handle_eee_event(struct bnx2x *bp) { DP(BNX2X_MSG_MCP, "EEE - LLDP event\n"); bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); } static void bnx2x_handle_drv_info_req(struct bnx2x *bp) { enum drv_info_opcode op_code; u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control); /* if drv_info version supported by MFW doesn't match - send NACK */ if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); return; } op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> DRV_INFO_CONTROL_OP_CODE_SHIFT; memset(&bp->slowpath->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); switch (op_code) { case ETH_STATS_OPCODE: bnx2x_drv_info_ether_stat(bp); break; case FCOE_STATS_OPCODE: bnx2x_drv_info_fcoe_stat(bp); break; case ISCSI_STATS_OPCODE: bnx2x_drv_info_iscsi_stat(bp); break; default: /* if op code isn't supported - send NACK */ bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); return; } /* if we got drv_info attn from MFW then these fields are defined in * shmem2 for sure */ SHMEM2_WR(bp, drv_info_host_addr_lo, U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); SHMEM2_WR(bp, drv_info_host_addr_hi, U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); } static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event) { DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event); if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { /* * This is the only place besides the function initialization * where the bp->flags can change so it is done without any * locks */ if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); bp->flags |= MF_FUNC_DIS; bnx2x_e1h_disable(bp); } else { DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); bp->flags &= ~MF_FUNC_DIS; bnx2x_e1h_enable(bp); } dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; } if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { bnx2x_config_mf_bw(bp); dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; } /* Report results to MCP */ if (dcc_event) bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0); else bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0); } /* must be called under the spq lock */ static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) { struct eth_spe *next_spe = bp->spq_prod_bd; if (bp->spq_prod_bd == bp->spq_last_bd) { bp->spq_prod_bd = bp->spq; bp->spq_prod_idx = 0; DP(BNX2X_MSG_SP, "end of spq\n"); } else { bp->spq_prod_bd++; bp->spq_prod_idx++; } return next_spe; } /* must be called under the spq lock */ static void bnx2x_sp_prod_update(struct bnx2x *bp) { int func = BP_FUNC(bp); /* * Make sure that BD data is updated before writing the producer: * BD data is written to the memory, the producer is read from the * memory, thus we need a full memory barrier to ensure the ordering. */ mb(); REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), bp->spq_prod_idx); mmiowb(); } /** * bnx2x_is_contextless_ramrod - check if the current command ends on EQ * * @cmd: command to check * @cmd_type: command type */ static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) { if ((cmd_type == NONE_CONNECTION_TYPE) || (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) return true; else return false; } /** * bnx2x_sp_post - place a single command on an SP ring * * @bp: driver handle * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) * @cid: SW CID the command is related to * @data_hi: command private data address (high 32 bits) * @data_lo: command private data address (low 32 bits) * @cmd_type: command type (e.g. NONE, ETH) * * SP data is handled as if it's always an address pair, thus data fields are * not swapped to little endian in upper functions. Instead this function swaps * data as if it's two u32 fields. */ int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, u32 data_hi, u32 data_lo, int cmd_type) { struct eth_spe *spe; u16 type; bool common = bnx2x_is_contextless_ramrod(command, cmd_type); #ifdef BNX2X_STOP_ON_ERROR if (unlikely(bp->panic)) { BNX2X_ERR("Can't post SP when there is panic\n"); return -EIO; } #endif spin_lock_bh(&bp->spq_lock); if (common) { if (!atomic_read(&bp->eq_spq_left)) { BNX2X_ERR("BUG! EQ ring full!\n"); spin_unlock_bh(&bp->spq_lock); bnx2x_panic(); return -EBUSY; } } else if (!atomic_read(&bp->cq_spq_left)) { BNX2X_ERR("BUG! SPQ ring full!\n"); spin_unlock_bh(&bp->spq_lock); bnx2x_panic(); return -EBUSY; } spe = bnx2x_sp_get_next(bp); /* CID needs port number to be encoded int it */ spe->hdr.conn_and_cmd_data = cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(bp, cid)); type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & SPE_HDR_FUNCTION_ID); spe->hdr.type = cpu_to_le16(type); spe->data.update_data_addr.hi = cpu_to_le32(data_hi); spe->data.update_data_addr.lo = cpu_to_le32(data_lo); /* * It's ok if the actual decrement is issued towards the memory * somewhere between the spin_lock and spin_unlock. Thus no * more explicit memory barrier is needed. */ if (common) atomic_dec(&bp->eq_spq_left); else atomic_dec(&bp->cq_spq_left); DP(BNX2X_MSG_SP, "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping), (u32)(U64_LO(bp->spq_mapping) + (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, HW_CID(bp, cid), data_hi, data_lo, type, atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); bnx2x_sp_prod_update(bp); spin_unlock_bh(&bp->spq_lock); return 0; } /* acquire split MCP access lock register */ static int bnx2x_acquire_alr(struct bnx2x *bp) { u32 j, val; int rc = 0; might_sleep(); for (j = 0; j < 1000; j++) { REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK); val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK); if (val & MCPR_ACCESS_LOCK_LOCK) break; usleep_range(5000, 10000); } if (!(val & MCPR_ACCESS_LOCK_LOCK)) { BNX2X_ERR("Cannot acquire MCP access lock register\n"); rc = -EBUSY; } return rc; } /* release split MCP access lock register */ static void bnx2x_release_alr(struct bnx2x *bp) { REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); } #define BNX2X_DEF_SB_ATT_IDX 0x0001 #define BNX2X_DEF_SB_IDX 0x0002 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp) { struct host_sp_status_block *def_sb = bp->def_status_blk; u16 rc = 0; barrier(); /* status block is written to by the chip */ if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; rc |= BNX2X_DEF_SB_ATT_IDX; } if (bp->def_idx != def_sb->sp_sb.running_index) { bp->def_idx = def_sb->sp_sb.running_index; rc |= BNX2X_DEF_SB_IDX; } /* Do not reorder: indices reading should complete before handling */ barrier(); return rc; } /* * slow path service functions */ static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted) { int port = BP_PORT(bp); u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : MISC_REG_AEU_MASK_ATTN_FUNC_0; u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : NIG_REG_MASK_INTERRUPT_PORT0; u32 aeu_mask; u32 nig_mask = 0; u32 reg_addr; if (bp->attn_state & asserted) BNX2X_ERR("IGU ERROR\n"); bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); aeu_mask = REG_RD(bp, aeu_addr); DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n", aeu_mask, asserted); aeu_mask &= ~(asserted & 0x3ff); DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); REG_WR(bp, aeu_addr, aeu_mask); bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); bp->attn_state |= asserted; DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); if (asserted & ATTN_HARD_WIRED_MASK) { if (asserted & ATTN_NIG_FOR_FUNC) { bnx2x_acquire_phy_lock(bp); /* save nig interrupt mask */ nig_mask = REG_RD(bp, nig_int_mask_addr); /* If nig_mask is not set, no need to call the update * function. */ if (nig_mask) { REG_WR(bp, nig_int_mask_addr, 0); bnx2x_link_attn(bp); } /* handle unicore attn? */ } if (asserted & ATTN_SW_TIMER_4_FUNC) DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); if (asserted & GPIO_2_FUNC) DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); if (asserted & GPIO_3_FUNC) DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); if (asserted & GPIO_4_FUNC) DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); if (port == 0) { if (asserted & ATTN_GENERAL_ATTN_1) { DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); } if (asserted & ATTN_GENERAL_ATTN_2) { DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); } if (asserted & ATTN_GENERAL_ATTN_3) { DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); } } else { if (asserted & ATTN_GENERAL_ATTN_4) { DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); } if (asserted & ATTN_GENERAL_ATTN_5) { DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); } if (asserted & ATTN_GENERAL_ATTN_6) { DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); } } } /* if hardwired */ if (bp->common.int_block == INT_BLOCK_HC) reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); else reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); REG_WR(bp, reg_addr, asserted); /* now set back the mask */ if (asserted & ATTN_NIG_FOR_FUNC) { /* Verify that IGU ack through BAR was written before restoring * NIG mask. This loop should exit after 2-3 iterations max. */ if (bp->common.int_block != INT_BLOCK_HC) { u32 cnt = 0, igu_acked; do { igu_acked = REG_RD(bp, IGU_REG_ATTENTION_ACK_BITS); } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && (++cnt < MAX_IGU_ATTN_ACK_TO)); if (!igu_acked) DP(NETIF_MSG_HW, "Failed to verify IGU ack on time\n"); barrier(); } REG_WR(bp, nig_int_mask_addr, nig_mask); bnx2x_release_phy_lock(bp); } } static void bnx2x_fan_failure(struct bnx2x *bp) { int port = BP_PORT(bp); u32 ext_phy_config; /* mark the failure */ ext_phy_config = SHMEM_RD(bp, dev_info.port_hw_config[port].external_phy_config); ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, ext_phy_config); /* log the failure */ netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" "Please contact OEM Support for assistance\n"); /* Schedule device reset (unload) * This is due to some boards consuming sufficient power when driver is * up to overheat if fan fails. */ smp_mb__before_clear_bit(); set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state); smp_mb__after_clear_bit(); schedule_delayed_work(&bp->sp_rtnl_task, 0); } static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn) { int port = BP_PORT(bp); int reg_offset; u32 val; reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { val = REG_RD(bp, reg_offset); val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; REG_WR(bp, reg_offset, val); BNX2X_ERR("SPIO5 hw attention\n"); /* Fan failure attention */ bnx2x_hw_reset_phy(&bp->link_params); bnx2x_fan_failure(bp); } if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { bnx2x_acquire_phy_lock(bp); bnx2x_handle_module_detect_int(&bp->link_params); bnx2x_release_phy_lock(bp); } if (attn & HW_INTERRUT_ASSERT_SET_0) { val = REG_RD(bp, reg_offset); val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); REG_WR(bp, reg_offset, val); BNX2X_ERR("FATAL HW block attention set0 0x%x\n", (u32)(attn & HW_INTERRUT_ASSERT_SET_0)); bnx2x_panic(); } } static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn) { u32 val; if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); BNX2X_ERR("DB hw attention 0x%x\n", val); /* DORQ discard attention */ if (val & 0x2) BNX2X_ERR("FATAL error from DORQ\n"); } if (attn & HW_INTERRUT_ASSERT_SET_1) { int port = BP_PORT(bp); int reg_offset; reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); val = REG_RD(bp, reg_offset); val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); REG_WR(bp, reg_offset, val); BNX2X_ERR("FATAL HW block attention set1 0x%x\n", (u32)(attn & HW_INTERRUT_ASSERT_SET_1)); bnx2x_panic(); } } static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn) { u32 val; if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); BNX2X_ERR("CFC hw attention 0x%x\n", val); /* CFC error attention */ if (val & 0x2) BNX2X_ERR("FATAL error from CFC\n"); } if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); BNX2X_ERR("PXP hw attention-0 0x%x\n", val); /* RQ_USDMDP_FIFO_OVERFLOW */ if (val & 0x18000) BNX2X_ERR("FATAL error from PXP\n"); if (!CHIP_IS_E1x(bp)) { val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); BNX2X_ERR("PXP hw attention-1 0x%x\n", val); } } if (attn & HW_INTERRUT_ASSERT_SET_2) { int port = BP_PORT(bp); int reg_offset; reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); val = REG_RD(bp, reg_offset); val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); REG_WR(bp, reg_offset, val); BNX2X_ERR("FATAL HW block attention set2 0x%x\n", (u32)(attn & HW_INTERRUT_ASSERT_SET_2)); bnx2x_panic(); } } static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn) { u32 val; if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { if (attn & BNX2X_PMF_LINK_ASSERT) { int func = BP_FUNC(bp); REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); bnx2x_read_mf_cfg(bp); bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, func_mf_config[BP_ABS_FUNC(bp)].config); val = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_status); if (val & DRV_STATUS_DCC_EVENT_MASK) bnx2x_dcc_event(bp, (val & DRV_STATUS_DCC_EVENT_MASK)); if (val & DRV_STATUS_SET_MF_BW) bnx2x_set_mf_bw(bp); if (val & DRV_STATUS_DRV_INFO_REQ) bnx2x_handle_drv_info_req(bp); if (val & DRV_STATUS_VF_DISABLED) bnx2x_vf_handle_flr_event(bp); if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) bnx2x_pmf_update(bp); if (bp->port.pmf && (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && bp->dcbx_enabled > 0) /* start dcbx state machine */ bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_NEG_RECEIVED); if (val & DRV_STATUS_AFEX_EVENT_MASK) bnx2x_handle_afex_cmd(bp, val & DRV_STATUS_AFEX_EVENT_MASK); if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) bnx2x_handle_eee_event(bp); if (bp->link_vars.periodic_flags & PERIODIC_FLAGS_LINK_EVENT) { /* sync with link */ bnx2x_acquire_phy_lock(bp); bp->link_vars.periodic_flags &= ~PERIODIC_FLAGS_LINK_EVENT; bnx2x_release_phy_lock(bp); if (IS_MF(bp)) bnx2x_link_sync_notify(bp); bnx2x_link_report(bp); } /* Always call it here: bnx2x_link_report() will * prevent the link indication duplication. */ bnx2x__link_status_update(bp); } else if (attn & BNX2X_MC_ASSERT_BITS) { BNX2X_ERR("MC assert!\n"); bnx2x_mc_assert(bp); REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); bnx2x_panic(); } else if (attn & BNX2X_MCP_ASSERT) { BNX2X_ERR("MCP assert!\n"); REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); bnx2x_fw_dump(bp); } else BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); } if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); if (attn & BNX2X_GRC_TIMEOUT) { val = CHIP_IS_E1(bp) ? 0 : REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); BNX2X_ERR("GRC time-out 0x%08x\n", val); } if (attn & BNX2X_GRC_RSV) { val = CHIP_IS_E1(bp) ? 0 : REG_RD(bp, MISC_REG_GRC_RSV_ATTN); BNX2X_ERR("GRC reserved 0x%08x\n", val); } REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); } } /* * Bits map: * 0-7 - Engine0 load counter. * 8-15 - Engine1 load counter. * 16 - Engine0 RESET_IN_PROGRESS bit. * 17 - Engine1 RESET_IN_PROGRESS bit. * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function * on the engine * 19 - Engine1 ONE_IS_LOADED. * 20 - Chip reset flow bit. When set none-leader must wait for both engines * leader to complete (check for both RESET_IN_PROGRESS bits and not for * just the one belonging to its engine). * */ #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff #define BNX2X_PATH0_LOAD_CNT_SHIFT 0 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000 #define BNX2X_GLOBAL_RESET_BIT 0x00040000 /* * Set the GLOBAL_RESET bit. * * Should be run under rtnl lock */ void bnx2x_set_reset_global(struct bnx2x *bp) { u32 val; bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); } /* * Clear the GLOBAL_RESET bit. * * Should be run under rtnl lock */ static void bnx2x_clear_reset_global(struct bnx2x *bp) { u32 val; bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); } /* * Checks the GLOBAL_RESET bit. * * should be run under rtnl lock */ static bool bnx2x_reset_is_global(struct bnx2x *bp) { u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; } /* * Clear RESET_IN_PROGRESS bit for the current engine. * * Should be run under rtnl lock */ static void bnx2x_set_reset_done(struct bnx2x *bp) { u32 val; u32 bit = BP_PATH(bp) ? BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); /* Clear the bit */ val &= ~bit; REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); } /* * Set RESET_IN_PROGRESS for the current engine. * * should be run under rtnl lock */ void bnx2x_set_reset_in_progress(struct bnx2x *bp) { u32 val; u32 bit = BP_PATH(bp) ? BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); /* Set the bit */ val |= bit; REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); } /* * Checks the RESET_IN_PROGRESS bit for the given engine. * should be run under rtnl lock */ bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) { u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); u32 bit = engine ? BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; /* return false if bit is set */ return (val & bit) ? false : true; } /* * set pf load for the current pf. * * should be run under rtnl lock */ void bnx2x_set_pf_load(struct bnx2x *bp) { u32 val1, val; u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : BNX2X_PATH0_LOAD_CNT_MASK; u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : BNX2X_PATH0_LOAD_CNT_SHIFT; bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); /* get the current counter value */ val1 = (val & mask) >> shift; /* set bit of that PF */ val1 |= (1 << bp->pf_num); /* clear the old value */ val &= ~mask; /* set the new one */ val |= ((val1 << shift) & mask); REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); } /** * bnx2x_clear_pf_load - clear pf load mark * * @bp: driver handle * * Should be run under rtnl lock. * Decrements the load counter for the current engine. Returns * whether other functions are still loaded */ bool bnx2x_clear_pf_load(struct bnx2x *bp) { u32 val1, val; u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : BNX2X_PATH0_LOAD_CNT_MASK; u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : BNX2X_PATH0_LOAD_CNT_SHIFT; bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); /* get the current counter value */ val1 = (val & mask) >> shift; /* clear bit of that PF */ val1 &= ~(1 << bp->pf_num); /* clear the old value */ val &= ~mask; /* set the new one */ val |= ((val1 << shift) & mask); REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); return val1 != 0; } /* * Read the load status for the current engine. * * should be run under rtnl lock */ static bool bnx2x_get_load_status(struct bnx2x *bp, int engine) { u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : BNX2X_PATH0_LOAD_CNT_MASK); u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : BNX2X_PATH0_LOAD_CNT_SHIFT); u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); val = (val & mask) >> shift; DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", engine, val); return val != 0; } static void _print_parity(struct bnx2x *bp, u32 reg) { pr_cont(" [0x%08x] ", REG_RD(bp, reg)); } static void _print_next_block(int idx, const char *blk) { pr_cont("%s%s", idx ? ", " : "", blk); } static int bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig, int par_num, bool print) { int i = 0; u32 cur_bit = 0; for (i = 0; sig; i++) { cur_bit = ((u32)0x1 << i); if (sig & cur_bit) { switch (cur_bit) { case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: if (print) { _print_next_block(par_num++, "BRB"); _print_parity(bp, BRB1_REG_BRB1_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: if (print) { _print_next_block(par_num++, "PARSER"); _print_parity(bp, PRS_REG_PRS_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: if (print) { _print_next_block(par_num++, "TSDM"); _print_parity(bp, TSDM_REG_TSDM_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: if (print) { _print_next_block(par_num++, "SEARCHER"); _print_parity(bp, SRC_REG_SRC_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: if (print) { _print_next_block(par_num++, "TCM"); _print_parity(bp, TCM_REG_TCM_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: if (print) { _print_next_block(par_num++, "TSEMI"); _print_parity(bp, TSEM_REG_TSEM_PRTY_STS_0); _print_parity(bp, TSEM_REG_TSEM_PRTY_STS_1); } break; case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: if (print) { _print_next_block(par_num++, "XPB"); _print_parity(bp, GRCBASE_XPB + PB_REG_PB_PRTY_STS); } break; } /* Clear the bit */ sig &= ~cur_bit; } } return par_num; } static int bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig, int par_num, bool *global, bool print) { int i = 0; u32 cur_bit = 0; for (i = 0; sig; i++) { cur_bit = ((u32)0x1 << i); if (sig & cur_bit) { switch (cur_bit) { case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: if (print) { _print_next_block(par_num++, "PBF"); _print_parity(bp, PBF_REG_PBF_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: if (print) { _print_next_block(par_num++, "QM"); _print_parity(bp, QM_REG_QM_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: if (print) { _print_next_block(par_num++, "TM"); _print_parity(bp, TM_REG_TM_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: if (print) { _print_next_block(par_num++, "XSDM"); _print_parity(bp, XSDM_REG_XSDM_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: if (print) { _print_next_block(par_num++, "XCM"); _print_parity(bp, XCM_REG_XCM_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: if (print) { _print_next_block(par_num++, "XSEMI"); _print_parity(bp, XSEM_REG_XSEM_PRTY_STS_0); _print_parity(bp, XSEM_REG_XSEM_PRTY_STS_1); } break; case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: if (print) { _print_next_block(par_num++, "DOORBELLQ"); _print_parity(bp, DORQ_REG_DORQ_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: if (print) { _print_next_block(par_num++, "NIG"); if (CHIP_IS_E1x(bp)) { _print_parity(bp, NIG_REG_NIG_PRTY_STS); } else { _print_parity(bp, NIG_REG_NIG_PRTY_STS_0); _print_parity(bp, NIG_REG_NIG_PRTY_STS_1); } } break; case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: if (print) _print_next_block(par_num++, "VAUX PCI CORE"); *global = true; break; case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: if (print) { _print_next_block(par_num++, "DEBUG"); _print_parity(bp, DBG_REG_DBG_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: if (print) { _print_next_block(par_num++, "USDM"); _print_parity(bp, USDM_REG_USDM_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: if (print) { _print_next_block(par_num++, "UCM"); _print_parity(bp, UCM_REG_UCM_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: if (print) { _print_next_block(par_num++, "USEMI"); _print_parity(bp, USEM_REG_USEM_PRTY_STS_0); _print_parity(bp, USEM_REG_USEM_PRTY_STS_1); } break; case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: if (print) { _print_next_block(par_num++, "UPB"); _print_parity(bp, GRCBASE_UPB + PB_REG_PB_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: if (print) { _print_next_block(par_num++, "CSDM"); _print_parity(bp, CSDM_REG_CSDM_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: if (print) { _print_next_block(par_num++, "CCM"); _print_parity(bp, CCM_REG_CCM_PRTY_STS); } break; } /* Clear the bit */ sig &= ~cur_bit; } } return par_num; } static int bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig, int par_num, bool print) { int i = 0; u32 cur_bit = 0; for (i = 0; sig; i++) { cur_bit = ((u32)0x1 << i); if (sig & cur_bit) { switch (cur_bit) { case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: if (print) { _print_next_block(par_num++, "CSEMI"); _print_parity(bp, CSEM_REG_CSEM_PRTY_STS_0); _print_parity(bp, CSEM_REG_CSEM_PRTY_STS_1); } break; case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: if (print) { _print_next_block(par_num++, "PXP"); _print_parity(bp, PXP_REG_PXP_PRTY_STS); _print_parity(bp, PXP2_REG_PXP2_PRTY_STS_0); _print_parity(bp, PXP2_REG_PXP2_PRTY_STS_1); } break; case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: if (print) _print_next_block(par_num++, "PXPPCICLOCKCLIENT"); break; case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: if (print) { _print_next_block(par_num++, "CFC"); _print_parity(bp, CFC_REG_CFC_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: if (print) { _print_next_block(par_num++, "CDU"); _print_parity(bp, CDU_REG_CDU_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: if (print) { _print_next_block(par_num++, "DMAE"); _print_parity(bp, DMAE_REG_DMAE_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: if (print) { _print_next_block(par_num++, "IGU"); if (CHIP_IS_E1x(bp)) _print_parity(bp, HC_REG_HC_PRTY_STS); else _print_parity(bp, IGU_REG_IGU_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: if (print) { _print_next_block(par_num++, "MISC"); _print_parity(bp, MISC_REG_MISC_PRTY_STS); } break; } /* Clear the bit */ sig &= ~cur_bit; } } return par_num; } static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num, bool *global, bool print) { int i = 0; u32 cur_bit = 0; for (i = 0; sig; i++) { cur_bit = ((u32)0x1 << i); if (sig & cur_bit) { switch (cur_bit) { case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: if (print) _print_next_block(par_num++, "MCP ROM"); *global = true; break; case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: if (print) _print_next_block(par_num++, "MCP UMP RX"); *global = true; break; case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: if (print) _print_next_block(par_num++, "MCP UMP TX"); *global = true; break; case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: if (print) _print_next_block(par_num++, "MCP SCPAD"); *global = true; break; } /* Clear the bit */ sig &= ~cur_bit; } } return par_num; } static int bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig, int par_num, bool print) { int i = 0; u32 cur_bit = 0; for (i = 0; sig; i++) { cur_bit = ((u32)0x1 << i); if (sig & cur_bit) { switch (cur_bit) { case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: if (print) { _print_next_block(par_num++, "PGLUE_B"); _print_parity(bp, PGLUE_B_REG_PGLUE_B_PRTY_STS); } break; case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: if (print) { _print_next_block(par_num++, "ATC"); _print_parity(bp, ATC_REG_ATC_PRTY_STS); } break; } /* Clear the bit */ sig &= ~cur_bit; } } return par_num; } static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, u32 *sig) { if ((sig[0] & HW_PRTY_ASSERT_SET_0) || (sig[1] & HW_PRTY_ASSERT_SET_1) || (sig[2] & HW_PRTY_ASSERT_SET_2) || (sig[3] & HW_PRTY_ASSERT_SET_3) || (sig[4] & HW_PRTY_ASSERT_SET_4)) { int par_num = 0; DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", sig[0] & HW_PRTY_ASSERT_SET_0, sig[1] & HW_PRTY_ASSERT_SET_1, sig[2] & HW_PRTY_ASSERT_SET_2, sig[3] & HW_PRTY_ASSERT_SET_3, sig[4] & HW_PRTY_ASSERT_SET_4); if (print) netdev_err(bp->dev, "Parity errors detected in blocks: "); par_num = bnx2x_check_blocks_with_parity0(bp, sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print); par_num = bnx2x_check_blocks_with_parity1(bp, sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print); par_num = bnx2x_check_blocks_with_parity2(bp, sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print); par_num = bnx2x_check_blocks_with_parity3( sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print); par_num = bnx2x_check_blocks_with_parity4(bp, sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print); if (print) pr_cont("\n"); return true; } else return false; } /** * bnx2x_chk_parity_attn - checks for parity attentions. * * @bp: driver handle * @global: true if there was a global attention * @print: show parity attention in syslog */ bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) { struct attn_route attn = { {0} }; int port = BP_PORT(bp); attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); if (!CHIP_IS_E1x(bp)) attn.sig[4] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); return bnx2x_parity_attn(bp, global, print, attn.sig); } static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn) { u32 val; if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); BNX2X_ERR("PGLUE hw attention 0x%x\n", val); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); } if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); BNX2X_ERR("ATC hw attention 0x%x\n", val); if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); } if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { BNX2X_ERR("FATAL parity attention set4 0x%x\n", (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); } } static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted) { struct attn_route attn, *group_mask; int port = BP_PORT(bp); int index; u32 reg_addr; u32 val; u32 aeu_mask; bool global = false; /* need to take HW lock because MCP or other port might also try to handle this event */ bnx2x_acquire_alr(bp); if (bnx2x_chk_parity_attn(bp, &global, true)) { #ifndef BNX2X_STOP_ON_ERROR bp->recovery_state = BNX2X_RECOVERY_INIT; schedule_delayed_work(&bp->sp_rtnl_task, 0); /* Disable HW interrupts */ bnx2x_int_disable(bp); /* In case of parity errors don't handle attentions so that * other function would "see" parity errors. */ #else bnx2x_panic(); #endif bnx2x_release_alr(bp); return; } attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); if (!CHIP_IS_E1x(bp)) attn.sig[4] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); else attn.sig[4] = 0; DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { if (deasserted & (1 << index)) { group_mask = &bp->attn_group[index]; DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", index, group_mask->sig[0], group_mask->sig[1], group_mask->sig[2], group_mask->sig[3], group_mask->sig[4]); bnx2x_attn_int_deasserted4(bp, attn.sig[4] & group_mask->sig[4]); bnx2x_attn_int_deasserted3(bp, attn.sig[3] & group_mask->sig[3]); bnx2x_attn_int_deasserted1(bp, attn.sig[1] & group_mask->sig[1]); bnx2x_attn_int_deasserted2(bp, attn.sig[2] & group_mask->sig[2]); bnx2x_attn_int_deasserted0(bp, attn.sig[0] & group_mask->sig[0]); } } bnx2x_release_alr(bp); if (bp->common.int_block == INT_BLOCK_HC) reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_CLR); else reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); val = ~deasserted; DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); REG_WR(bp, reg_addr, val); if (~bp->attn_state & deasserted) BNX2X_ERR("IGU ERROR\n"); reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : MISC_REG_AEU_MASK_ATTN_FUNC_0; bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); aeu_mask = REG_RD(bp, reg_addr); DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n", aeu_mask, deasserted); aeu_mask |= (deasserted & 0x3ff); DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); REG_WR(bp, reg_addr, aeu_mask); bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); bp->attn_state &= ~deasserted; DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); } static void bnx2x_attn_int(struct bnx2x *bp) { /* read local copy of bits */ u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. attn_bits); u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. attn_bits_ack); u32 attn_state = bp->attn_state; /* look for changed bits */ u32 asserted = attn_bits & ~attn_ack & ~attn_state; u32 deasserted = ~attn_bits & attn_ack & attn_state; DP(NETIF_MSG_HW, "attn_bits %x attn_ack %x asserted %x deasserted %x\n", attn_bits, attn_ack, asserted, deasserted); if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) BNX2X_ERR("BAD attention state\n"); /* handle bits that were raised */ if (asserted) bnx2x_attn_int_asserted(bp, asserted); if (deasserted) bnx2x_attn_int_deasserted(bp, deasserted); } void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, u16 index, u8 op, u8 update) { u32 igu_addr = bp->igu_base_addr; igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, igu_addr); } static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod) { /* No memory barriers */ storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); mmiowb(); /* keep prod updates ordered */ } static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid, union event_ring_elem *elem) { u8 err = elem->message.error; if (!bp->cnic_eth_dev.starting_cid || (cid < bp->cnic_eth_dev.starting_cid && cid != bp->cnic_eth_dev.iscsi_l2_cid)) return 1; DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); if (unlikely(err)) { BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", cid); bnx2x_panic_dump(bp, false); } bnx2x_cnic_cfc_comp(bp, cid, err); return 0; } static void bnx2x_handle_mcast_eqe(struct bnx2x *bp) { struct bnx2x_mcast_ramrod_params rparam; int rc; memset(&rparam, 0, sizeof(rparam)); rparam.mcast_obj = &bp->mcast_obj; netif_addr_lock_bh(bp->dev); /* Clear pending state for the last command */ bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); /* If there are pending mcast commands - send them */ if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); if (rc < 0) BNX2X_ERR("Failed to send pending mcast commands: %d\n", rc); } netif_addr_unlock_bh(bp->dev); } static void bnx2x_handle_classification_eqe(struct bnx2x *bp, union event_ring_elem *elem) { unsigned long ramrod_flags = 0; int rc = 0; u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK; struct bnx2x_vlan_mac_obj *vlan_mac_obj; /* Always push next commands out, don't wait here */ __set_bit(RAMROD_CONT, &ramrod_flags); switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo) >> BNX2X_SWCID_SHIFT) { case BNX2X_FILTER_MAC_PENDING: DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp))) vlan_mac_obj = &bp->iscsi_l2_mac_obj; else vlan_mac_obj = &bp->sp_objs[cid].mac_obj; break; case BNX2X_FILTER_MCAST_PENDING: DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); /* This is only relevant for 57710 where multicast MACs are * configured as unicast MACs using the same ramrod. */ bnx2x_handle_mcast_eqe(bp); return; default: BNX2X_ERR("Unsupported classification command: %d\n", elem->message.data.eth_event.echo); return; } rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); if (rc < 0) BNX2X_ERR("Failed to schedule new commands: %d\n", rc); else if (rc > 0) DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); } static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) { netif_addr_lock_bh(bp->dev); clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); /* Send rx_mode command again if was requested */ if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) bnx2x_set_storm_rx_mode(bp); else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state)) bnx2x_set_iscsi_eth_rx_mode(bp, true); else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state)) bnx2x_set_iscsi_eth_rx_mode(bp, false); netif_addr_unlock_bh(bp->dev); } static void bnx2x_after_afex_vif_lists(struct bnx2x *bp, union event_ring_elem *elem) { if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) { DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n", elem->message.data.vif_list_event.func_bit_map); bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK, elem->message.data.vif_list_event.func_bit_map); } else if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_SET) { DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n"); bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0); } } /* called with rtnl_lock */ static void bnx2x_after_function_update(struct bnx2x *bp) { int q, rc; struct bnx2x_fastpath *fp; struct bnx2x_queue_state_params queue_params = {NULL}; struct bnx2x_queue_update_params *q_update_params = &queue_params.params.update; /* Send Q update command with afex vlan removal values for all Qs */ queue_params.cmd = BNX2X_Q_CMD_UPDATE; /* set silent vlan removal values according to vlan mode */ __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, &q_update_params->update_flags); __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, &q_update_params->update_flags); __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); /* in access mode mark mask and value are 0 to strip all vlans */ if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) { q_update_params->silent_removal_value = 0; q_update_params->silent_removal_mask = 0; } else { q_update_params->silent_removal_value = (bp->afex_def_vlan_tag & VLAN_VID_MASK); q_update_params->silent_removal_mask = VLAN_VID_MASK; } for_each_eth_queue(bp, q) { /* Set the appropriate Queue object */ fp = &bp->fp[q]; queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; /* send the ramrod */ rc = bnx2x_queue_state_change(bp, &queue_params); if (rc < 0) BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", q); } if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) { fp = &bp->fp[FCOE_IDX(bp)]; queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; /* clear pending completion bit */ __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); /* mark latest Q bit */ smp_mb__before_clear_bit(); set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); smp_mb__after_clear_bit(); /* send Q update ramrod for FCoE Q */ rc = bnx2x_queue_state_change(bp, &queue_params); if (rc < 0) BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", q); } else { /* If no FCoE ring - ACK MCP now */ bnx2x_link_report(bp); bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); } } static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( struct bnx2x *bp, u32 cid) { DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp))) return &bnx2x_fcoe_sp_obj(bp, q_obj); else return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj; } static void bnx2x_eq_int(struct bnx2x *bp) { u16 hw_cons, sw_cons, sw_prod; union event_ring_elem *elem; u8 echo; u32 cid; u8 opcode; int rc, spqe_cnt = 0; struct bnx2x_queue_sp_obj *q_obj; struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; hw_cons = le16_to_cpu(*bp->eq_cons_sb); /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. * when we get the next-page we need to adjust so the loop * condition below will be met. The next element is the size of a * regular element and hence incrementing by 1 */ if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) hw_cons++; /* This function may never run in parallel with itself for a * specific bp, thus there is no need in "paired" read memory * barrier here. */ sw_cons = bp->eq_cons; sw_prod = bp->eq_prod; DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n", hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); for (; sw_cons != hw_cons; sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { elem = &bp->eq_ring[EQ_DESC(sw_cons)]; rc = bnx2x_iov_eq_sp_event(bp, elem); if (!rc) { DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n", rc); goto next_spqe; } /* elem CID originates from FW; actually LE */ cid = SW_CID((__force __le32) elem->message.data.cfc_del_event.cid); opcode = elem->message.opcode; /* handle eq element */ switch (opcode) { case EVENT_RING_OPCODE_VF_PF_CHANNEL: DP(BNX2X_MSG_IOV, "vf pf channel element on eq\n"); bnx2x_vf_mbx(bp, &elem->message.data.vf_pf_event); continue; case EVENT_RING_OPCODE_STAT_QUERY: DP(BNX2X_MSG_SP | BNX2X_MSG_STATS, "got statistics comp event %d\n", bp->stats_comp++); /* nothing to do with stats comp */ goto next_spqe; case EVENT_RING_OPCODE_CFC_DEL: /* handle according to cid range */ /* * we may want to verify here that the bp state is * HALTING */ DP(BNX2X_MSG_SP, "got delete ramrod for MULTI[%d]\n", cid); if (CNIC_LOADED(bp) && !bnx2x_cnic_handle_cfc_del(bp, cid, elem)) goto next_spqe; q_obj = bnx2x_cid_to_q_obj(bp, cid); if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) break; goto next_spqe; case EVENT_RING_OPCODE_STOP_TRAFFIC: DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_TX_STOP)) break; bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); goto next_spqe; case EVENT_RING_OPCODE_START_TRAFFIC: DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_TX_START)) break; bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); goto next_spqe; case EVENT_RING_OPCODE_FUNCTION_UPDATE: echo = elem->message.data.function_update_event.echo; if (echo == SWITCH_UPDATE) { DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, "got FUNC_SWITCH_UPDATE ramrod\n"); if (f_obj->complete_cmd( bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE)) break; } else { DP(BNX2X_MSG_SP | BNX2X_MSG_MCP, "AFEX: ramrod completed FUNCTION_UPDATE\n"); f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_AFEX_UPDATE); /* We will perform the Queues update from * sp_rtnl task as all Queue SP operations * should run under rtnl_lock. */ smp_mb__before_clear_bit(); set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state); smp_mb__after_clear_bit(); schedule_delayed_work(&bp->sp_rtnl_task, 0); } goto next_spqe; case EVENT_RING_OPCODE_AFEX_VIF_LISTS: f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_AFEX_VIFLISTS); bnx2x_after_afex_vif_lists(bp, elem); goto next_spqe; case EVENT_RING_OPCODE_FUNCTION_START: DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, "got FUNC_START ramrod\n"); if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) break; goto next_spqe; case EVENT_RING_OPCODE_FUNCTION_STOP: DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, "got FUNC_STOP ramrod\n"); if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) break; goto next_spqe; } switch (opcode | bp->state) { case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPEN): case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPENING_WAIT4_PORT): cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK; DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); rss_raw->clear_pending(rss_raw); break; case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_CLOSING_WAIT4_HALT): case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_OPEN): case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_DIAG): case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_CLOSING_WAIT4_HALT): DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n"); bnx2x_handle_classification_eqe(bp, elem); break; case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_OPEN): case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_DIAG): case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_CLOSING_WAIT4_HALT): DP(BNX2X_MSG_SP, "got mcast ramrod\n"); bnx2x_handle_mcast_eqe(bp); break; case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_OPEN): case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_DIAG): case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_CLOSING_WAIT4_HALT): DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); bnx2x_handle_rx_mode_eqe(bp); break; default: /* unknown event log error and continue */ BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", elem->message.opcode, bp->state); } next_spqe: spqe_cnt++; } /* for */ smp_mb__before_atomic_inc(); atomic_add(spqe_cnt, &bp->eq_spq_left); bp->eq_cons = sw_cons; bp->eq_prod = sw_prod; /* Make sure that above mem writes were issued towards the memory */ smp_wmb(); /* update producer */ bnx2x_update_eq_prod(bp, bp->eq_prod); } static void bnx2x_sp_task(struct work_struct *work) { struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); DP(BNX2X_MSG_SP, "sp task invoked\n"); /* make sure the atomic interrupt_occurred has been written */ smp_rmb(); if (atomic_read(&bp->interrupt_occurred)) { /* what work needs to be performed? */ u16 status = bnx2x_update_dsb_idx(bp); DP(BNX2X_MSG_SP, "status %x\n", status); DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n"); atomic_set(&bp->interrupt_occurred, 0); /* HW attentions */ if (status & BNX2X_DEF_SB_ATT_IDX) { bnx2x_attn_int(bp); status &= ~BNX2X_DEF_SB_ATT_IDX; } /* SP events: STAT_QUERY and others */ if (status & BNX2X_DEF_SB_IDX) { struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); if (FCOE_INIT(bp) && (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { /* Prevent local bottom-halves from running as * we are going to change the local NAPI list. */ local_bh_disable(); napi_schedule(&bnx2x_fcoe(bp, napi)); local_bh_enable(); } /* Handle EQ completions */ bnx2x_eq_int(bp); bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); status &= ~BNX2X_DEF_SB_IDX; } /* if status is non zero then perhaps something went wrong */ if (unlikely(status)) DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n", status); /* ack status block only if something was actually handled */ bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); } /* must be called after the EQ processing (since eq leads to sriov * ramrod completion flows). * This flow may have been scheduled by the arrival of a ramrod * completion, or by the sriov code rescheduling itself. */ bnx2x_iov_sp_task(bp); /* afex - poll to check if VIFSET_ACK should be sent to MFW */ if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state)) { bnx2x_link_report(bp); bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); } } irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance) { struct net_device *dev = dev_instance; struct bnx2x *bp = netdev_priv(dev); bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); #ifdef BNX2X_STOP_ON_ERROR if (unlikely(bp->panic)) return IRQ_HANDLED; #endif if (CNIC_LOADED(bp)) { struct cnic_ops *c_ops; rcu_read_lock(); c_ops = rcu_dereference(bp->cnic_ops); if (c_ops) c_ops->cnic_handler(bp->cnic_data, NULL); rcu_read_unlock(); } /* schedule sp task to perform default status block work, ack * attentions and enable interrupts. */ bnx2x_schedule_sp_task(bp); return IRQ_HANDLED; } /* end of slow path */ void bnx2x_drv_pulse(struct bnx2x *bp) { SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, bp->fw_drv_pulse_wr_seq); } static void bnx2x_timer(unsigned long data) { struct bnx2x *bp = (struct bnx2x *) data; if (!netif_running(bp->dev)) return; if (IS_PF(bp) && !BP_NOMCP(bp)) { int mb_idx = BP_FW_MB_IDX(bp); u32 drv_pulse; u32 mcp_pulse; ++bp->fw_drv_pulse_wr_seq; bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; /* TBD - add SYSTEM_TIME */ drv_pulse = bp->fw_drv_pulse_wr_seq; bnx2x_drv_pulse(bp); mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & MCP_PULSE_SEQ_MASK); /* The delta between driver pulse and mcp response * should be 1 (before mcp response) or 0 (after mcp response) */ if ((drv_pulse != mcp_pulse) && (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { /* someone lost a heartbeat... */ BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n", drv_pulse, mcp_pulse); } } if (bp->state == BNX2X_STATE_OPEN) bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); /* sample pf vf bulletin board for new posts from pf */ if (IS_VF(bp)) bnx2x_timer_sriov(bp); mod_timer(&bp->timer, jiffies + bp->current_interval); } /* end of Statistics */ /* nic init */ /* * nic init service functions */ static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) { u32 i; if (!(len%4) && !(addr%4)) for (i = 0; i < len; i += 4) REG_WR(bp, addr + i, fill); else for (i = 0; i < len; i++) REG_WR8(bp, addr + i, fill); } /* helper: writes FP SP data to FW - data_size in dwords */ static void bnx2x_wr_fp_sb_data(struct bnx2x *bp, int fw_sb_id, u32 *sb_data_p, u32 data_size) { int index; for (index = 0; index < data_size; index++) REG_WR(bp, BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + sizeof(u32)*index, *(sb_data_p + index)); } static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) { u32 *sb_data_p; u32 data_size = 0; struct hc_status_block_data_e2 sb_data_e2; struct hc_status_block_data_e1x sb_data_e1x; /* disable the function first */ if (!CHIP_IS_E1x(bp)) { memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); sb_data_e2.common.state = SB_DISABLED; sb_data_e2.common.p_func.vf_valid = false; sb_data_p = (u32 *)&sb_data_e2; data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); } else { memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); sb_data_e1x.common.state = SB_DISABLED; sb_data_e1x.common.p_func.vf_valid = false; sb_data_p = (u32 *)&sb_data_e1x; data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); } bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); bnx2x_fill(bp, BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, CSTORM_STATUS_BLOCK_SIZE); bnx2x_fill(bp, BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, CSTORM_SYNC_BLOCK_SIZE); } /* helper: writes SP SB data to FW */ static void bnx2x_wr_sp_sb_data(struct bnx2x *bp, struct hc_sp_status_block_data *sp_sb_data) { int func = BP_FUNC(bp); int i; for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) REG_WR(bp, BAR_CSTRORM_INTMEM + CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + i*sizeof(u32), *((u32 *)sp_sb_data + i)); } static void bnx2x_zero_sp_sb(struct bnx2x *bp) { int func = BP_FUNC(bp); struct hc_sp_status_block_data sp_sb_data; memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); sp_sb_data.state = SB_DISABLED; sp_sb_data.p_func.vf_valid = false; bnx2x_wr_sp_sb_data(bp, &sp_sb_data); bnx2x_fill(bp, BAR_CSTRORM_INTMEM + CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, CSTORM_SP_STATUS_BLOCK_SIZE); bnx2x_fill(bp, BAR_CSTRORM_INTMEM + CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, CSTORM_SP_SYNC_BLOCK_SIZE); } static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id, int igu_seg_id) { hc_sm->igu_sb_id = igu_sb_id; hc_sm->igu_seg_id = igu_seg_id; hc_sm->timer_value = 0xFF; hc_sm->time_to_expire = 0xFFFFFFFF; } /* allocates state machine ids. */ static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) { /* zero out state machine indices */ /* rx indices */ index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; /* tx indices */ index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; /* map indices */ /* rx indices */ index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; /* tx indices */ index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; } void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, u8 vf_valid, int fw_sb_id, int igu_sb_id) { int igu_seg_id; struct hc_status_block_data_e2 sb_data_e2; struct hc_status_block_data_e1x sb_data_e1x; struct hc_status_block_sm *hc_sm_p; int data_size; u32 *sb_data_p; if (CHIP_INT_MODE_IS_BC(bp)) igu_seg_id = HC_SEG_ACCESS_NORM; else igu_seg_id = IGU_SEG_ACCESS_NORM; bnx2x_zero_fp_sb(bp, fw_sb_id); if (!CHIP_IS_E1x(bp)) { memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); sb_data_e2.common.state = SB_ENABLED; sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); sb_data_e2.common.p_func.vf_id = vfid; sb_data_e2.common.p_func.vf_valid = vf_valid; sb_data_e2.common.p_func.vnic_id = BP_VN(bp); sb_data_e2.common.same_igu_sb_1b = true; sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); hc_sm_p = sb_data_e2.common.state_machine; sb_data_p = (u32 *)&sb_data_e2; data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); bnx2x_map_sb_state_machines(sb_data_e2.index_data); } else { memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); sb_data_e1x.common.state = SB_ENABLED; sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); sb_data_e1x.common.p_func.vf_id = 0xff; sb_data_e1x.common.p_func.vf_valid = false; sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); sb_data_e1x.common.same_igu_sb_1b = true; sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); hc_sm_p = sb_data_e1x.common.state_machine; sb_data_p = (u32 *)&sb_data_e1x; data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); bnx2x_map_sb_state_machines(sb_data_e1x.index_data); } bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); /* write indices to HW - PCI guarantees endianity of regpairs */ bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); } static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id, u16 tx_usec, u16 rx_usec) { bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, false, rx_usec); bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_TX_CQ_CONS_COS0, false, tx_usec); bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_TX_CQ_CONS_COS1, false, tx_usec); bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_TX_CQ_CONS_COS2, false, tx_usec); } static void bnx2x_init_def_sb(struct bnx2x *bp) { struct host_sp_status_block *def_sb = bp->def_status_blk; dma_addr_t mapping = bp->def_status_blk_mapping; int igu_sp_sb_index; int igu_seg_id; int port = BP_PORT(bp); int func = BP_FUNC(bp); int reg_offset, reg_offset_en5; u64 section; int index; struct hc_sp_status_block_data sp_sb_data; memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); if (CHIP_INT_MODE_IS_BC(bp)) { igu_sp_sb_index = DEF_SB_IGU_ID; igu_seg_id = HC_SEG_ACCESS_DEF; } else { igu_sp_sb_index = bp->igu_dsb_id; igu_seg_id = IGU_SEG_ACCESS_DEF; } /* ATTN */ section = ((u64)mapping) + offsetof(struct host_sp_status_block, atten_status_block); def_sb->atten_status_block.status_block_id = igu_sp_sb_index; bp->attn_state = 0; reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { int sindex; /* take care of sig[0]..sig[4] */ for (sindex = 0; sindex < 4; sindex++) bp->attn_group[index].sig[sindex] = REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); if (!CHIP_IS_E1x(bp)) /* * enable5 is separate from the rest of the registers, * and therefore the address skip is 4 * and not 16 between the different groups */ bp->attn_group[index].sig[4] = REG_RD(bp, reg_offset_en5 + 0x4*index); else bp->attn_group[index].sig[4] = 0; } if (bp->common.int_block == INT_BLOCK_HC) { reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L); REG_WR(bp, reg_offset, U64_LO(section)); REG_WR(bp, reg_offset + 4, U64_HI(section)); } else if (!CHIP_IS_E1x(bp)) { REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); } section = ((u64)mapping) + offsetof(struct host_sp_status_block, sp_sb); bnx2x_zero_sp_sb(bp); /* PCI guarantees endianity of regpairs */ sp_sb_data.state = SB_ENABLED; sp_sb_data.host_sb_addr.lo = U64_LO(section); sp_sb_data.host_sb_addr.hi = U64_HI(section); sp_sb_data.igu_sb_id = igu_sp_sb_index; sp_sb_data.igu_seg_id = igu_seg_id; sp_sb_data.p_func.pf_id = func; sp_sb_data.p_func.vnic_id = BP_VN(bp); sp_sb_data.p_func.vf_id = 0xff; bnx2x_wr_sp_sb_data(bp, &sp_sb_data); bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); } void bnx2x_update_coalesce(struct bnx2x *bp) { int i; for_each_eth_queue(bp, i) bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, bp->tx_ticks, bp->rx_ticks); } static void bnx2x_init_sp_ring(struct bnx2x *bp) { spin_lock_init(&bp->spq_lock); atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); bp->spq_prod_idx = 0; bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; bp->spq_prod_bd = bp->spq; bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; } static void bnx2x_init_eq_ring(struct bnx2x *bp) { int i; for (i = 1; i <= NUM_EQ_PAGES; i++) { union event_ring_elem *elem = &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; elem->next_page.addr.hi = cpu_to_le32(U64_HI(bp->eq_mapping + BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); elem->next_page.addr.lo = cpu_to_le32(U64_LO(bp->eq_mapping + BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); } bp->eq_cons = 0; bp->eq_prod = NUM_EQ_DESC; bp->eq_cons_sb = BNX2X_EQ_INDEX; /* we want a warning message before it gets wrought... */ atomic_set(&bp->eq_spq_left, min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); } /* called with netif_addr_lock_bh() */ int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, unsigned long rx_mode_flags, unsigned long rx_accept_flags, unsigned long tx_accept_flags, unsigned long ramrod_flags) { struct bnx2x_rx_mode_ramrod_params ramrod_param; int rc; memset(&ramrod_param, 0, sizeof(ramrod_param)); /* Prepare ramrod parameters */ ramrod_param.cid = 0; ramrod_param.cl_id = cl_id; ramrod_param.rx_mode_obj = &bp->rx_mode_obj; ramrod_param.func_id = BP_FUNC(bp); ramrod_param.pstate = &bp->sp_state; ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); ramrod_param.ramrod_flags = ramrod_flags; ramrod_param.rx_mode_flags = rx_mode_flags; ramrod_param.rx_accept_flags = rx_accept_flags; ramrod_param.tx_accept_flags = tx_accept_flags; rc = bnx2x_config_rx_mode(bp, &ramrod_param); if (rc < 0) { BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); return rc; } return 0; } static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode, unsigned long *rx_accept_flags, unsigned long *tx_accept_flags) { /* Clear the flags first */ *rx_accept_flags = 0; *tx_accept_flags = 0; switch (rx_mode) { case BNX2X_RX_MODE_NONE: /* * 'drop all' supersedes any accept flags that may have been * passed to the function. */ break; case BNX2X_RX_MODE_NORMAL: __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags); __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); /* internal switching mode */ __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags); __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); break; case BNX2X_RX_MODE_ALLMULTI: __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); /* internal switching mode */ __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); break; case BNX2X_RX_MODE_PROMISC: /* According to definition of SI mode, iface in promisc mode * should receive matched and unmatched (in resolution of port) * unicast packets. */ __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags); __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); /* internal switching mode */ __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); if (IS_MF_SI(bp)) __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags); else __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); break; default: BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode); return -EINVAL; } /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ if (bp->rx_mode != BNX2X_RX_MODE_NONE) { __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); } return 0; } /* called with netif_addr_lock_bh() */ int bnx2x_set_storm_rx_mode(struct bnx2x *bp) { unsigned long rx_mode_flags = 0, ramrod_flags = 0; unsigned long rx_accept_flags = 0, tx_accept_flags = 0; int rc; if (!NO_FCOE(bp)) /* Configure rx_mode of FCoE Queue */ __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags, &tx_accept_flags); if (rc) return rc; __set_bit(RAMROD_RX, &ramrod_flags); __set_bit(RAMROD_TX, &ramrod_flags); return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags, tx_accept_flags, ramrod_flags); } static void bnx2x_init_internal_common(struct bnx2x *bp) { int i; if (IS_MF_SI(bp)) /* * In switch independent mode, the TSTORM needs to accept * packets that failed classification, since approximate match * mac addresses aren't written to NIG LLH */ REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2); else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */ REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0); /* Zero this manually as its initialization is currently missing in the initTool */ for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) REG_WR(bp, BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + i * 4, 0); if (!CHIP_IS_E1x(bp)) { REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, CHIP_INT_MODE_IS_BC(bp) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); } } static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code) { switch (load_code) { case FW_MSG_CODE_DRV_LOAD_COMMON: case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: bnx2x_init_internal_common(bp); /* no break */ case FW_MSG_CODE_DRV_LOAD_PORT: /* nothing to do */ /* no break */ case FW_MSG_CODE_DRV_LOAD_FUNCTION: /* internal memory per function is initialized inside bnx2x_pf_init */ break; default: BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); break; } } static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) { return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp); } static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) { return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp); } static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) { if (CHIP_IS_E1x(fp->bp)) return BP_L_ID(fp->bp) + fp->index; else /* We want Client ID to be the same as IGU SB ID for 57712 */ return bnx2x_fp_igu_sb_id(fp); } static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) { struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; u8 cos; unsigned long q_type = 0; u32 cids[BNX2X_MULTI_TX_COS] = { 0 }; fp->rx_queue = fp_idx; fp->cid = fp_idx; fp->cl_id = bnx2x_fp_cl_id(fp); fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); /* qZone id equals to FW (per path) client id */ fp->cl_qzone_id = bnx2x_fp_qzone_id(fp); /* init shortcut */ fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); /* Setup SB indices */ fp->rx_cons_sb = BNX2X_RX_SB_INDEX; /* Configure Queue State object */ __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS); /* init tx data */ for_each_cos_in_tx_queue(fp, cos) { bnx2x_init_txdata(bp, fp->txdata_ptr[cos], CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp), FP_COS_TO_TXQ(fp, cos, bp), BNX2X_TX_SB_INDEX_BASE + cos, fp); cids[cos] = fp->txdata_ptr[cos]->cid; } /* nothing more for vf to do here */ if (IS_VF(bp)) return; bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, fp->fw_sb_id, fp->igu_sb_id); bnx2x_update_fpsb_idx(fp); bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids, fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), bnx2x_sp_mapping(bp, q_rdata), q_type); /** * Configure classification DBs: Always enable Tx switching */ bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); } static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) { int i; for (i = 1; i <= NUM_TX_RINGS; i++) { struct eth_tx_next_bd *tx_next_bd = &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; tx_next_bd->addr_hi = cpu_to_le32(U64_HI(txdata->tx_desc_mapping + BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); tx_next_bd->addr_lo = cpu_to_le32(U64_LO(txdata->tx_desc_mapping + BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); } *txdata->tx_cons_sb = cpu_to_le16(0); SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); txdata->tx_db.data.zero_fill1 = 0; txdata->tx_db.data.prod = 0; txdata->tx_pkt_prod = 0; txdata->tx_pkt_cons = 0; txdata->tx_bd_prod = 0; txdata->tx_bd_cons = 0; txdata->tx_pkt = 0; } static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp) { int i; for_each_tx_queue_cnic(bp, i) bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]); } static void bnx2x_init_tx_rings(struct bnx2x *bp) { int i; u8 cos; for_each_eth_queue(bp, i) for_each_cos_in_tx_queue(&bp->fp[i], cos) bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]); } void bnx2x_nic_init_cnic(struct bnx2x *bp) { if (!NO_FCOE(bp)) bnx2x_init_fcoe_fp(bp); bnx2x_init_sb(bp, bp->cnic_sb_mapping, BNX2X_VF_ID_INVALID, false, bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); /* ensure status block indices were read */ rmb(); bnx2x_init_rx_rings_cnic(bp); bnx2x_init_tx_rings_cnic(bp); /* flush all */ mb(); mmiowb(); } void bnx2x_pre_irq_nic_init(struct bnx2x *bp) { int i; /* Setup NIC internals and enable interrupts */ for_each_eth_queue(bp, i) bnx2x_init_eth_fp(bp, i); /* ensure status block indices were read */ rmb(); bnx2x_init_rx_rings(bp); bnx2x_init_tx_rings(bp); if (IS_PF(bp)) { /* Initialize MOD_ABS interrupts */ bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, bp->common.shmem_base, bp->common.shmem2_base, BP_PORT(bp)); /* initialize the default status block and sp ring */ bnx2x_init_def_sb(bp); bnx2x_update_dsb_idx(bp); bnx2x_init_sp_ring(bp); } else { bnx2x_memset_stats(bp); } } void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code) { bnx2x_init_eq_ring(bp); bnx2x_init_internal(bp, load_code); bnx2x_pf_init(bp); bnx2x_stats_init(bp); /* flush all before enabling interrupts */ mb(); mmiowb(); bnx2x_int_enable(bp); /* Check for SPIO5 */ bnx2x_attn_int_deasserted0(bp, REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & AEU_INPUTS_ATTN_BITS_SPIO5); } /* gzip service functions */ static int bnx2x_gunzip_init(struct bnx2x *bp) { bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, &bp->gunzip_mapping, GFP_KERNEL); if (bp->gunzip_buf == NULL) goto gunzip_nomem1; bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL); if (bp->strm == NULL) goto gunzip_nomem2; bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); if (bp->strm->workspace == NULL) goto gunzip_nomem3; return 0; gunzip_nomem3: kfree(bp->strm); bp->strm = NULL; gunzip_nomem2: dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, bp->gunzip_mapping); bp->gunzip_buf = NULL; gunzip_nomem1: BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); return -ENOMEM; } static void bnx2x_gunzip_end(struct bnx2x *bp) { if (bp->strm) { vfree(bp->strm->workspace); kfree(bp->strm); bp->strm = NULL; } if (bp->gunzip_buf) { dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, bp->gunzip_mapping); bp->gunzip_buf = NULL; } } static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len) { int n, rc; /* check gzip header */ if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { BNX2X_ERR("Bad gzip header\n"); return -EINVAL; } n = 10; #define FNAME 0x8 if (zbuf[3] & FNAME) while ((zbuf[n++] != 0) && (n < len)); bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; bp->strm->avail_in = len - n; bp->strm->next_out = bp->gunzip_buf; bp->strm->avail_out = FW_BUF_SIZE; rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); if (rc != Z_OK) return rc; rc = zlib_inflate(bp->strm, Z_FINISH); if ((rc != Z_OK) && (rc != Z_STREAM_END)) netdev_err(bp->dev, "Firmware decompression error: %s\n", bp->strm->msg); bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); if (bp->gunzip_outlen & 0x3) netdev_err(bp->dev, "Firmware decompression error: gunzip_outlen (%d) not aligned\n", bp->gunzip_outlen); bp->gunzip_outlen >>= 2; zlib_inflateEnd(bp->strm); if (rc == Z_STREAM_END) return 0; return rc; } /* nic load/unload */ /* * General service functions */ /* send a NIG loopback debug packet */ static void bnx2x_lb_pckt(struct bnx2x *bp) { u32 wb_write[3]; /* Ethernet source and destination addresses */ wb_write[0] = 0x55555555; wb_write[1] = 0x55555555; wb_write[2] = 0x20; /* SOP */ REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); /* NON-IP protocol */ wb_write[0] = 0x09000000; wb_write[1] = 0x55555555; wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); } /* some of the internal memories * are not directly readable from the driver * to test them we send debug packets */ static int bnx2x_int_mem_test(struct bnx2x *bp) { int factor; int count, i; u32 val = 0; if (CHIP_REV_IS_FPGA(bp)) factor = 120; else if (CHIP_REV_IS_EMUL(bp)) factor = 200; else factor = 1; /* Disable inputs of parser neighbor blocks */ REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); REG_WR(bp, CFC_REG_DEBUG0, 0x1); REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); /* Write 0 to parser credits for CFC search request */ REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); /* send Ethernet packet */ bnx2x_lb_pckt(bp); /* TODO do i reset NIG statistic? */ /* Wait until NIG register shows 1 packet of size 0x10 */ count = 1000 * factor; while (count) { bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); val = *bnx2x_sp(bp, wb_data[0]); if (val == 0x10) break; usleep_range(10000, 20000); count--; } if (val != 0x10) { BNX2X_ERR("NIG timeout val = 0x%x\n", val); return -1; } /* Wait until PRS register shows 1 packet */ count = 1000 * factor; while (count) { val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); if (val == 1) break; usleep_range(10000, 20000); count--; } if (val != 0x1) { BNX2X_ERR("PRS timeout val = 0x%x\n", val); return -2; } /* Reset and init BRB, PRS */ REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); msleep(50); REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); msleep(50); bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); DP(NETIF_MSG_HW, "part2\n"); /* Disable inputs of parser neighbor blocks */ REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); REG_WR(bp, CFC_REG_DEBUG0, 0x1); REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); /* Write 0 to parser credits for CFC search request */ REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); /* send 10 Ethernet packets */ for (i = 0; i < 10; i++) bnx2x_lb_pckt(bp); /* Wait until NIG register shows 10 + 1 packets of size 11*0x10 = 0xb0 */ count = 1000 * factor; while (count) { bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); val = *bnx2x_sp(bp, wb_data[0]); if (val == 0xb0) break; usleep_range(10000, 20000); count--; } if (val != 0xb0) { BNX2X_ERR("NIG timeout val = 0x%x\n", val); return -3; } /* Wait until PRS register shows 2 packets */ val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); if (val != 2) BNX2X_ERR("PRS timeout val = 0x%x\n", val); /* Write 1 to parser credits for CFC search request */ REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); /* Wait until PRS register shows 3 packets */ msleep(10 * factor); /* Wait until NIG register shows 1 packet of size 0x10 */ val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); if (val != 3) BNX2X_ERR("PRS timeout val = 0x%x\n", val); /* clear NIG EOP FIFO */ for (i = 0; i < 11; i++) REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); if (val != 1) { BNX2X_ERR("clear of NIG failed\n"); return -4; } /* Reset and init BRB, PRS, NIG */ REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); msleep(50); REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); msleep(50); bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); if (!CNIC_SUPPORT(bp)) /* set NIC mode */ REG_WR(bp, PRS_REG_NIC_MODE, 1); /* Enable inputs of parser neighbor blocks */ REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); REG_WR(bp, CFC_REG_DEBUG0, 0x0); REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); DP(NETIF_MSG_HW, "done\n"); return 0; /* OK */ } static void bnx2x_enable_blocks_attention(struct bnx2x *bp) { u32 val; REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); if (!CHIP_IS_E1x(bp)) REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); else REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); /* * mask read length error interrupts in brb for parser * (parsing unit and 'checksum and crc' unit) * these errors are legal (PU reads fixed length and CAC can cause * read length error on truncated packets) */ REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); REG_WR(bp, QM_REG_QM_INT_MASK, 0); REG_WR(bp, TM_REG_TM_INT_MASK, 0); REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN; if (!CHIP_IS_E1x(bp)) val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED; REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val); REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ if (!CHIP_IS_E1x(bp)) /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ } static void bnx2x_reset_common(struct bnx2x *bp) { u32 val = 0x1400; /* reset_common */ REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0xd3ffff7f); if (CHIP_IS_E3(bp)) { val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; } REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); } static void bnx2x_setup_dmae(struct bnx2x *bp) { bp->dmae_ready = 0; spin_lock_init(&bp->dmae_lock); } static void bnx2x_init_pxp(struct bnx2x *bp) { u16 devctl; int r_order, w_order; pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl); DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); if (bp->mrrs == -1) r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); else { DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); r_order = bp->mrrs; } bnx2x_init_pxp_arb(bp, r_order, w_order); } static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) { int is_required; u32 val; int port; if (BP_NOMCP(bp)) return; is_required = 0; val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & SHARED_HW_CFG_FAN_FAILURE_MASK; if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) is_required = 1; /* * The fan failure mechanism is usually related to the PHY type since * the power consumption of the board is affected by the PHY. Currently, * fan is required for most designs with SFX7101, BCM8727 and BCM8481. */ else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) for (port = PORT_0; port < PORT_MAX; port++) { is_required |= bnx2x_fan_failure_det_req( bp, bp->common.shmem_base, bp->common.shmem2_base, port); } DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); if (is_required == 0) return; /* Fan failure is indicated by SPIO 5 */ bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); /* set to active low mode */ val = REG_RD(bp, MISC_REG_SPIO_INT); val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); REG_WR(bp, MISC_REG_SPIO_INT, val); /* enable interrupt to signal the IGU */ val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); val |= MISC_SPIO_SPIO5; REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); } void bnx2x_pf_disable(struct bnx2x *bp) { u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); val &= ~IGU_PF_CONF_FUNC_EN; REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); } static void bnx2x__common_init_phy(struct bnx2x *bp) { u32 shmem_base[2], shmem2_base[2]; /* Avoid common init in case MFW supports LFA */ if (SHMEM2_RD(bp, size) > (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) return; shmem_base[0] = bp->common.shmem_base; shmem2_base[0] = bp->common.shmem2_base; if (!CHIP_IS_E1x(bp)) { shmem_base[1] = SHMEM2_RD(bp, other_shmem_base_addr); shmem2_base[1] = SHMEM2_RD(bp, other_shmem2_base_addr); } bnx2x_acquire_phy_lock(bp); bnx2x_common_init_phy(bp, shmem_base, shmem2_base, bp->common.chip_id); bnx2x_release_phy_lock(bp); } /** * bnx2x_init_hw_common - initialize the HW at the COMMON phase. * * @bp: driver handle */ static int bnx2x_init_hw_common(struct bnx2x *bp) { u32 val; DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp)); /* * take the RESET lock to protect undi_unload flow from accessing * registers while we're resetting the chip */ bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); bnx2x_reset_common(bp); REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); val = 0xfffc; if (CHIP_IS_E3(bp)) { val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; } REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); if (!CHIP_IS_E1x(bp)) { u8 abs_func_id; /** * 4-port mode or 2-port mode we need to turn of master-enable * for everyone, after that, turn it back on for self. * so, we disregard multi-function or not, and always disable * for all functions on the given path, this means 0,2,4,6 for * path 0 and 1,3,5,7 for path 1 */ for (abs_func_id = BP_PATH(bp); abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { if (abs_func_id == BP_ABS_FUNC(bp)) { REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); continue; } bnx2x_pretend_func(bp, abs_func_id); /* clear pf enable */ bnx2x_pf_disable(bp); bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); } } bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); if (CHIP_IS_E1(bp)) { /* enable HW interrupt from PXP on USDM overflow bit 16 on INT_MASK_0 */ REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); } bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); bnx2x_init_pxp(bp); #ifdef __BIG_ENDIAN REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1); REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1); REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1); REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1); REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1); /* make sure this value is 0 */ REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */ REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1); REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1); REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1); REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1); #endif bnx2x_ilt_init_page_size(bp, INITOP_SET); if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); /* let the HW do it's magic ... */ msleep(100); /* finish PXP init */ val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); if (val != 1) { BNX2X_ERR("PXP2 CFG failed\n"); return -EBUSY; } val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); if (val != 1) { BNX2X_ERR("PXP2 RD_INIT failed\n"); return -EBUSY; } /* Timers bug workaround E2 only. We need to set the entire ILT to * have entries with value "0" and valid bit on. * This needs to be done by the first PF that is loaded in a path * (i.e. common phase) */ if (!CHIP_IS_E1x(bp)) { /* In E2 there is a bug in the timers block that can cause function 6 / 7 * (i.e. vnic3) to start even if it is marked as "scan-off". * This occurs when a different function (func2,3) is being marked * as "scan-off". Real-life scenario for example: if a driver is being * load-unloaded while func6,7 are down. This will cause the timer to access * the ilt, translate to a logical address and send a request to read/write. * Since the ilt for the function that is down is not valid, this will cause * a translation error which is unrecoverable. * The Workaround is intended to make sure that when this happens nothing fatal * will occur. The workaround: * 1. First PF driver which loads on a path will: * a. After taking the chip out of reset, by using pretend, * it will write "0" to the following registers of * the other vnics. * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); * And for itself it will write '1' to * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable * dmae-operations (writing to pram for example.) * note: can be done for only function 6,7 but cleaner this * way. * b. Write zero+valid to the entire ILT. * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of * VNIC3 (of that port). The range allocated will be the * entire ILT. This is needed to prevent ILT range error. * 2. Any PF driver load flow: * a. ILT update with the physical addresses of the allocated * logical pages. * b. Wait 20msec. - note that this timeout is needed to make * sure there are no requests in one of the PXP internal * queues with "old" ILT addresses. * c. PF enable in the PGLC. * d. Clear the was_error of the PF in the PGLC. (could have * occurred while driver was down) * e. PF enable in the CFC (WEAK + STRONG) * f. Timers scan enable * 3. PF driver unload flow: * a. Clear the Timers scan_en. * b. Polling for scan_on=0 for that PF. * c. Clear the PF enable bit in the PXP. * d. Clear the PF enable in the CFC (WEAK + STRONG) * e. Write zero+valid to all ILT entries (The valid bit must * stay set) * f. If this is VNIC 3 of a port then also init * first_timers_ilt_entry to zero and last_timers_ilt_entry * to the last entry in the ILT. * * Notes: * Currently the PF error in the PGLC is non recoverable. * In the future the there will be a recovery routine for this error. * Currently attention is masked. * Having an MCP lock on the load/unload process does not guarantee that * there is no Timer disable during Func6/7 enable. This is because the * Timers scan is currently being cleared by the MCP on FLR. * Step 2.d can be done only for PF6/7 and the driver can also check if * there is error before clearing it. But the flow above is simpler and * more general. * All ILT entries are written by zero+valid and not just PF6/7 * ILT entries since in the future the ILT entries allocation for * PF-s might be dynamic. */ struct ilt_client_info ilt_cli; struct bnx2x_ilt ilt; memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); memset(&ilt, 0, sizeof(struct bnx2x_ilt)); /* initialize dummy TM client */ ilt_cli.start = 0; ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; ilt_cli.client_num = ILT_CLIENT_TM; /* Step 1: set zeroes to all ilt page entries with valid bit on * Step 2: set the timers first/last ilt entry to point * to the entire range to prevent ILT range error for 3rd/4th * vnic (this code assumes existence of the vnic) * * both steps performed by call to bnx2x_ilt_client_init_op() * with dummy TM client * * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT * and his brother are split registers */ bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); } REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); if (!CHIP_IS_E1x(bp)) { int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : (CHIP_REV_IS_FPGA(bp) ? 400 : 0); bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); /* let the HW do it's magic ... */ do { msleep(200); val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); } while (factor-- && (val != 1)); if (val != 1) { BNX2X_ERR("ATC_INIT failed\n"); return -EBUSY; } } bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); bnx2x_iov_init_dmae(bp); /* clean the DMAE memory */ bp->dmae_ready = 1; bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); /* QM queues pointers table */ bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); /* soft reset pulse */ REG_WR(bp, QM_REG_SOFT_RESET, 1); REG_WR(bp, QM_REG_SOFT_RESET, 0); if (CNIC_SUPPORT(bp)) bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); if (!CHIP_REV_IS_SLOW(bp)) /* enable hw interrupt from doorbell Q */ REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); if (!CHIP_IS_E1(bp)) REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) { if (IS_MF_AFEX(bp)) { /* configure that VNTag and VLAN headers must be * received in afex mode */ REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE); REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA); REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6); REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926); REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4); } else { /* Bit-map indicating which L2 hdrs may appear * after the basic Ethernet header */ REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, bp->path_has_ovlan ? 7 : 6); } } bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); if (!CHIP_IS_E1x(bp)) { /* reset VFC memories */ REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, VFC_MEMORIES_RST_REG_CAM_RST | VFC_MEMORIES_RST_REG_RAM_RST); REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, VFC_MEMORIES_RST_REG_CAM_RST | VFC_MEMORIES_RST_REG_RAM_RST); msleep(20); } bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); /* sync semi rtc */ REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000); REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000); bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); if (!CHIP_IS_E1x(bp)) { if (IS_MF_AFEX(bp)) { /* configure that VNTag and VLAN headers must be * sent in afex mode */ REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE); REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA); REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6); REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926); REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4); } else { REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, bp->path_has_ovlan ? 7 : 6); } } REG_WR(bp, SRC_REG_SOFT_RST, 1); bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); if (CNIC_SUPPORT(bp)) { REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); } REG_WR(bp, SRC_REG_SOFT_RST, 0); if (sizeof(union cdu_context) != 1024) /* we currently assume that a context is 1024 bytes */ dev_alert(&bp->pdev->dev, "please adjust the size of cdu_context(%ld)\n", (long)sizeof(union cdu_context)); bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); val = (4 << 24) + (0 << 12) + 1024; REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); /* enable context validation interrupt from CFC */ REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); /* set the thresholds to prevent CFC/CDU race */ REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); /* Reset PCIE errors for debug */ REG_WR(bp, 0x2814, 0xffffffff); REG_WR(bp, 0x3820, 0xffffffff); if (!CHIP_IS_E1x(bp)) { REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); } bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); if (!CHIP_IS_E1(bp)) { /* in E3 this done in per-port section */ if (!CHIP_IS_E3(bp)) REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); } if (CHIP_IS_E1H(bp)) /* not applicable for E2 (and above ...) */ REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); if (CHIP_REV_IS_SLOW(bp)) msleep(200); /* finish CFC init */ val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); if (val != 1) { BNX2X_ERR("CFC LL_INIT failed\n"); return -EBUSY; } val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); if (val != 1) { BNX2X_ERR("CFC AC_INIT failed\n"); return -EBUSY; } val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); if (val != 1) { BNX2X_ERR("CFC CAM_INIT failed\n"); return -EBUSY; } REG_WR(bp, CFC_REG_DEBUG0, 0); if (CHIP_IS_E1(bp)) { /* read NIG statistic to see if this is our first up since powerup */ bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); val = *bnx2x_sp(bp, wb_data[0]); /* do internal memory self test */ if ((val == 0) && bnx2x_int_mem_test(bp)) { BNX2X_ERR("internal mem self test failed\n"); return -EBUSY; } } bnx2x_setup_fan_failure_detection(bp); /* clear PXP2 attentions */ REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); bnx2x_enable_blocks_attention(bp); bnx2x_enable_blocks_parity(bp); if (!BP_NOMCP(bp)) { if (CHIP_IS_E1x(bp)) bnx2x__common_init_phy(bp); } else BNX2X_ERR("Bootcode is missing - can not initialize link\n"); return 0; } /** * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. * * @bp: driver handle */ static int bnx2x_init_hw_common_chip(struct bnx2x *bp) { int rc = bnx2x_init_hw_common(bp); if (rc) return rc; /* In E2 2-PORT mode, same ext phy is used for the two paths */ if (!BP_NOMCP(bp)) bnx2x__common_init_phy(bp); return 0; } static int bnx2x_init_hw_port(struct bnx2x *bp) { int port = BP_PORT(bp); int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; u32 low, high; u32 val; DP(NETIF_MSG_HW, "starting port init port %d\n", port); REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); bnx2x_init_block(bp, BLOCK_MISC, init_phase); bnx2x_init_block(bp, BLOCK_PXP, init_phase); bnx2x_init_block(bp, BLOCK_PXP2, init_phase); /* Timers bug workaround: disables the pf_master bit in pglue at * common phase, we need to enable it here before any dmae access are * attempted. Therefore we manually added the enable-master to the * port phase (it also happens in the function phase) */ if (!CHIP_IS_E1x(bp)) REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); bnx2x_init_block(bp, BLOCK_ATC, init_phase); bnx2x_init_block(bp, BLOCK_DMAE, init_phase); bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); bnx2x_init_block(bp, BLOCK_QM, init_phase); bnx2x_init_block(bp, BLOCK_TCM, init_phase); bnx2x_init_block(bp, BLOCK_UCM, init_phase); bnx2x_init_block(bp, BLOCK_CCM, init_phase); bnx2x_init_block(bp, BLOCK_XCM, init_phase); /* QM cid (connection) count */ bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); if (CNIC_SUPPORT(bp)) { bnx2x_init_block(bp, BLOCK_TM, init_phase); REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); } bnx2x_init_block(bp, BLOCK_DORQ, init_phase); bnx2x_init_block(bp, BLOCK_BRB1, init_phase); if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { if (IS_MF(bp)) low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); else if (bp->dev->mtu > 4096) { if (bp->flags & ONE_PORT_FLAG) low = 160; else { val = bp->dev->mtu; /* (24*1024 + val*4)/256 */ low = 96 + (val/64) + ((val % 64) ? 1 : 0); } } else low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); high = low + 56; /* 14*1024/256 */ REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); } if (CHIP_MODE_IS_4_PORT(bp)) REG_WR(bp, (BP_PORT(bp) ? BRB1_REG_MAC_GUARANTIED_1 : BRB1_REG_MAC_GUARANTIED_0), 40); bnx2x_init_block(bp, BLOCK_PRS, init_phase); if (CHIP_IS_E3B0(bp)) { if (IS_MF_AFEX(bp)) { /* configure headers for AFEX mode */ REG_WR(bp, BP_PORT(bp) ? PRS_REG_HDRS_AFTER_BASIC_PORT_1 : PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); REG_WR(bp, BP_PORT(bp) ? PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); REG_WR(bp, BP_PORT(bp) ? PRS_REG_MUST_HAVE_HDRS_PORT_1 : PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); } else { /* Ovlan exists only if we are in multi-function + * switch-dependent mode, in switch-independent there * is no ovlan headers */ REG_WR(bp, BP_PORT(bp) ? PRS_REG_HDRS_AFTER_BASIC_PORT_1 : PRS_REG_HDRS_AFTER_BASIC_PORT_0, (bp->path_has_ovlan ? 7 : 6)); } } bnx2x_init_block(bp, BLOCK_TSDM, init_phase); bnx2x_init_block(bp, BLOCK_CSDM, init_phase); bnx2x_init_block(bp, BLOCK_USDM, init_phase); bnx2x_init_block(bp, BLOCK_XSDM, init_phase); bnx2x_init_block(bp, BLOCK_TSEM, init_phase); bnx2x_init_block(bp, BLOCK_USEM, init_phase); bnx2x_init_block(bp, BLOCK_CSEM, init_phase); bnx2x_init_block(bp, BLOCK_XSEM, init_phase); bnx2x_init_block(bp, BLOCK_UPB, init_phase); bnx2x_init_block(bp, BLOCK_XPB, init_phase); bnx2x_init_block(bp, BLOCK_PBF, init_phase); if (CHIP_IS_E1x(bp)) { /* configure PBF to work without PAUSE mtu 9000 */ REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); /* update threshold */ REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); /* update init credit */ REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); /* probe changes */ REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); udelay(50); REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); } if (CNIC_SUPPORT(bp)) bnx2x_init_block(bp, BLOCK_SRC, init_phase); bnx2x_init_block(bp, BLOCK_CDU, init_phase); bnx2x_init_block(bp, BLOCK_CFC, init_phase); if (CHIP_IS_E1(bp)) { REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); } bnx2x_init_block(bp, BLOCK_HC, init_phase); bnx2x_init_block(bp, BLOCK_IGU, init_phase); bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); /* init aeu_mask_attn_func_0/1: * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF * bits 4-7 are used for "per vn group attention" */ val = IS_MF(bp) ? 0xF7 : 0x7; /* Enable DCBX attention for all but E1 */ val |= CHIP_IS_E1(bp) ? 0 : 0x10; REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); bnx2x_init_block(bp, BLOCK_NIG, init_phase); if (!CHIP_IS_E1x(bp)) { /* Bit-map indicating which L2 hdrs may appear after the * basic Ethernet header */ if (IS_MF_AFEX(bp)) REG_WR(bp, BP_PORT(bp) ? NIG_REG_P1_HDRS_AFTER_BASIC : NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); else REG_WR(bp, BP_PORT(bp) ? NIG_REG_P1_HDRS_AFTER_BASIC : NIG_REG_P0_HDRS_AFTER_BASIC, IS_MF_SD(bp) ? 7 : 6); if (CHIP_IS_E3(bp)) REG_WR(bp, BP_PORT(bp) ? NIG_REG_LLH1_MF_MODE : NIG_REG_LLH_MF_MODE, IS_MF(bp)); } if (!CHIP_IS_E3(bp)) REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); if (!CHIP_IS_E1(bp)) { /* 0x2 disable mf_ov, 0x1 enable */ REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, (IS_MF_SD(bp) ? 0x1 : 0x2)); if (!CHIP_IS_E1x(bp)) { val = 0; switch (bp->mf_mode) { case MULTI_FUNCTION_SD: val = 1; break; case MULTI_FUNCTION_SI: case MULTI_FUNCTION_AFEX: val = 2; break; } REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : NIG_REG_LLH0_CLS_TYPE), val); } { REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); } } /* If SPIO5 is set to generate interrupts, enable it for this port */ val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); if (val & MISC_SPIO_SPIO5) { u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); val = REG_RD(bp, reg_addr); val |= AEU_INPUTS_ATTN_BITS_SPIO5; REG_WR(bp, reg_addr, val); } return 0; } static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr) { int reg; u32 wb_write[2]; if (CHIP_IS_E1(bp)) reg = PXP2_REG_RQ_ONCHIP_AT + index*8; else reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; wb_write[0] = ONCHIP_ADDR1(addr); wb_write[1] = ONCHIP_ADDR2(addr); REG_WR_DMAE(bp, reg, wb_write, 2); } void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf) { u32 data, ctl, cnt = 100; u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; u32 sb_bit = 1 << (idu_sb_id%32); u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; /* Not supported in BC mode */ if (CHIP_INT_MODE_IS_BC(bp)) return; data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP; ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | func_encode << IGU_CTRL_REG_FID_SHIFT | IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", data, igu_addr_data); REG_WR(bp, igu_addr_data, data); mmiowb(); barrier(); DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", ctl, igu_addr_ctl); REG_WR(bp, igu_addr_ctl, ctl); mmiowb(); barrier(); /* wait for clean up to finish */ while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) msleep(20); if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { DP(NETIF_MSG_HW, "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n", idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); } } static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id) { bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); } static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func) { u32 i, base = FUNC_ILT_BASE(func); for (i = base; i < base + ILT_PER_FUNC; i++) bnx2x_ilt_wr(bp, i, 0); } static void bnx2x_init_searcher(struct bnx2x *bp) { int port = BP_PORT(bp); bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); /* T1 hash bits value determines the T1 number of entries */ REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); } static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend) { int rc; struct bnx2x_func_state_params func_params = {NULL}; struct bnx2x_func_switch_update_params *switch_update_params = &func_params.params.switch_update; /* Prepare parameters for function state transitions */ __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); func_params.f_obj = &bp->func_obj; func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; /* Function parameters */ switch_update_params->suspend = suspend; rc = bnx2x_func_state_change(bp, &func_params); return rc; } static int bnx2x_reset_nic_mode(struct bnx2x *bp) { int rc, i, port = BP_PORT(bp); int vlan_en = 0, mac_en[NUM_MACS]; /* Close input from network */ if (bp->mf_mode == SINGLE_FUNCTION) { bnx2x_set_rx_filter(&bp->link_params, 0); } else { vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN : NIG_REG_LLH0_FUNC_EN); REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : NIG_REG_LLH0_FUNC_EN, 0); for (i = 0; i < NUM_MACS; i++) { mac_en[i] = REG_RD(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 4 * i) : (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i)); REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 4 * i) : (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0); } } /* Close BMC to host */ REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : NIG_REG_P1_TX_MNG_HOST_ENABLE, 0); /* Suspend Tx switching to the PF. Completion of this ramrod * further guarantees that all the packets of that PF / child * VFs in BRB were processed by the Parser, so it is safe to * change the NIC_MODE register. */ rc = bnx2x_func_switch_update(bp, 1); if (rc) { BNX2X_ERR("Can't suspend tx-switching!\n"); return rc; } /* Change NIC_MODE register */ REG_WR(bp, PRS_REG_NIC_MODE, 0); /* Open input from network */ if (bp->mf_mode == SINGLE_FUNCTION) { bnx2x_set_rx_filter(&bp->link_params, 1); } else { REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : NIG_REG_LLH0_FUNC_EN, vlan_en); for (i = 0; i < NUM_MACS; i++) { REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 4 * i) : (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), mac_en[i]); } } /* Enable BMC to host */ REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : NIG_REG_P1_TX_MNG_HOST_ENABLE, 1); /* Resume Tx switching to the PF */ rc = bnx2x_func_switch_update(bp, 0); if (rc) { BNX2X_ERR("Can't resume tx-switching!\n"); return rc; } DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); return 0; } int bnx2x_init_hw_func_cnic(struct bnx2x *bp) { int rc; bnx2x_ilt_init_op_cnic(bp, INITOP_SET); if (CONFIGURE_NIC_MODE(bp)) { /* Configure searcher as part of function hw init */ bnx2x_init_searcher(bp); /* Reset NIC mode */ rc = bnx2x_reset_nic_mode(bp); if (rc) BNX2X_ERR("Can't change NIC mode!\n"); return rc; } return 0; } static int bnx2x_init_hw_func(struct bnx2x *bp) { int port = BP_PORT(bp); int func = BP_FUNC(bp); int init_phase = PHASE_PF0 + func; struct bnx2x_ilt *ilt = BP_ILT(bp); u16 cdu_ilt_start; u32 addr, val; u32 main_mem_base, main_mem_size, main_mem_prty_clr; int i, main_mem_width, rc; DP(NETIF_MSG_HW, "starting func init func %d\n", func); /* FLR cleanup - hmmm */ if (!CHIP_IS_E1x(bp)) { rc = bnx2x_pf_flr_clnup(bp); if (rc) { bnx2x_fw_dump(bp); return rc; } } /* set MSI reconfigure capability */ if (bp->common.int_block == INT_BLOCK_HC) { addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); val = REG_RD(bp, addr); val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; REG_WR(bp, addr, val); } bnx2x_init_block(bp, BLOCK_PXP, init_phase); bnx2x_init_block(bp, BLOCK_PXP2, init_phase); ilt = BP_ILT(bp); cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; if (IS_SRIOV(bp)) cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS; cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start); /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes * those of the VFs, so start line should be reset */ cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; for (i = 0; i < L2_ILT_LINES(bp); i++) { ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt; ilt->lines[cdu_ilt_start + i].page_mapping = bp->context[i].cxt_mapping; ilt->lines[cdu_ilt_start + i].size = bp->context[i].size; } bnx2x_ilt_init_op(bp, INITOP_SET); if (!CONFIGURE_NIC_MODE(bp)) { bnx2x_init_searcher(bp); REG_WR(bp, PRS_REG_NIC_MODE, 0); DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); } else { /* Set NIC mode */ REG_WR(bp, PRS_REG_NIC_MODE, 1); DP(NETIF_MSG_IFUP, "NIC MODE configured\n"); } if (!CHIP_IS_E1x(bp)) { u32 pf_conf = IGU_PF_CONF_FUNC_EN; /* Turn on a single ISR mode in IGU if driver is going to use * INT#x or MSI */ if (!(bp->flags & USING_MSIX_FLAG)) pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; /* * Timers workaround bug: function init part. * Need to wait 20msec after initializing ILT, * needed to make sure there are no requests in * one of the PXP internal queues with "old" ILT addresses */ msleep(20); /* * Master enable - Due to WB DMAE writes performed before this * register is re-initialized as part of the regular function * init */ REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); /* Enable the function in IGU */ REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); } bp->dmae_ready = 1; bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); if (!CHIP_IS_E1x(bp)) REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); bnx2x_init_block(bp, BLOCK_ATC, init_phase); bnx2x_init_block(bp, BLOCK_DMAE, init_phase); bnx2x_init_block(bp, BLOCK_NIG, init_phase); bnx2x_init_block(bp, BLOCK_SRC, init_phase); bnx2x_init_block(bp, BLOCK_MISC, init_phase); bnx2x_init_block(bp, BLOCK_TCM, init_phase); bnx2x_init_block(bp, BLOCK_UCM, init_phase); bnx2x_init_block(bp, BLOCK_CCM, init_phase); bnx2x_init_block(bp, BLOCK_XCM, init_phase); bnx2x_init_block(bp, BLOCK_TSEM, init_phase); bnx2x_init_block(bp, BLOCK_USEM, init_phase); bnx2x_init_block(bp, BLOCK_CSEM, init_phase); bnx2x_init_block(bp, BLOCK_XSEM, init_phase); if (!CHIP_IS_E1x(bp)) REG_WR(bp, QM_REG_PF_EN, 1); if (!CHIP_IS_E1x(bp)) { REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); } bnx2x_init_block(bp, BLOCK_QM, init_phase); bnx2x_init_block(bp, BLOCK_TM, init_phase); bnx2x_init_block(bp, BLOCK_DORQ, init_phase); bnx2x_iov_init_dq(bp); bnx2x_init_block(bp, BLOCK_BRB1, init_phase); bnx2x_init_block(bp, BLOCK_PRS, init_phase); bnx2x_init_block(bp, BLOCK_TSDM, init_phase); bnx2x_init_block(bp, BLOCK_CSDM, init_phase); bnx2x_init_block(bp, BLOCK_USDM, init_phase); bnx2x_init_block(bp, BLOCK_XSDM, init_phase); bnx2x_init_block(bp, BLOCK_UPB, init_phase); bnx2x_init_block(bp, BLOCK_XPB, init_phase); bnx2x_init_block(bp, BLOCK_PBF, init_phase); if (!CHIP_IS_E1x(bp)) REG_WR(bp, PBF_REG_DISABLE_PF, 0); bnx2x_init_block(bp, BLOCK_CDU, init_phase); bnx2x_init_block(bp, BLOCK_CFC, init_phase); if (!CHIP_IS_E1x(bp)) REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); if (IS_MF(bp)) { REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1); REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov); } bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); /* HC init per function */ if (bp->common.int_block == INT_BLOCK_HC) { if (CHIP_IS_E1H(bp)) { REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); } bnx2x_init_block(bp, BLOCK_HC, init_phase); } else { int num_segs, sb_idx, prod_offset; REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); if (!CHIP_IS_E1x(bp)) { REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); } bnx2x_init_block(bp, BLOCK_IGU, init_phase); if (!CHIP_IS_E1x(bp)) { int dsb_idx = 0; /** * Producer memory: * E2 mode: address 0-135 match to the mapping memory; * 136 - PF0 default prod; 137 - PF1 default prod; * 138 - PF2 default prod; 139 - PF3 default prod; * 140 - PF0 attn prod; 141 - PF1 attn prod; * 142 - PF2 attn prod; 143 - PF3 attn prod; * 144-147 reserved. * * E1.5 mode - In backward compatible mode; * for non default SB; each even line in the memory * holds the U producer and each odd line hold * the C producer. The first 128 producers are for * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 * producers are for the DSB for each PF. * Each PF has five segments: (the order inside each * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; * 132-135 C prods; 136-139 X prods; 140-143 T prods; * 144-147 attn prods; */ /* non-default-status-blocks */ num_segs = CHIP_INT_MODE_IS_BC(bp) ? IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { prod_offset = (bp->igu_base_sb + sb_idx) * num_segs; for (i = 0; i < num_segs; i++) { addr = IGU_REG_PROD_CONS_MEMORY + (prod_offset + i) * 4; REG_WR(bp, addr, 0); } /* send consumer update with value 0 */ bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, USTORM_ID, 0, IGU_INT_NOP, 1); bnx2x_igu_clear_sb(bp, bp->igu_base_sb + sb_idx); } /* default-status-blocks */ num_segs = CHIP_INT_MODE_IS_BC(bp) ? IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; if (CHIP_MODE_IS_4_PORT(bp)) dsb_idx = BP_FUNC(bp); else dsb_idx = BP_VN(bp); prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? IGU_BC_BASE_DSB_PROD + dsb_idx : IGU_NORM_BASE_DSB_PROD + dsb_idx); /* * igu prods come in chunks of E1HVN_MAX (4) - * does not matters what is the current chip mode */ for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) { addr = IGU_REG_PROD_CONS_MEMORY + (prod_offset + i)*4; REG_WR(bp, addr, 0); } /* send consumer update with 0 */ if (CHIP_INT_MODE_IS_BC(bp)) { bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_NOP, 1); bnx2x_ack_sb(bp, bp->igu_dsb_id, CSTORM_ID, 0, IGU_INT_NOP, 1); bnx2x_ack_sb(bp, bp->igu_dsb_id, XSTORM_ID, 0, IGU_INT_NOP, 1); bnx2x_ack_sb(bp, bp->igu_dsb_id, TSTORM_ID, 0, IGU_INT_NOP, 1); bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, 0, IGU_INT_NOP, 1); } else { bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_NOP, 1); bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, 0, IGU_INT_NOP, 1); } bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); /* !!! These should become driver const once rf-tool supports split-68 const */ REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); } } /* Reset PCIE errors for debug */ REG_WR(bp, 0x2114, 0xffffffff); REG_WR(bp, 0x2120, 0xffffffff); if (CHIP_IS_E1x(bp)) { main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ main_mem_base = HC_REG_MAIN_MEMORY + BP_PORT(bp) * (main_mem_size * 4); main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; main_mem_width = 8; val = REG_RD(bp, main_mem_prty_clr); if (val) DP(NETIF_MSG_HW, "Hmmm... Parity errors in HC block during function init (0x%x)!\n", val); /* Clear "false" parity errors in MSI-X table */ for (i = main_mem_base; i < main_mem_base + main_mem_size * 4; i += main_mem_width) { bnx2x_read_dmae(bp, i, main_mem_width / 4); bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), i, main_mem_width / 4); } /* Clear HC parity attention */ REG_RD(bp, main_mem_prty_clr); } #ifdef BNX2X_STOP_ON_ERROR /* Enable STORMs SP logging */ REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); #endif bnx2x_phy_probe(&bp->link_params); return 0; } void bnx2x_free_mem_cnic(struct bnx2x *bp) { bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE); if (!CHIP_IS_E1x(bp)) BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, sizeof(struct host_hc_status_block_e2)); else BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, sizeof(struct host_hc_status_block_e1x)); BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); } void bnx2x_free_mem(struct bnx2x *bp) { int i; BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, sizeof(struct host_sp_status_block)); BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, bp->fw_stats_data_sz + bp->fw_stats_req_sz); BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, sizeof(struct bnx2x_slowpath)); for (i = 0; i < L2_ILT_LINES(bp); i++) BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping, bp->context[i].size); bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); BNX2X_FREE(bp->ilt->lines); BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, BCM_PAGE_SIZE * NUM_EQ_PAGES); BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); bnx2x_iov_free_mem(bp); } int bnx2x_alloc_mem_cnic(struct bnx2x *bp) { if (!CHIP_IS_E1x(bp)) /* size = the status block + ramrod buffers */ BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping, sizeof(struct host_hc_status_block_e2)); else BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping, sizeof(struct host_hc_status_block_e1x)); if (CONFIGURE_NIC_MODE(bp) && !bp->t2) /* allocate searcher T2 table, as it wasn't allocated before */ BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ); /* write address to which L5 should insert its values */ bp->cnic_eth_dev.addr_drv_info_to_mcp = &bp->slowpath->drv_info_to_mcp; if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC)) goto alloc_mem_err; return 0; alloc_mem_err: bnx2x_free_mem_cnic(bp); BNX2X_ERR("Can't allocate memory\n"); return -ENOMEM; } int bnx2x_alloc_mem(struct bnx2x *bp) { int i, allocated, context_size; if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) /* allocate searcher T2 table */ BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ); BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping, sizeof(struct host_sp_status_block)); BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping, sizeof(struct bnx2x_slowpath)); /* Allocate memory for CDU context: * This memory is allocated separately and not in the generic ILT * functions because CDU differs in few aspects: * 1. There are multiple entities allocating memory for context - * 'regular' driver, CNIC and SRIOV driver. Each separately controls * its own ILT lines. * 2. Since CDU page-size is not a single 4KB page (which is the case * for the other ILT clients), to be efficient we want to support * allocation of sub-page-size in the last entry. * 3. Context pointers are used by the driver to pass to FW / update * the context (for the other ILT clients the pointers are used just to * free the memory during unload). */ context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); for (i = 0, allocated = 0; allocated < context_size; i++) { bp->context[i].size = min(CDU_ILT_PAGE_SZ, (context_size - allocated)); BNX2X_PCI_ALLOC(bp->context[i].vcxt, &bp->context[i].cxt_mapping, bp->context[i].size); allocated += bp->context[i].size; } BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES); if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) goto alloc_mem_err; if (bnx2x_iov_alloc_mem(bp)) goto alloc_mem_err; /* Slow path ring */ BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE); /* EQ */ BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping, BCM_PAGE_SIZE * NUM_EQ_PAGES); return 0; alloc_mem_err: bnx2x_free_mem(bp); BNX2X_ERR("Can't allocate memory\n"); return -ENOMEM; } /* * Init service functions */ int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, struct bnx2x_vlan_mac_obj *obj, bool set, int mac_type, unsigned long *ramrod_flags) { int rc; struct bnx2x_vlan_mac_ramrod_params ramrod_param; memset(&ramrod_param, 0, sizeof(ramrod_param)); /* Fill general parameters */ ramrod_param.vlan_mac_obj = obj; ramrod_param.ramrod_flags = *ramrod_flags; /* Fill a user request section if needed */ if (!test_bit(RAMROD_CONT, ramrod_flags)) { memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); /* Set the command: ADD or DEL */ if (set) ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; else ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; } rc = bnx2x_config_vlan_mac(bp, &ramrod_param); if (rc == -EEXIST) { DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); /* do not treat adding same MAC as error */ rc = 0; } else if (rc < 0) BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); return rc; } int bnx2x_del_all_macs(struct bnx2x *bp, struct bnx2x_vlan_mac_obj *mac_obj, int mac_type, bool wait_for_comp) { int rc; unsigned long ramrod_flags = 0, vlan_mac_flags = 0; /* Wait for completion of requested */ if (wait_for_comp) __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); /* Set the mac type of addresses we want to clear */ __set_bit(mac_type, &vlan_mac_flags); rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); if (rc < 0) BNX2X_ERR("Failed to delete MACs: %d\n", rc); return rc; } int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) { if (is_zero_ether_addr(bp->dev->dev_addr) && (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) { DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN, "Ignoring Zero MAC for STORAGE SD mode\n"); return 0; } if (IS_PF(bp)) { unsigned long ramrod_flags = 0; DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->sp_objs->mac_obj, set, BNX2X_ETH_MAC, &ramrod_flags); } else { /* vf */ return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index, true); } } int bnx2x_setup_leading(struct bnx2x *bp) { return bnx2x_setup_queue(bp, &bp->fp[0], 1); } /** * bnx2x_set_int_mode - configure interrupt mode * * @bp: driver handle * * In case of MSI-X it will also try to enable MSI-X. */ int bnx2x_set_int_mode(struct bnx2x *bp) { int rc = 0; if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) return -EINVAL; switch (int_mode) { case BNX2X_INT_MODE_MSIX: /* attempt to enable msix */ rc = bnx2x_enable_msix(bp); /* msix attained */ if (!rc) return 0; /* vfs use only msix */ if (rc && IS_VF(bp)) return rc; /* failed to enable multiple MSI-X */ BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", bp->num_queues, 1 + bp->num_cnic_queues); /* falling through... */ case BNX2X_INT_MODE_MSI: bnx2x_enable_msi(bp); /* falling through... */ case BNX2X_INT_MODE_INTX: bp->num_ethernet_queues = 1; bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; BNX2X_DEV_INFO("set number of queues to 1\n"); break; default: BNX2X_DEV_INFO("unknown value in int_mode module parameter\n"); return -EINVAL; } return 0; } /* must be called prior to any HW initializations */ static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp) { if (IS_SRIOV(bp)) return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS; return L2_ILT_LINES(bp); } void bnx2x_ilt_set_info(struct bnx2x *bp) { struct ilt_client_info *ilt_client; struct bnx2x_ilt *ilt = BP_ILT(bp); u16 line = 0; ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); /* CDU */ ilt_client = &ilt->clients[ILT_CLIENT_CDU]; ilt_client->client_num = ILT_CLIENT_CDU; ilt_client->page_size = CDU_ILT_PAGE_SZ; ilt_client->flags = ILT_CLIENT_SKIP_MEM; ilt_client->start = line; line += bnx2x_cid_ilt_lines(bp); if (CNIC_SUPPORT(bp)) line += CNIC_ILT_LINES; ilt_client->end = line - 1; DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", ilt_client->start, ilt_client->end, ilt_client->page_size, ilt_client->flags, ilog2(ilt_client->page_size >> 12)); /* QM */ if (QM_INIT(bp->qm_cid_count)) { ilt_client = &ilt->clients[ILT_CLIENT_QM]; ilt_client->client_num = ILT_CLIENT_QM; ilt_client->page_size = QM_ILT_PAGE_SZ; ilt_client->flags = 0; ilt_client->start = line; /* 4 bytes for each cid */ line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, QM_ILT_PAGE_SZ); ilt_client->end = line - 1; DP(NETIF_MSG_IFUP, "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", ilt_client->start, ilt_client->end, ilt_client->page_size, ilt_client->flags, ilog2(ilt_client->page_size >> 12)); } if (CNIC_SUPPORT(bp)) { /* SRC */ ilt_client = &ilt->clients[ILT_CLIENT_SRC]; ilt_client->client_num = ILT_CLIENT_SRC; ilt_client->page_size = SRC_ILT_PAGE_SZ; ilt_client->flags = 0; ilt_client->start = line; line += SRC_ILT_LINES; ilt_client->end = line - 1; DP(NETIF_MSG_IFUP, "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", ilt_client->start, ilt_client->end, ilt_client->page_size, ilt_client->flags, ilog2(ilt_client->page_size >> 12)); /* TM */ ilt_client = &ilt->clients[ILT_CLIENT_TM]; ilt_client->client_num = ILT_CLIENT_TM; ilt_client->page_size = TM_ILT_PAGE_SZ; ilt_client->flags = 0; ilt_client->start = line; line += TM_ILT_LINES; ilt_client->end = line - 1; DP(NETIF_MSG_IFUP, "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", ilt_client->start, ilt_client->end, ilt_client->page_size, ilt_client->flags, ilog2(ilt_client->page_size >> 12)); } BUG_ON(line > ILT_MAX_LINES); } /** * bnx2x_pf_q_prep_init - prepare INIT transition parameters * * @bp: driver handle * @fp: pointer to fastpath * @init_params: pointer to parameters structure * * parameters configured: * - HC configuration * - Queue's CDU context */ static void bnx2x_pf_q_prep_init(struct bnx2x *bp, struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) { u8 cos; int cxt_index, cxt_offset; /* FCoE Queue uses Default SB, thus has no HC capabilities */ if (!IS_FCOE_FP(fp)) { __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); /* If HC is supported, enable host coalescing in the transition * to INIT state. */ __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); /* HC rate */ init_params->rx.hc_rate = bp->rx_ticks ? (1000000 / bp->rx_ticks) : 0; init_params->tx.hc_rate = bp->tx_ticks ? (1000000 / bp->tx_ticks) : 0; /* FW SB ID */ init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; /* * CQ index among the SB indices: FCoE clients uses the default * SB, therefore it's different. */ init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; } /* set maximum number of COSs supported by this queue */ init_params->max_cos = fp->max_cos; DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", fp->index, init_params->max_cos); /* set the context pointers queue object */ for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS; cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index * ILT_PAGE_CIDS); init_params->cxts[cos] = &bp->context[cxt_index].vcxt[cxt_offset].eth; } } static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, struct bnx2x_queue_state_params *q_params, struct bnx2x_queue_setup_tx_only_params *tx_only_params, int tx_index, bool leading) { memset(tx_only_params, 0, sizeof(*tx_only_params)); /* Set the command */ q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; /* Set tx-only QUEUE flags: don't zero statistics */ tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); /* choose the index of the cid to send the slow path on */ tx_only_params->cid_index = tx_index; /* Set general TX_ONLY_SETUP parameters */ bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); /* Set Tx TX_ONLY_SETUP parameters */ bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); DP(NETIF_MSG_IFUP, "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, tx_only_params->gen_params.spcl_id, tx_only_params->flags); /* send the ramrod */ return bnx2x_queue_state_change(bp, q_params); } /** * bnx2x_setup_queue - setup queue * * @bp: driver handle * @fp: pointer to fastpath * @leading: is leading * * This function performs 2 steps in a Queue state machine * actually: 1) RESET->INIT 2) INIT->SETUP */ int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, bool leading) { struct bnx2x_queue_state_params q_params = {NULL}; struct bnx2x_queue_setup_params *setup_params = &q_params.params.setup; struct bnx2x_queue_setup_tx_only_params *tx_only_params = &q_params.params.tx_only; int rc; u8 tx_index; DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); /* reset IGU state skip FCoE L2 queue */ if (!IS_FCOE_FP(fp)) bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; /* We want to wait for completion in this context */ __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); /* Prepare the INIT parameters */ bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); /* Set the command */ q_params.cmd = BNX2X_Q_CMD_INIT; /* Change the state to INIT */ rc = bnx2x_queue_state_change(bp, &q_params); if (rc) { BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); return rc; } DP(NETIF_MSG_IFUP, "init complete\n"); /* Now move the Queue to the SETUP state... */ memset(setup_params, 0, sizeof(*setup_params)); /* Set QUEUE flags */ setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); /* Set general SETUP parameters */ bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, FIRST_TX_COS_INDEX); bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, &setup_params->rxq_params); bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX); /* Set the command */ q_params.cmd = BNX2X_Q_CMD_SETUP; if (IS_FCOE_FP(fp)) bp->fcoe_init = true; /* Change the state to SETUP */ rc = bnx2x_queue_state_change(bp, &q_params); if (rc) { BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); return rc; } /* loop through the relevant tx-only indices */ for (tx_index = FIRST_TX_ONLY_COS_INDEX; tx_index < fp->max_cos; tx_index++) { /* prepare and send tx-only ramrod*/ rc = bnx2x_setup_tx_only(bp, fp, &q_params, tx_only_params, tx_index, leading); if (rc) { BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", fp->index, tx_index); return rc; } } return rc; } static int bnx2x_stop_queue(struct bnx2x *bp, int index) { struct bnx2x_fastpath *fp = &bp->fp[index]; struct bnx2x_fp_txdata *txdata; struct bnx2x_queue_state_params q_params = {NULL}; int rc, tx_index; DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; /* We want to wait for completion in this context */ __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); /* close tx-only connections */ for (tx_index = FIRST_TX_ONLY_COS_INDEX; tx_index < fp->max_cos; tx_index++){ /* ascertain this is a normal queue*/ txdata = fp->txdata_ptr[tx_index]; DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", txdata->txq_index); /* send halt terminate on tx-only connection */ q_params.cmd = BNX2X_Q_CMD_TERMINATE; memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); q_params.params.terminate.cid_index = tx_index; rc = bnx2x_queue_state_change(bp, &q_params); if (rc) return rc; /* send halt terminate on tx-only connection */ q_params.cmd = BNX2X_Q_CMD_CFC_DEL; memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); q_params.params.cfc_del.cid_index = tx_index; rc = bnx2x_queue_state_change(bp, &q_params); if (rc) return rc; } /* Stop the primary connection: */ /* ...halt the connection */ q_params.cmd = BNX2X_Q_CMD_HALT; rc = bnx2x_queue_state_change(bp, &q_params); if (rc) return rc; /* ...terminate the connection */ q_params.cmd = BNX2X_Q_CMD_TERMINATE; memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; rc = bnx2x_queue_state_change(bp, &q_params); if (rc) return rc; /* ...delete cfc entry */ q_params.cmd = BNX2X_Q_CMD_CFC_DEL; memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; return bnx2x_queue_state_change(bp, &q_params); } static void bnx2x_reset_func(struct bnx2x *bp) { int port = BP_PORT(bp); int func = BP_FUNC(bp); int i; /* Disable the function in the FW */ REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); /* FP SBs */ for_each_eth_queue(bp, i) { struct bnx2x_fastpath *fp = &bp->fp[i]; REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), SB_DISABLED); } if (CNIC_LOADED(bp)) /* CNIC SB */ REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED); /* SP SB */ REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED); for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); /* Configure IGU */ if (bp->common.int_block == INT_BLOCK_HC) { REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); } else { REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); } if (CNIC_LOADED(bp)) { /* Disable Timer scan */ REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); /* * Wait for at least 10ms and up to 2 second for the timers * scan to complete */ for (i = 0; i < 200; i++) { usleep_range(10000, 20000); if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) break; } } /* Clear ILT */ bnx2x_clear_func_ilt(bp, func); /* Timers workaround bug for E2: if this is vnic-3, * we need to set the entire ilt range for this timers. */ if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { struct ilt_client_info ilt_cli; /* use dummy TM client */ memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); ilt_cli.start = 0; ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; ilt_cli.client_num = ILT_CLIENT_TM; bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); } /* this assumes that reset_port() called before reset_func()*/ if (!CHIP_IS_E1x(bp)) bnx2x_pf_disable(bp); bp->dmae_ready = 0; } static void bnx2x_reset_port(struct bnx2x *bp) { int port = BP_PORT(bp); u32 val; /* Reset physical Link */ bnx2x__link_reset(bp); REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); /* Do not rcv packets to BRB */ REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); /* Do not direct rcv packets that are not for MCP to the BRB */ REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); /* Configure AEU */ REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); msleep(100); /* Check for BRB port occupancy */ val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); if (val) DP(NETIF_MSG_IFDOWN, "BRB1 is not empty %d blocks are occupied\n", val); /* TODO: Close Doorbell port? */ } static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code) { struct bnx2x_func_state_params func_params = {NULL}; /* Prepare parameters for function state transitions */ __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); func_params.f_obj = &bp->func_obj; func_params.cmd = BNX2X_F_CMD_HW_RESET; func_params.params.hw_init.load_phase = load_code; return bnx2x_func_state_change(bp, &func_params); } static int bnx2x_func_stop(struct bnx2x *bp) { struct bnx2x_func_state_params func_params = {NULL}; int rc; /* Prepare parameters for function state transitions */ __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); func_params.f_obj = &bp->func_obj; func_params.cmd = BNX2X_F_CMD_STOP; /* * Try to stop the function the 'good way'. If fails (in case * of a parity error during bnx2x_chip_cleanup()) and we are * not in a debug mode, perform a state transaction in order to * enable further HW_RESET transaction. */ rc = bnx2x_func_state_change(bp, &func_params); if (rc) { #ifdef BNX2X_STOP_ON_ERROR return rc; #else BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); return bnx2x_func_state_change(bp, &func_params); #endif } return 0; } /** * bnx2x_send_unload_req - request unload mode from the MCP. * * @bp: driver handle * @unload_mode: requested function's unload mode * * Return unload mode returned by the MCP: COMMON, PORT or FUNC. */ u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) { u32 reset_code = 0; int port = BP_PORT(bp); /* Select the UNLOAD request mode */ if (unload_mode == UNLOAD_NORMAL) reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; else if (bp->flags & NO_WOL_FLAG) reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; else if (bp->wol) { u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; u8 *mac_addr = bp->dev->dev_addr; u32 val; u16 pmc; /* The mac address is written to entries 1-4 to * preserve entry 0 which is used by the PMF */ u8 entry = (BP_VN(bp) + 1)*8; val = (mac_addr[0] << 8) | mac_addr[1]; EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | (mac_addr[4] << 8) | mac_addr[5]; EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); /* Enable the PME and clear the status */ pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc); pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc); reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; } else reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; /* Send the request to the MCP */ if (!BP_NOMCP(bp)) reset_code = bnx2x_fw_command(bp, reset_code, 0); else { int path = BP_PATH(bp); DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n", path, load_count[path][0], load_count[path][1], load_count[path][2]); load_count[path][0]--; load_count[path][1 + port]--; DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n", path, load_count[path][0], load_count[path][1], load_count[path][2]); if (load_count[path][0] == 0) reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; else if (load_count[path][1 + port] == 0) reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; else reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; } return reset_code; } /** * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. * * @bp: driver handle * @keep_link: true iff link should be kept up */ void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link) { u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; /* Report UNLOAD_DONE to MCP */ if (!BP_NOMCP(bp)) bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param); } static int bnx2x_func_wait_started(struct bnx2x *bp) { int tout = 50; int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; if (!bp->port.pmf) return 0; /* * (assumption: No Attention from MCP at this stage) * PMF probably in the middle of TX disable/enable transaction * 1. Sync IRS for default SB * 2. Sync SP queue - this guarantees us that attention handling started * 3. Wait, that TX disable/enable transaction completes * * 1+2 guarantee that if DCBx attention was scheduled it already changed * pending bit of transaction from STARTED-->TX_STOPPED, if we already * received completion for the transaction the state is TX_STOPPED. * State will return to STARTED after completion of TX_STOPPED-->STARTED * transaction. */ /* make sure default SB ISR is done */ if (msix) synchronize_irq(bp->msix_table[0].vector); else synchronize_irq(bp->pdev->irq); flush_workqueue(bnx2x_wq); while (bnx2x_func_get_state(bp, &bp->func_obj) != BNX2X_F_STATE_STARTED && tout--) msleep(20); if (bnx2x_func_get_state(bp, &bp->func_obj) != BNX2X_F_STATE_STARTED) { #ifdef BNX2X_STOP_ON_ERROR BNX2X_ERR("Wrong function state\n"); return -EBUSY; #else /* * Failed to complete the transaction in a "good way" * Force both transactions with CLR bit */ struct bnx2x_func_state_params func_params = {NULL}; DP(NETIF_MSG_IFDOWN, "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n"); func_params.f_obj = &bp->func_obj; __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); /* STARTED-->TX_ST0PPED */ func_params.cmd = BNX2X_F_CMD_TX_STOP; bnx2x_func_state_change(bp, &func_params); /* TX_ST0PPED-->STARTED */ func_params.cmd = BNX2X_F_CMD_TX_START; return bnx2x_func_state_change(bp, &func_params); #endif } return 0; } void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link) { int port = BP_PORT(bp); int i, rc = 0; u8 cos; struct bnx2x_mcast_ramrod_params rparam = {NULL}; u32 reset_code; /* Wait until tx fastpath tasks complete */ for_each_tx_queue(bp, i) { struct bnx2x_fastpath *fp = &bp->fp[i]; for_each_cos_in_tx_queue(fp, cos) rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); #ifdef BNX2X_STOP_ON_ERROR if (rc) return; #endif } /* Give HW time to discard old tx messages */ usleep_range(1000, 2000); /* Clean all ETH MACs */ rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC, false); if (rc < 0) BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); /* Clean up UC list */ rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC, true); if (rc < 0) BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", rc); /* Disable LLH */ if (!CHIP_IS_E1(bp)) REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); /* Set "drop all" (stop Rx). * We need to take a netif_addr_lock() here in order to prevent * a race between the completion code and this code. */ netif_addr_lock_bh(bp->dev); /* Schedule the rx_mode command */ if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); else bnx2x_set_storm_rx_mode(bp); /* Cleanup multicast configuration */ rparam.mcast_obj = &bp->mcast_obj; rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); if (rc < 0) BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); netif_addr_unlock_bh(bp->dev); bnx2x_iov_chip_cleanup(bp); /* * Send the UNLOAD_REQUEST to the MCP. This will return if * this function should perform FUNC, PORT or COMMON HW * reset. */ reset_code = bnx2x_send_unload_req(bp, unload_mode); /* * (assumption: No Attention from MCP at this stage) * PMF probably in the middle of TX disable/enable transaction */ rc = bnx2x_func_wait_started(bp); if (rc) { BNX2X_ERR("bnx2x_func_wait_started failed\n"); #ifdef BNX2X_STOP_ON_ERROR return; #endif } /* Close multi and leading connections * Completions for ramrods are collected in a synchronous way */ for_each_eth_queue(bp, i) if (bnx2x_stop_queue(bp, i)) #ifdef BNX2X_STOP_ON_ERROR return; #else goto unload_error; #endif if (CNIC_LOADED(bp)) { for_each_cnic_queue(bp, i) if (bnx2x_stop_queue(bp, i)) #ifdef BNX2X_STOP_ON_ERROR return; #else goto unload_error; #endif } /* If SP settings didn't get completed so far - something * very wrong has happen. */ if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); #ifndef BNX2X_STOP_ON_ERROR unload_error: #endif rc = bnx2x_func_stop(bp); if (rc) { BNX2X_ERR("Function stop failed!\n"); #ifdef BNX2X_STOP_ON_ERROR return; #endif } /* Disable HW interrupts, NAPI */ bnx2x_netif_stop(bp, 1); /* Delete all NAPI objects */ bnx2x_del_all_napi(bp); if (CNIC_LOADED(bp)) bnx2x_del_all_napi_cnic(bp); /* Release IRQs */ bnx2x_free_irq(bp); /* Reset the chip */ rc = bnx2x_reset_hw(bp, reset_code); if (rc) BNX2X_ERR("HW_RESET failed\n"); /* Report UNLOAD_DONE to MCP */ bnx2x_send_unload_done(bp, keep_link); } void bnx2x_disable_close_the_gate(struct bnx2x *bp) { u32 val; DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); if (CHIP_IS_E1(bp)) { int port = BP_PORT(bp); u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : MISC_REG_AEU_MASK_ATTN_FUNC_0; val = REG_RD(bp, addr); val &= ~(0x300); REG_WR(bp, addr, val); } else { val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); } } /* Close gates #2, #3 and #4: */ static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) { u32 val; /* Gates #2 and #4a are closed/opened for "not E1" only */ if (!CHIP_IS_E1(bp)) { /* #4 */ REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); /* #2 */ REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); } /* #3 */ if (CHIP_IS_E1x(bp)) { /* Prevent interrupts from HC on both ports */ val = REG_RD(bp, HC_REG_CONFIG_1); REG_WR(bp, HC_REG_CONFIG_1, (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); val = REG_RD(bp, HC_REG_CONFIG_0); REG_WR(bp, HC_REG_CONFIG_0, (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); } else { /* Prevent incoming interrupts in IGU */ val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, (!close) ? (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); } DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", close ? "closing" : "opening"); mmiowb(); } #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */ static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val) { /* Do some magic... */ u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); *magic_val = val & SHARED_MF_CLP_MAGIC; MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); } /** * bnx2x_clp_reset_done - restore the value of the `magic' bit. * * @bp: driver handle * @magic_val: old value of the `magic' bit. */ static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val) { /* Restore the `magic' bit value... */ u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); MF_CFG_WR(bp, shared_mf_config.clp_mb, (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); } /** * bnx2x_reset_mcp_prep - prepare for MCP reset. * * @bp: driver handle * @magic_val: old value of 'magic' bit. * * Takes care of CLP configurations. */ static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val) { u32 shmem; u32 validity_offset; DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); /* Set `magic' bit in order to save MF config */ if (!CHIP_IS_E1(bp)) bnx2x_clp_reset_prep(bp, magic_val); /* Get shmem offset */ shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); validity_offset = offsetof(struct shmem_region, validity_map[BP_PORT(bp)]); /* Clear validity map flags */ if (shmem > 0) REG_WR(bp, shmem + validity_offset, 0); } #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ #define MCP_ONE_TIMEOUT 100 /* 100 ms */ /** * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT * * @bp: driver handle */ static void bnx2x_mcp_wait_one(struct bnx2x *bp) { /* special handling for emulation and FPGA, wait 10 times longer */ if (CHIP_REV_IS_SLOW(bp)) msleep(MCP_ONE_TIMEOUT*10); else msleep(MCP_ONE_TIMEOUT); } /* * initializes bp->common.shmem_base and waits for validity signature to appear */ static int bnx2x_init_shmem(struct bnx2x *bp) { int cnt = 0; u32 val = 0; do { bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); if (bp->common.shmem_base) { val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); if (val & SHR_MEM_VALIDITY_MB) return 0; } bnx2x_mcp_wait_one(bp); } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); BNX2X_ERR("BAD MCP validity signature\n"); return -ENODEV; } static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val) { int rc = bnx2x_init_shmem(bp); /* Restore the `magic' bit value */ if (!CHIP_IS_E1(bp)) bnx2x_clp_reset_done(bp, magic_val); return rc; } static void bnx2x_pxp_prep(struct bnx2x *bp) { if (!CHIP_IS_E1(bp)) { REG_WR(bp, PXP2_REG_RD_START_INIT, 0); REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); mmiowb(); } } /* * Reset the whole chip except for: * - PCIE core * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by * one reset bit) * - IGU * - MISC (including AEU) * - GRC * - RBCN, RBCP */ static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) { u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; u32 global_bits2, stay_reset2; /* * Bits that have to be set in reset_mask2 if we want to reset 'global' * (per chip) blocks. */ global_bits2 = MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; /* Don't reset the following blocks. * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be * reset, as in 4 port device they might still be owned * by the MCP (there is only one leader per path). */ not_reset_mask1 = MISC_REGISTERS_RESET_REG_1_RST_HC | MISC_REGISTERS_RESET_REG_1_RST_PXPV | MISC_REGISTERS_RESET_REG_1_RST_PXP; not_reset_mask2 = MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | MISC_REGISTERS_RESET_REG_2_RST_RBCN | MISC_REGISTERS_RESET_REG_2_RST_GRC | MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | MISC_REGISTERS_RESET_REG_2_RST_ATC | MISC_REGISTERS_RESET_REG_2_PGLC | MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1; /* * Keep the following blocks in reset: * - all xxMACs are handled by the bnx2x_link code. */ stay_reset2 = MISC_REGISTERS_RESET_REG_2_XMAC | MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; /* Full reset masks according to the chip */ reset_mask1 = 0xffffffff; if (CHIP_IS_E1(bp)) reset_mask2 = 0xffff; else if (CHIP_IS_E1H(bp)) reset_mask2 = 0x1ffff; else if (CHIP_IS_E2(bp)) reset_mask2 = 0xfffff; else /* CHIP_IS_E3 */ reset_mask2 = 0x3ffffff; /* Don't reset global blocks unless we need to */ if (!global) reset_mask2 &= ~global_bits2; /* * In case of attention in the QM, we need to reset PXP * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM * because otherwise QM reset would release 'close the gates' shortly * before resetting the PXP, then the PSWRQ would send a write * request to PGLUE. Then when PXP is reset, PGLUE would try to * read the payload data from PSWWR, but PSWWR would not * respond. The write queue in PGLUE would stuck, dmae commands * would not return. Therefore it's important to reset the second * reset register (containing the * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM * bit). */ REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, reset_mask2 & (~not_reset_mask2)); REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, reset_mask1 & (~not_reset_mask1)); barrier(); mmiowb(); REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, reset_mask2 & (~stay_reset2)); barrier(); mmiowb(); REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); mmiowb(); } /** * bnx2x_er_poll_igu_vq - poll for pending writes bit. * It should get cleared in no more than 1s. * * @bp: driver handle * * It should get cleared in no more than 1s. Returns 0 if * pending writes bit gets cleared. */ static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) { u32 cnt = 1000; u32 pend_bits = 0; do { pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); if (pend_bits == 0) break; usleep_range(1000, 2000); } while (cnt-- > 0); if (cnt <= 0) { BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", pend_bits); return -EBUSY; } return 0; } static int bnx2x_process_kill(struct bnx2x *bp, bool global) { int cnt = 1000; u32 val = 0; u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; u32 tags_63_32 = 0; /* Empty the Tetris buffer, wait for 1s */ do { sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT); blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); if (CHIP_IS_E3(bp)) tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32); if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && ((port_is_idle_0 & 0x1) == 0x1) && ((port_is_idle_1 & 0x1) == 0x1) && (pgl_exp_rom2 == 0xffffffff) && (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff))) break; usleep_range(1000, 2000); } while (cnt-- > 0); if (cnt <= 0) { BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2); return -EAGAIN; } barrier(); /* Close gates #2, #3 and #4 */ bnx2x_set_234_gates(bp, true); /* Poll for IGU VQs for 57712 and newer chips */ if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) return -EAGAIN; /* TBD: Indicate that "process kill" is in progress to MCP */ /* Clear "unprepared" bit */ REG_WR(bp, MISC_REG_UNPREPARED, 0); barrier(); /* Make sure all is written to the chip before the reset */ mmiowb(); /* Wait for 1ms to empty GLUE and PCI-E core queues, * PSWHST, GRC and PSWRD Tetris buffer. */ usleep_range(1000, 2000); /* Prepare to chip reset: */ /* MCP */ if (global) bnx2x_reset_mcp_prep(bp, &val); /* PXP */ bnx2x_pxp_prep(bp); barrier(); /* reset the chip */ bnx2x_process_kill_chip_reset(bp, global); barrier(); /* Recover after reset: */ /* MCP */ if (global && bnx2x_reset_mcp_comp(bp, val)) return -EAGAIN; /* TBD: Add resetting the NO_MCP mode DB here */ /* Open the gates #2, #3 and #4 */ bnx2x_set_234_gates(bp, false); /* TBD: IGU/AEU preparation bring back the AEU/IGU to a * reset state, re-enable attentions. */ return 0; } static int bnx2x_leader_reset(struct bnx2x *bp) { int rc = 0; bool global = bnx2x_reset_is_global(bp); u32 load_code; /* if not going to reset MCP - load "fake" driver to reset HW while * driver is owner of the HW */ if (!global && !BP_NOMCP(bp)) { load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, DRV_MSG_CODE_LOAD_REQ_WITH_LFA); if (!load_code) { BNX2X_ERR("MCP response failure, aborting\n"); rc = -EAGAIN; goto exit_leader_reset; } if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { BNX2X_ERR("MCP unexpected resp, aborting\n"); rc = -EAGAIN; goto exit_leader_reset2; } load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); if (!load_code) { BNX2X_ERR("MCP response failure, aborting\n"); rc = -EAGAIN; goto exit_leader_reset2; } } /* Try to recover after the failure */ if (bnx2x_process_kill(bp, global)) { BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", BP_PATH(bp)); rc = -EAGAIN; goto exit_leader_reset2; } /* * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver * state. */ bnx2x_set_reset_done(bp); if (global) bnx2x_clear_reset_global(bp); exit_leader_reset2: /* unload "fake driver" if it was loaded */ if (!global && !BP_NOMCP(bp)) { bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); } exit_leader_reset: bp->is_leader = 0; bnx2x_release_leader_lock(bp); smp_mb(); return rc; } static void bnx2x_recovery_failed(struct bnx2x *bp) { netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); /* Disconnect this device */ netif_device_detach(bp->dev); /* * Block ifup for all function on this engine until "process kill" * or power cycle. */ bnx2x_set_reset_in_progress(bp); /* Shut down the power */ bnx2x_set_power_state(bp, PCI_D3hot); bp->recovery_state = BNX2X_RECOVERY_FAILED; smp_mb(); } /* * Assumption: runs under rtnl lock. This together with the fact * that it's called only from bnx2x_sp_rtnl() ensure that it * will never be called when netif_running(bp->dev) is false. */ static void bnx2x_parity_recover(struct bnx2x *bp) { bool global = false; u32 error_recovered, error_unrecovered; bool is_parity; DP(NETIF_MSG_HW, "Handling parity\n"); while (1) { switch (bp->recovery_state) { case BNX2X_RECOVERY_INIT: DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); is_parity = bnx2x_chk_parity_attn(bp, &global, false); WARN_ON(!is_parity); /* Try to get a LEADER_LOCK HW lock */ if (bnx2x_trylock_leader_lock(bp)) { bnx2x_set_reset_in_progress(bp); /* * Check if there is a global attention and if * there was a global attention, set the global * reset bit. */ if (global) bnx2x_set_reset_global(bp); bp->is_leader = 1; } /* Stop the driver */ /* If interface has been removed - break */ if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false)) return; bp->recovery_state = BNX2X_RECOVERY_WAIT; /* Ensure "is_leader", MCP command sequence and * "recovery_state" update values are seen on other * CPUs. */ smp_mb(); break; case BNX2X_RECOVERY_WAIT: DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); if (bp->is_leader) { int other_engine = BP_PATH(bp) ? 0 : 1; bool other_load_status = bnx2x_get_load_status(bp, other_engine); bool load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); global = bnx2x_reset_is_global(bp); /* * In case of a parity in a global block, let * the first leader that performs a * leader_reset() reset the global blocks in * order to clear global attentions. Otherwise * the gates will remain closed for that * engine. */ if (load_status || (global && other_load_status)) { /* Wait until all other functions get * down. */ schedule_delayed_work(&bp->sp_rtnl_task, HZ/10); return; } else { /* If all other functions got down - * try to bring the chip back to * normal. In any case it's an exit * point for a leader. */ if (bnx2x_leader_reset(bp)) { bnx2x_recovery_failed(bp); return; } /* If we are here, means that the * leader has succeeded and doesn't * want to be a leader any more. Try * to continue as a none-leader. */ break; } } else { /* non-leader */ if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { /* Try to get a LEADER_LOCK HW lock as * long as a former leader may have * been unloaded by the user or * released a leadership by another * reason. */ if (bnx2x_trylock_leader_lock(bp)) { /* I'm a leader now! Restart a * switch case. */ bp->is_leader = 1; break; } schedule_delayed_work(&bp->sp_rtnl_task, HZ/10); return; } else { /* * If there was a global attention, wait * for it to be cleared. */ if (bnx2x_reset_is_global(bp)) { schedule_delayed_work( &bp->sp_rtnl_task, HZ/10); return; } error_recovered = bp->eth_stats.recoverable_error; error_unrecovered = bp->eth_stats.unrecoverable_error; bp->recovery_state = BNX2X_RECOVERY_NIC_LOADING; if (bnx2x_nic_load(bp, LOAD_NORMAL)) { error_unrecovered++; netdev_err(bp->dev, "Recovery failed. Power cycle needed\n"); /* Disconnect this device */ netif_device_detach(bp->dev); /* Shut down the power */ bnx2x_set_power_state( bp, PCI_D3hot); smp_mb(); } else { bp->recovery_state = BNX2X_RECOVERY_DONE; error_recovered++; smp_mb(); } bp->eth_stats.recoverable_error = error_recovered; bp->eth_stats.unrecoverable_error = error_unrecovered; return; } } default: return; } } } static int bnx2x_close(struct net_device *dev); /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is * scheduled on a general queue in order to prevent a dead lock. */ static void bnx2x_sp_rtnl_task(struct work_struct *work) { struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); rtnl_lock(); if (!netif_running(bp->dev)) { rtnl_unlock(); return; } if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { #ifdef BNX2X_STOP_ON_ERROR BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" "you will need to reboot when done\n"); goto sp_rtnl_not_reset; #endif /* * Clear all pending SP commands as we are going to reset the * function anyway. */ bp->sp_rtnl_state = 0; smp_mb(); bnx2x_parity_recover(bp); rtnl_unlock(); return; } if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { #ifdef BNX2X_STOP_ON_ERROR BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" "you will need to reboot when done\n"); goto sp_rtnl_not_reset; #endif /* * Clear all pending SP commands as we are going to reset the * function anyway. */ bp->sp_rtnl_state = 0; smp_mb(); bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); bnx2x_nic_load(bp, LOAD_NORMAL); rtnl_unlock(); return; } #ifdef BNX2X_STOP_ON_ERROR sp_rtnl_not_reset: #endif if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state)) bnx2x_after_function_update(bp); /* * in case of fan failure we need to reset id if the "stop on error" * debug flag is set, since we trying to prevent permanent overheating * damage */ if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); netif_device_detach(bp->dev); bnx2x_close(bp->dev); rtnl_unlock(); return; } if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) { DP(BNX2X_MSG_SP, "sending set mcast vf pf channel message from rtnl sp-task\n"); bnx2x_vfpf_set_mcast(bp->dev); } if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, &bp->sp_rtnl_state)){ if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) { bnx2x_tx_disable(bp); BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n"); } } if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) { DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n"); bnx2x_set_rx_mode_inner(bp); } if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN, &bp->sp_rtnl_state)) bnx2x_pf_set_vfs_vlan(bp); if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) bnx2x_dcbx_stop_hw_tx(bp); if (test_and_clear_bit(BNX2X_SP_RTNL_TX_RESUME, &bp->sp_rtnl_state)) bnx2x_dcbx_resume_hw_tx(bp); /* work which needs rtnl lock not-taken (as it takes the lock itself and * can be called from other contexts as well) */ rtnl_unlock(); /* enable SR-IOV if applicable */ if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, &bp->sp_rtnl_state)) { bnx2x_disable_sriov(bp); bnx2x_enable_sriov(bp); } } static void bnx2x_period_task(struct work_struct *work) { struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); if (!netif_running(bp->dev)) goto period_task_exit; if (CHIP_REV_IS_SLOW(bp)) { BNX2X_ERR("period task called on emulation, ignoring\n"); goto period_task_exit; } bnx2x_acquire_phy_lock(bp); /* * The barrier is needed to ensure the ordering between the writing to * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and * the reading here. */ smp_mb(); if (bp->port.pmf) { bnx2x_period_func(&bp->link_params, &bp->link_vars); /* Re-queue task in 1 sec */ queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); } bnx2x_release_phy_lock(bp); period_task_exit: return; } /* * Init service functions */ u32 bnx2x_get_pretend_reg(struct bnx2x *bp) { u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0; u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; return base + (BP_ABS_FUNC(bp)) * stride; } static void bnx2x_prev_unload_close_mac(struct bnx2x *bp, struct bnx2x_mac_vals *vals) { u32 val, base_addr, offset, mask, reset_reg; bool mac_stopped = false; u8 port = BP_PORT(bp); /* reset addresses as they also mark which values were changed */ vals->bmac_addr = 0; vals->umac_addr = 0; vals->xmac_addr = 0; vals->emac_addr = 0; reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); if (!CHIP_IS_E3(bp)) { val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; if ((mask & reset_reg) && val) { u32 wb_data[2]; BNX2X_DEV_INFO("Disable bmac Rx\n"); base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM : NIG_REG_INGRESS_BMAC0_MEM; offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL : BIGMAC_REGISTER_BMAC_CONTROL; /* * use rd/wr since we cannot use dmae. This is safe * since MCP won't access the bus due to the request * to unload, and no function on the path can be * loaded at this time. */ wb_data[0] = REG_RD(bp, base_addr + offset); wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); vals->bmac_addr = base_addr + offset; vals->bmac_val[0] = wb_data[0]; vals->bmac_val[1] = wb_data[1]; wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; REG_WR(bp, vals->bmac_addr, wb_data[0]); REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]); } BNX2X_DEV_INFO("Disable emac Rx\n"); vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4; vals->emac_val = REG_RD(bp, vals->emac_addr); REG_WR(bp, vals->emac_addr, 0); mac_stopped = true; } else { if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { BNX2X_DEV_INFO("Disable xmac Rx\n"); base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); vals->xmac_addr = base_addr + XMAC_REG_CTRL; vals->xmac_val = REG_RD(bp, vals->xmac_addr); REG_WR(bp, vals->xmac_addr, 0); mac_stopped = true; } mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; if (mask & reset_reg) { BNX2X_DEV_INFO("Disable umac Rx\n"); base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; vals->umac_val = REG_RD(bp, vals->umac_addr); REG_WR(bp, vals->umac_addr, 0); mac_stopped = true; } } if (mac_stopped) msleep(20); } #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff) #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc) { u16 rcq, bd; u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port)); rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg); BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", port, bd, rcq); } static int bnx2x_prev_mcp_done(struct bnx2x *bp) { u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); if (!rc) { BNX2X_ERR("MCP response failure, aborting\n"); return -EBUSY; } return 0; } static struct bnx2x_prev_path_list * bnx2x_prev_path_get_entry(struct bnx2x *bp) { struct bnx2x_prev_path_list *tmp_list; list_for_each_entry(tmp_list, &bnx2x_prev_list, list) if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && bp->pdev->bus->number == tmp_list->bus && BP_PATH(bp) == tmp_list->path) return tmp_list; return NULL; } static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp) { struct bnx2x_prev_path_list *tmp_list; int rc; rc = down_interruptible(&bnx2x_prev_sem); if (rc) { BNX2X_ERR("Received %d when tried to take lock\n", rc); return rc; } tmp_list = bnx2x_prev_path_get_entry(bp); if (tmp_list) { tmp_list->aer = 1; rc = 0; } else { BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n", BP_PATH(bp)); } up(&bnx2x_prev_sem); return rc; } static bool bnx2x_prev_is_path_marked(struct bnx2x *bp) { struct bnx2x_prev_path_list *tmp_list; int rc = false; if (down_trylock(&bnx2x_prev_sem)) return false; tmp_list = bnx2x_prev_path_get_entry(bp); if (tmp_list) { if (tmp_list->aer) { DP(NETIF_MSG_HW, "Path %d was marked by AER\n", BP_PATH(bp)); } else { rc = true; BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", BP_PATH(bp)); } } up(&bnx2x_prev_sem); return rc; } bool bnx2x_port_after_undi(struct bnx2x *bp) { struct bnx2x_prev_path_list *entry; bool val; down(&bnx2x_prev_sem); entry = bnx2x_prev_path_get_entry(bp); val = !!(entry && (entry->undi & (1 << BP_PORT(bp)))); up(&bnx2x_prev_sem); return val; } static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi) { struct bnx2x_prev_path_list *tmp_list; int rc; rc = down_interruptible(&bnx2x_prev_sem); if (rc) { BNX2X_ERR("Received %d when tried to take lock\n", rc); return rc; } /* Check whether the entry for this path already exists */ tmp_list = bnx2x_prev_path_get_entry(bp); if (tmp_list) { if (!tmp_list->aer) { BNX2X_ERR("Re-Marking the path.\n"); } else { DP(NETIF_MSG_HW, "Removing AER indication from path %d\n", BP_PATH(bp)); tmp_list->aer = 0; } up(&bnx2x_prev_sem); return 0; } up(&bnx2x_prev_sem); /* Create an entry for this path and add it */ tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL); if (!tmp_list) { BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); return -ENOMEM; } tmp_list->bus = bp->pdev->bus->number; tmp_list->slot = PCI_SLOT(bp->pdev->devfn); tmp_list->path = BP_PATH(bp); tmp_list->aer = 0; tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0; rc = down_interruptible(&bnx2x_prev_sem); if (rc) { BNX2X_ERR("Received %d when tried to take lock\n", rc); kfree(tmp_list); } else { DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n", BP_PATH(bp)); list_add(&tmp_list->list, &bnx2x_prev_list); up(&bnx2x_prev_sem); } return rc; } static int bnx2x_do_flr(struct bnx2x *bp) { int i; u16 status; struct pci_dev *dev = bp->pdev; if (CHIP_IS_E1x(bp)) { BNX2X_DEV_INFO("FLR not supported in E1/E1H\n"); return -EINVAL; } /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", bp->common.bc_ver); return -EINVAL; } /* Wait for Transaction Pending bit clean */ for (i = 0; i < 4; i++) { if (i) msleep((1 << (i - 1)) * 100); pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); if (!(status & PCI_EXP_DEVSTA_TRPND)) goto clear; } dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); clear: BNX2X_DEV_INFO("Initiating FLR\n"); bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); return 0; } static int bnx2x_prev_unload_uncommon(struct bnx2x *bp) { int rc; BNX2X_DEV_INFO("Uncommon unload Flow\n"); /* Test if previous unload process was already finished for this path */ if (bnx2x_prev_is_path_marked(bp)) return bnx2x_prev_mcp_done(bp); BNX2X_DEV_INFO("Path is unmarked\n"); /* If function has FLR capabilities, and existing FW version matches * the one required, then FLR will be sufficient to clean any residue * left by previous driver */ rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION); if (!rc) { /* fw version is good */ BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n"); rc = bnx2x_do_flr(bp); } if (!rc) { /* FLR was performed */ BNX2X_DEV_INFO("FLR successful\n"); return 0; } BNX2X_DEV_INFO("Could not FLR\n"); /* Close the MCP request, return failure*/ rc = bnx2x_prev_mcp_done(bp); if (!rc) rc = BNX2X_PREV_WAIT_NEEDED; return rc; } static int bnx2x_prev_unload_common(struct bnx2x *bp) { u32 reset_reg, tmp_reg = 0, rc; bool prev_undi = false; struct bnx2x_mac_vals mac_vals; /* It is possible a previous function received 'common' answer, * but hasn't loaded yet, therefore creating a scenario of * multiple functions receiving 'common' on the same path. */ BNX2X_DEV_INFO("Common unload Flow\n"); memset(&mac_vals, 0, sizeof(mac_vals)); if (bnx2x_prev_is_path_marked(bp)) return bnx2x_prev_mcp_done(bp); reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); /* Reset should be performed after BRB is emptied */ if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { u32 timer_count = 1000; /* Close the MAC Rx to prevent BRB from filling up */ bnx2x_prev_unload_close_mac(bp, &mac_vals); /* close LLH filters towards the BRB */ bnx2x_set_rx_filter(&bp->link_params, 0); /* Check if the UNDI driver was previously loaded * UNDI driver initializes CID offset for normal bell to 0x7 */ if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST); if (tmp_reg == 0x7) { BNX2X_DEV_INFO("UNDI previously loaded\n"); prev_undi = true; /* clear the UNDI indication */ REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); /* clear possible idle check errors */ REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0); } } if (!CHIP_IS_E1x(bp)) /* block FW from writing to host */ REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); /* wait until BRB is empty */ tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); while (timer_count) { u32 prev_brb = tmp_reg; tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); if (!tmp_reg) break; BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); /* reset timer as long as BRB actually gets emptied */ if (prev_brb > tmp_reg) timer_count = 1000; else timer_count--; /* If UNDI resides in memory, manually increment it */ if (prev_undi) bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1); udelay(10); } if (!timer_count) BNX2X_ERR("Failed to empty BRB, hope for the best\n"); } /* No packets are in the pipeline, path is ready for reset */ bnx2x_reset_common(bp); if (mac_vals.xmac_addr) REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val); if (mac_vals.umac_addr) REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val); if (mac_vals.emac_addr) REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val); if (mac_vals.bmac_addr) { REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]); REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); } rc = bnx2x_prev_mark_path(bp, prev_undi); if (rc) { bnx2x_prev_mcp_done(bp); return rc; } return bnx2x_prev_mcp_done(bp); } /* previous driver DMAE transaction may have occurred when pre-boot stage ended * and boot began, or when kdump kernel was loaded. Either case would invalidate * the addresses of the transaction, resulting in was-error bit set in the pci * causing all hw-to-host pcie transactions to timeout. If this happened we want * to clear the interrupt which detected this from the pglueb and the was done * bit */ static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp) { if (!CHIP_IS_E1x(bp)) { u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS); if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { DP(BNX2X_MSG_SP, "'was error' bit was found to be set in pglueb upon startup. Clearing\n"); REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << BP_FUNC(bp)); } } } static int bnx2x_prev_unload(struct bnx2x *bp) { int time_counter = 10; u32 rc, fw, hw_lock_reg, hw_lock_val; BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); /* clear hw from errors which may have resulted from an interrupted * dmae transaction. */ bnx2x_prev_interrupted_dmae(bp); /* Release previously held locks */ hw_lock_reg = (BP_FUNC(bp) <= 5) ? (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); hw_lock_val = REG_RD(bp, hw_lock_reg); if (hw_lock_val) { if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); } BNX2X_DEV_INFO("Release Previously held hw lock\n"); REG_WR(bp, hw_lock_reg, 0xffffffff); } else BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { BNX2X_DEV_INFO("Release previously held alr\n"); bnx2x_release_alr(bp); } do { int aer = 0; /* Lock MCP using an unload request */ fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); if (!fw) { BNX2X_ERR("MCP response failure, aborting\n"); rc = -EBUSY; break; } rc = down_interruptible(&bnx2x_prev_sem); if (rc) { BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n", rc); } else { /* If Path is marked by EEH, ignore unload status */ aer = !!(bnx2x_prev_path_get_entry(bp) && bnx2x_prev_path_get_entry(bp)->aer); up(&bnx2x_prev_sem); } if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) { rc = bnx2x_prev_unload_common(bp); break; } /* non-common reply from MCP might require looping */ rc = bnx2x_prev_unload_uncommon(bp); if (rc != BNX2X_PREV_WAIT_NEEDED) break; msleep(20); } while (--time_counter); if (!time_counter || rc) { BNX2X_ERR("Failed unloading previous driver, aborting\n"); rc = -EBUSY; } /* Mark function if its port was used to boot from SAN */ if (bnx2x_port_after_undi(bp)) bp->link_params.feature_config_flags |= FEATURE_CONFIG_BOOT_FROM_SAN; BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); return rc; } static void bnx2x_get_common_hwinfo(struct bnx2x *bp) { u32 val, val2, val3, val4, id, boot_mode; u16 pmc; /* Get the chip revision id and number. */ /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ val = REG_RD(bp, MISC_REG_CHIP_NUM); id = ((val & 0xffff) << 16); val = REG_RD(bp, MISC_REG_CHIP_REV); id |= ((val & 0xf) << 12); /* Metal is read from PCI regs, but we can't access >=0x400 from * the configuration space (so we need to reg_rd) */ val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3); id |= (((val >> 24) & 0xf) << 4); val = REG_RD(bp, MISC_REG_BOND_ID); id |= (val & 0xf); bp->common.chip_id = id; /* force 57811 according to MISC register */ if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { if (CHIP_IS_57810(bp)) bp->common.chip_id = (CHIP_NUM_57811 << 16) | (bp->common.chip_id & 0x0000FFFF); else if (CHIP_IS_57810_MF(bp)) bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | (bp->common.chip_id & 0x0000FFFF); bp->common.chip_id |= 0x1; } /* Set doorbell size */ bp->db_size = (1 << BNX2X_DB_SHIFT); if (!CHIP_IS_E1x(bp)) { val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); if ((val & 1) == 0) val = REG_RD(bp, MISC_REG_PORT4MODE_EN); else val = (val >> 1) & 1; BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : "2_PORT_MODE"); bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; if (CHIP_MODE_IS_4_PORT(bp)) bp->pfid = (bp->pf_num >> 1); /* 0..3 */ else bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */ } else { bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ bp->pfid = bp->pf_num; /* 0..7 */ } BNX2X_DEV_INFO("pf_id: %x", bp->pfid); bp->link_params.chip_id = bp->common.chip_id; BNX2X_DEV_INFO("chip ID is 0x%x\n", id); val = (REG_RD(bp, 0x2874) & 0x55); if ((bp->common.chip_id & 0x1) || (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { bp->flags |= ONE_PORT_FLAG; BNX2X_DEV_INFO("single port device\n"); } val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", bp->common.flash_size, bp->common.flash_size); bnx2x_init_shmem(bp); bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? MISC_REG_GENERIC_CR_1 : MISC_REG_GENERIC_CR_0)); bp->link_params.shmem_base = bp->common.shmem_base; bp->link_params.shmem2_base = bp->common.shmem2_base; if (SHMEM2_RD(bp, size) > (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) bp->link_params.lfa_base = REG_RD(bp, bp->common.shmem2_base + (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])); else bp->link_params.lfa_base = 0; BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n", bp->common.shmem_base, bp->common.shmem2_base); if (!bp->common.shmem_base) { BNX2X_DEV_INFO("MCP not active\n"); bp->flags |= NO_MCP_FLAG; return; } bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); bp->link_params.hw_led_mode = ((bp->common.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> SHARED_HW_CFG_LED_MODE_SHIFT); bp->link_params.feature_config_flags = 0; val = SHMEM_RD(bp, dev_info.shared_feature_config.config); if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) bp->link_params.feature_config_flags |= FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; else bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; bp->common.bc_ver = val; BNX2X_DEV_INFO("bc_ver %X\n", val); if (val < BNX2X_BC_VER) { /* for now only warn * later we might need to enforce this */ BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", BNX2X_BC_VER, val); } bp->link_params.feature_config_flags |= (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; bp->link_params.feature_config_flags |= (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; bp->link_params.feature_config_flags |= (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ? FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0; bp->link_params.feature_config_flags |= (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; bp->link_params.feature_config_flags |= (val >= REQ_BC_VER_4_MT_SUPPORTED) ? FEATURE_CONFIG_MT_SUPPORT : 0; bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? BC_SUPPORTS_PFC_STATS : 0; bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ? BC_SUPPORTS_FCOE_FEATURES : 0; bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ? BC_SUPPORTS_DCBX_MSG_NON_PMF : 0; bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ? BC_SUPPORTS_RMMOD_CMD : 0; boot_mode = SHMEM_RD(bp, dev_info.port_feature_config[BP_PORT(bp)].mba_config) & PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; switch (boot_mode) { case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; break; case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; break; case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; break; case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; break; } pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc); bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; BNX2X_DEV_INFO("%sWoL capable\n", (bp->flags & NO_WOL_FLAG) ? "not " : ""); val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n", val, val2, val3, val4); } #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) static int bnx2x_get_igu_cam_info(struct bnx2x *bp) { int pfid = BP_FUNC(bp); int igu_sb_id; u32 val; u8 fid, igu_sb_cnt = 0; bp->igu_base_sb = 0xff; if (CHIP_INT_MODE_IS_BC(bp)) { int vn = BP_VN(bp); igu_sb_cnt = bp->igu_sb_cnt; bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * FP_SB_MAX_E1x; bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x + (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); return 0; } /* IGU in normal mode - read CAM */ for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) { val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) continue; fid = IGU_FID(val); if ((fid & IGU_FID_ENCODE_IS_PF)) { if ((fid & IGU_FID_PF_NUM_MASK) != pfid) continue; if (IGU_VEC(val) == 0) /* default status block */ bp->igu_dsb_id = igu_sb_id; else { if (bp->igu_base_sb == 0xff) bp->igu_base_sb = igu_sb_id; igu_sb_cnt++; } } } #ifdef CONFIG_PCI_MSI /* Due to new PF resource allocation by MFW T7.4 and above, it's * optional that number of CAM entries will not be equal to the value * advertised in PCI. * Driver should use the minimal value of both as the actual status * block count */ bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt); #endif if (igu_sb_cnt == 0) { BNX2X_ERR("CAM configuration error\n"); return -EINVAL; } return 0; } static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg) { int cfg_size = 0, idx, port = BP_PORT(bp); /* Aggregation of supported attributes of all external phys */ bp->port.supported[0] = 0; bp->port.supported[1] = 0; switch (bp->link_params.num_phys) { case 1: bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; cfg_size = 1; break; case 2: bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; cfg_size = 1; break; case 3: if (bp->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { bp->port.supported[1] = bp->link_params.phy[EXT_PHY1].supported; bp->port.supported[0] = bp->link_params.phy[EXT_PHY2].supported; } else { bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; bp->port.supported[1] = bp->link_params.phy[EXT_PHY2].supported; } cfg_size = 2; break; } if (!(bp->port.supported[0] || bp->port.supported[1])) { BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", SHMEM_RD(bp, dev_info.port_hw_config[port].external_phy_config), SHMEM_RD(bp, dev_info.port_hw_config[port].external_phy_config2)); return; } if (CHIP_IS_E3(bp)) bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); else { switch (switch_cfg) { case SWITCH_CFG_1G: bp->port.phy_addr = REG_RD( bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); break; case SWITCH_CFG_10G: bp->port.phy_addr = REG_RD( bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); break; default: BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", bp->port.link_config[0]); return; } } BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); /* mask what we support according to speed_cap_mask per configuration */ for (idx = 0; idx < cfg_size; idx++) { if (!(bp->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; if (!(bp->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; if (!(bp->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; if (!(bp->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; if (!(bp->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full); if (!(bp->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; if (!(bp->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; if (!(bp->link_params.speed_cap_mask[idx] & PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full; } BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], bp->port.supported[1]); } static void bnx2x_link_settings_requested(struct bnx2x *bp) { u32 link_config, idx, cfg_size = 0; bp->port.advertising[0] = 0; bp->port.advertising[1] = 0; switch (bp->link_params.num_phys) { case 1: case 2: cfg_size = 1; break; case 3: cfg_size = 2; break; } for (idx = 0; idx < cfg_size; idx++) { bp->link_params.req_duplex[idx] = DUPLEX_FULL; link_config = bp->port.link_config[idx]; switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { case PORT_FEATURE_LINK_SPEED_AUTO: if (bp->port.supported[idx] & SUPPORTED_Autoneg) { bp->link_params.req_line_speed[idx] = SPEED_AUTO_NEG; bp->port.advertising[idx] |= bp->port.supported[idx]; if (bp->link_params.phy[EXT_PHY1].type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) bp->port.advertising[idx] |= (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full); } else { /* force 10G, no AN */ bp->link_params.req_line_speed[idx] = SPEED_10000; bp->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); continue; } break; case PORT_FEATURE_LINK_SPEED_10M_FULL: if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { bp->link_params.req_line_speed[idx] = SPEED_10; bp->port.advertising[idx] |= (ADVERTISED_10baseT_Full | ADVERTISED_TP); } else { BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", link_config, bp->link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_10M_HALF: if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { bp->link_params.req_line_speed[idx] = SPEED_10; bp->link_params.req_duplex[idx] = DUPLEX_HALF; bp->port.advertising[idx] |= (ADVERTISED_10baseT_Half | ADVERTISED_TP); } else { BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", link_config, bp->link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_100M_FULL: if (bp->port.supported[idx] & SUPPORTED_100baseT_Full) { bp->link_params.req_line_speed[idx] = SPEED_100; bp->port.advertising[idx] |= (ADVERTISED_100baseT_Full | ADVERTISED_TP); } else { BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", link_config, bp->link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_100M_HALF: if (bp->port.supported[idx] & SUPPORTED_100baseT_Half) { bp->link_params.req_line_speed[idx] = SPEED_100; bp->link_params.req_duplex[idx] = DUPLEX_HALF; bp->port.advertising[idx] |= (ADVERTISED_100baseT_Half | ADVERTISED_TP); } else { BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", link_config, bp->link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_1G: if (bp->port.supported[idx] & SUPPORTED_1000baseT_Full) { bp->link_params.req_line_speed[idx] = SPEED_1000; bp->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | ADVERTISED_TP); } else { BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", link_config, bp->link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_2_5G: if (bp->port.supported[idx] & SUPPORTED_2500baseX_Full) { bp->link_params.req_line_speed[idx] = SPEED_2500; bp->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | ADVERTISED_TP); } else { BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", link_config, bp->link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_10G_CX4: if (bp->port.supported[idx] & SUPPORTED_10000baseT_Full) { bp->link_params.req_line_speed[idx] = SPEED_10000; bp->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); } else { BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", link_config, bp->link_params.speed_cap_mask[idx]); return; } break; case PORT_FEATURE_LINK_SPEED_20G: bp->link_params.req_line_speed[idx] = SPEED_20000; break; default: BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", link_config); bp->link_params.req_line_speed[idx] = SPEED_AUTO_NEG; bp->port.advertising[idx] = bp->port.supported[idx]; break; } bp->link_params.req_flow_ctrl[idx] = (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); if (bp->link_params.req_flow_ctrl[idx] == BNX2X_FLOW_CTRL_AUTO) { if (!(bp->port.supported[idx] & SUPPORTED_Autoneg)) bp->link_params.req_flow_ctrl[idx] = BNX2X_FLOW_CTRL_NONE; else bnx2x_set_requested_fc(bp); } BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", bp->link_params.req_line_speed[idx], bp->link_params.req_duplex[idx], bp->link_params.req_flow_ctrl[idx], bp->port.advertising[idx]); } } static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi) { __be16 mac_hi_be = cpu_to_be16(mac_hi); __be32 mac_lo_be = cpu_to_be32(mac_lo); memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be)); memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be)); } static void bnx2x_get_port_hwinfo(struct bnx2x *bp) { int port = BP_PORT(bp); u32 config; u32 ext_phy_type, ext_phy_config, eee_mode; bp->link_params.bp = bp; bp->link_params.port = port; bp->link_params.lane_config = SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); bp->link_params.speed_cap_mask[0] = SHMEM_RD(bp, dev_info.port_hw_config[port].speed_capability_mask) & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; bp->link_params.speed_cap_mask[1] = SHMEM_RD(bp, dev_info.port_hw_config[port].speed_capability_mask2) & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; bp->port.link_config[0] = SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); bp->port.link_config[1] = SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); bp->link_params.multi_phy_config = SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); /* If the device is capable of WoL, set the default state according * to the HW */ config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); bp->wol = (!(bp->flags & NO_WOL_FLAG) && (config & PORT_FEATURE_WOL_ENABLED)); if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp)) bp->flags |= NO_ISCSI_FLAG; if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp))) bp->flags |= NO_FCOE_FLAG; BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n", bp->link_params.lane_config, bp->link_params.speed_cap_mask[0], bp->port.link_config[0]); bp->link_params.switch_cfg = (bp->port.link_config[0] & PORT_FEATURE_CONNECTED_SWITCH_MASK); bnx2x_phy_probe(&bp->link_params); bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); bnx2x_link_settings_requested(bp); /* * If connected directly, work with the internal PHY, otherwise, work * with the external PHY */ ext_phy_config = SHMEM_RD(bp, dev_info.port_hw_config[port].external_phy_config); ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) bp->mdio.prtad = bp->port.phy_addr; else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) bp->mdio.prtad = XGXS_EXT_PHY_ADDR(ext_phy_config); /* Configure link feature according to nvram value */ eee_mode = (((SHMEM_RD(bp, dev_info. port_feature_config[port].eee_power_mode)) & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { bp->link_params.eee_mode = EEE_MODE_ADV_LPI | EEE_MODE_ENABLE_LPI | EEE_MODE_OUTPUT_TIME; } else { bp->link_params.eee_mode = 0; } } void bnx2x_get_iscsi_info(struct bnx2x *bp) { u32 no_flags = NO_ISCSI_FLAG; int port = BP_PORT(bp); u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, drv_lic_key[port].max_iscsi_conn); if (!CNIC_SUPPORT(bp)) { bp->flags |= no_flags; return; } /* Get the number of maximum allowed iSCSI connections */ bp->cnic_eth_dev.max_iscsi_conn = (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", bp->cnic_eth_dev.max_iscsi_conn); /* * If maximum allowed number of connections is zero - * disable the feature. */ if (!bp->cnic_eth_dev.max_iscsi_conn) bp->flags |= no_flags; } static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) { /* Port info */ bp->cnic_eth_dev.fcoe_wwn_port_name_hi = MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); bp->cnic_eth_dev.fcoe_wwn_port_name_lo = MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); /* Node info */ bp->cnic_eth_dev.fcoe_wwn_node_name_hi = MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); bp->cnic_eth_dev.fcoe_wwn_node_name_lo = MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); } static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp) { u8 count = 0; if (IS_MF(bp)) { u8 fid; /* iterate over absolute function ids for this path: */ for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) { if (IS_MF_SD(bp)) { u32 cfg = MF_CFG_RD(bp, func_mf_config[fid].config); if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) && ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) == FUNC_MF_CFG_PROTOCOL_FCOE)) count++; } else { u32 cfg = MF_CFG_RD(bp, func_ext_config[fid]. func_cfg); if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) && (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)) count++; } } } else { /* SF */ int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1; for (port = 0; port < port_cnt; port++) { u32 lic = SHMEM_RD(bp, drv_lic_key[port].max_fcoe_conn) ^ FW_ENCODE_32BIT_PATTERN; if (lic) count++; } } return count; } static void bnx2x_get_fcoe_info(struct bnx2x *bp) { int port = BP_PORT(bp); int func = BP_ABS_FUNC(bp); u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, drv_lic_key[port].max_fcoe_conn); u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp); if (!CNIC_SUPPORT(bp)) { bp->flags |= NO_FCOE_FLAG; return; } /* Get the number of maximum allowed FCoE connections */ bp->cnic_eth_dev.max_fcoe_conn = (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> BNX2X_MAX_FCOE_INIT_CONN_SHIFT; /* Calculate the number of maximum allowed FCoE tasks */ bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE; /* check if FCoE resources must be shared between different functions */ if (num_fcoe_func) bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func; /* Read the WWN: */ if (!IS_MF(bp)) { /* Port info */ bp->cnic_eth_dev.fcoe_wwn_port_name_hi = SHMEM_RD(bp, dev_info.port_hw_config[port]. fcoe_wwn_port_name_upper); bp->cnic_eth_dev.fcoe_wwn_port_name_lo = SHMEM_RD(bp, dev_info.port_hw_config[port]. fcoe_wwn_port_name_lower); /* Node info */ bp->cnic_eth_dev.fcoe_wwn_node_name_hi = SHMEM_RD(bp, dev_info.port_hw_config[port]. fcoe_wwn_node_name_upper); bp->cnic_eth_dev.fcoe_wwn_node_name_lo = SHMEM_RD(bp, dev_info.port_hw_config[port]. fcoe_wwn_node_name_lower); } else if (!IS_MF_SD(bp)) { /* * Read the WWN info only if the FCoE feature is enabled for * this function. */ if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp)) bnx2x_get_ext_wwn_info(bp, func); } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) { bnx2x_get_ext_wwn_info(bp, func); } BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); /* * If maximum allowed number of connections is zero - * disable the feature. */ if (!bp->cnic_eth_dev.max_fcoe_conn) bp->flags |= NO_FCOE_FLAG; } static void bnx2x_get_cnic_info(struct bnx2x *bp) { /* * iSCSI may be dynamically disabled but reading * info here we will decrease memory usage by driver * if the feature is disabled for good */ bnx2x_get_iscsi_info(bp); bnx2x_get_fcoe_info(bp); } static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp) { u32 val, val2; int func = BP_ABS_FUNC(bp); int port = BP_PORT(bp); u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; u8 *fip_mac = bp->fip_mac; if (IS_MF(bp)) { /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or * FCoE MAC then the appropriate feature should be disabled. * In non SD mode features configuration comes from struct * func_ext_config. */ if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) { u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { val2 = MF_CFG_RD(bp, func_ext_config[func]. iscsi_mac_addr_upper); val = MF_CFG_RD(bp, func_ext_config[func]. iscsi_mac_addr_lower); bnx2x_set_mac_buf(iscsi_mac, val, val2); BNX2X_DEV_INFO ("Read iSCSI MAC: %pM\n", iscsi_mac); } else { bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; } if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { val2 = MF_CFG_RD(bp, func_ext_config[func]. fcoe_mac_addr_upper); val = MF_CFG_RD(bp, func_ext_config[func]. fcoe_mac_addr_lower); bnx2x_set_mac_buf(fip_mac, val, val2); BNX2X_DEV_INFO ("Read FCoE L2 MAC: %pM\n", fip_mac); } else { bp->flags |= NO_FCOE_FLAG; } bp->mf_ext_config = cfg; } else { /* SD MODE */ if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { /* use primary mac as iscsi mac */ memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN); BNX2X_DEV_INFO("SD ISCSI MODE\n"); BNX2X_DEV_INFO ("Read iSCSI MAC: %pM\n", iscsi_mac); } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) { /* use primary mac as fip mac */ memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN); BNX2X_DEV_INFO("SD FCoE MODE\n"); BNX2X_DEV_INFO ("Read FIP MAC: %pM\n", fip_mac); } } /* If this is a storage-only interface, use SAN mac as * primary MAC. Notice that for SD this is already the case, * as the SAN mac was copied from the primary MAC. */ if (IS_MF_FCOE_AFEX(bp)) memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN); } else { val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. iscsi_mac_upper); val = SHMEM_RD(bp, dev_info.port_hw_config[port]. iscsi_mac_lower); bnx2x_set_mac_buf(iscsi_mac, val, val2); val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. fcoe_fip_mac_upper); val = SHMEM_RD(bp, dev_info.port_hw_config[port]. fcoe_fip_mac_lower); bnx2x_set_mac_buf(fip_mac, val, val2); } /* Disable iSCSI OOO if MAC configuration is invalid. */ if (!is_valid_ether_addr(iscsi_mac)) { bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; memset(iscsi_mac, 0, ETH_ALEN); } /* Disable FCoE if MAC configuration is invalid. */ if (!is_valid_ether_addr(fip_mac)) { bp->flags |= NO_FCOE_FLAG; memset(bp->fip_mac, 0, ETH_ALEN); } } static void bnx2x_get_mac_hwinfo(struct bnx2x *bp) { u32 val, val2; int func = BP_ABS_FUNC(bp); int port = BP_PORT(bp); /* Zero primary MAC configuration */ memset(bp->dev->dev_addr, 0, ETH_ALEN); if (BP_NOMCP(bp)) { BNX2X_ERROR("warning: random MAC workaround active\n"); eth_hw_addr_random(bp->dev); } else if (IS_MF(bp)) { val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); if (CNIC_SUPPORT(bp)) bnx2x_get_cnic_mac_hwinfo(bp); } else { /* in SF read MACs from port configuration */ val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); if (CNIC_SUPPORT(bp)) bnx2x_get_cnic_mac_hwinfo(bp); } memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN); if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr)) dev_err(&bp->pdev->dev, "bad Ethernet MAC address configuration: %pM\n" "change it manually before bringing up the appropriate network interface\n", bp->dev->dev_addr); } static bool bnx2x_get_dropless_info(struct bnx2x *bp) { int tmp; u32 cfg; if (IS_VF(bp)) return 0; if (IS_MF(bp) && !CHIP_IS_E1x(bp)) { /* Take function: tmp = func */ tmp = BP_ABS_FUNC(bp); cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg); cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING); } else { /* Take port: tmp = port */ tmp = BP_PORT(bp); cfg = SHMEM_RD(bp, dev_info.port_hw_config[tmp].generic_features); cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED); } return cfg; } static int bnx2x_get_hwinfo(struct bnx2x *bp) { int /*abs*/func = BP_ABS_FUNC(bp); int vn; u32 val = 0; int rc = 0; bnx2x_get_common_hwinfo(bp); /* * initialize IGU parameters */ if (CHIP_IS_E1x(bp)) { bp->common.int_block = INT_BLOCK_HC; bp->igu_dsb_id = DEF_SB_IGU_ID; bp->igu_base_sb = 0; } else { bp->common.int_block = INT_BLOCK_IGU; /* do not allow device reset during IGU info processing */ bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { int tout = 5000; BNX2X_DEV_INFO("FORCING Normal Mode\n"); val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { tout--; usleep_range(1000, 2000); } if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { dev_err(&bp->pdev->dev, "FORCING Normal Mode failed!!!\n"); bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); return -EPERM; } } if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; } else BNX2X_DEV_INFO("IGU Normal Mode\n"); rc = bnx2x_get_igu_cam_info(bp); bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); if (rc) return rc; } /* * set base FW non-default (fast path) status block id, this value is * used to initialize the fw_sb_id saved on the fp/queue structure to * determine the id used by the FW. */ if (CHIP_IS_E1x(bp)) bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); else /* * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of * the same queue are indicated on the same IGU SB). So we prefer * FW and IGU SBs to be the same value. */ bp->base_fw_ndsb = bp->igu_base_sb; BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n" "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, bp->igu_sb_cnt, bp->base_fw_ndsb); /* * Initialize MF configuration */ bp->mf_ov = 0; bp->mf_mode = 0; vn = BP_VN(bp); if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", bp->common.shmem2_base, SHMEM2_RD(bp, size), (u32)offsetof(struct shmem2_region, mf_cfg_addr)); if (SHMEM2_HAS(bp, mf_cfg_addr)) bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); else bp->common.mf_cfg_base = bp->common.shmem_base + offsetof(struct shmem_region, func_mb) + E1H_FUNC_MAX * sizeof(struct drv_func_mb); /* * get mf configuration: * 1. Existence of MF configuration * 2. MAC address must be legal (check only upper bytes) * for Switch-Independent mode; * OVLAN must be legal for Switch-Dependent mode * 3. SF_MODE configures specific MF mode */ if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { /* get mf configuration */ val = SHMEM_RD(bp, dev_info.shared_feature_config.config); val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; switch (val) { case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: val = MF_CFG_RD(bp, func_mf_config[func]. mac_upper); /* check for legal mac (upper bytes)*/ if (val != 0xffff) { bp->mf_mode = MULTI_FUNCTION_SI; bp->mf_config[vn] = MF_CFG_RD(bp, func_mf_config[func].config); } else BNX2X_DEV_INFO("illegal MAC address for SI\n"); break; case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: if ((!CHIP_IS_E1x(bp)) && (MF_CFG_RD(bp, func_mf_config[func]. mac_upper) != 0xffff) && (SHMEM2_HAS(bp, afex_driver_support))) { bp->mf_mode = MULTI_FUNCTION_AFEX; bp->mf_config[vn] = MF_CFG_RD(bp, func_mf_config[func].config); } else { BNX2X_DEV_INFO("can not configure afex mode\n"); } break; case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: /* get OV configuration */ val = MF_CFG_RD(bp, func_mf_config[FUNC_0].e1hov_tag); val &= FUNC_MF_CFG_E1HOV_TAG_MASK; if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { bp->mf_mode = MULTI_FUNCTION_SD; bp->mf_config[vn] = MF_CFG_RD(bp, func_mf_config[func].config); } else BNX2X_DEV_INFO("illegal OV for SD\n"); break; case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: bp->mf_config[vn] = 0; break; default: /* Unknown configuration: reset mf_config */ bp->mf_config[vn] = 0; BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); } } BNX2X_DEV_INFO("%s function mode\n", IS_MF(bp) ? "multi" : "single"); switch (bp->mf_mode) { case MULTI_FUNCTION_SD: val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & FUNC_MF_CFG_E1HOV_TAG_MASK; if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { bp->mf_ov = val; bp->path_has_ovlan = true; BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", func, bp->mf_ov, bp->mf_ov); } else { dev_err(&bp->pdev->dev, "No valid MF OV for func %d, aborting\n", func); return -EPERM; } break; case MULTI_FUNCTION_AFEX: BNX2X_DEV_INFO("func %d is in MF afex mode\n", func); break; case MULTI_FUNCTION_SI: BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", func); break; default: if (vn) { dev_err(&bp->pdev->dev, "VN %d is in a single function mode, aborting\n", vn); return -EPERM; } break; } /* check if other port on the path needs ovlan: * Since MF configuration is shared between ports * Possible mixed modes are only * {SF, SI} {SF, SD} {SD, SF} {SI, SF} */ if (CHIP_MODE_IS_4_PORT(bp) && !bp->path_has_ovlan && !IS_MF(bp) && bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { u8 other_port = !BP_PORT(bp); u8 other_func = BP_PATH(bp) + 2*other_port; val = MF_CFG_RD(bp, func_mf_config[other_func].e1hov_tag); if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) bp->path_has_ovlan = true; } } /* adjust igu_sb_cnt to MF for E1x */ if (CHIP_IS_E1x(bp) && IS_MF(bp)) bp->igu_sb_cnt /= E1HVN_MAX; /* port info */ bnx2x_get_port_hwinfo(bp); /* Get MAC addresses */ bnx2x_get_mac_hwinfo(bp); bnx2x_get_cnic_info(bp); return rc; } static void bnx2x_read_fwinfo(struct bnx2x *bp) { int cnt, i, block_end, rodi; char vpd_start[BNX2X_VPD_LEN+1]; char str_id_reg[VENDOR_ID_LEN+1]; char str_id_cap[VENDOR_ID_LEN+1]; char *vpd_data; char *vpd_extended_data = NULL; u8 len; cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start); memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); if (cnt < BNX2X_VPD_LEN) goto out_not_found; /* VPD RO tag should be first tag after identifier string, hence * we should be able to find it in first BNX2X_VPD_LEN chars */ i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN, PCI_VPD_LRDT_RO_DATA); if (i < 0) goto out_not_found; block_end = i + PCI_VPD_LRDT_TAG_SIZE + pci_vpd_lrdt_size(&vpd_start[i]); i += PCI_VPD_LRDT_TAG_SIZE; if (block_end > BNX2X_VPD_LEN) { vpd_extended_data = kmalloc(block_end, GFP_KERNEL); if (vpd_extended_data == NULL) goto out_not_found; /* read rest of vpd image into vpd_extended_data */ memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN); cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN, block_end - BNX2X_VPD_LEN, vpd_extended_data + BNX2X_VPD_LEN); if (cnt < (block_end - BNX2X_VPD_LEN)) goto out_not_found; vpd_data = vpd_extended_data; } else vpd_data = vpd_start; /* now vpd_data holds full vpd content in both cases */ rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, PCI_VPD_RO_KEYWORD_MFR_ID); if (rodi < 0) goto out_not_found; len = pci_vpd_info_field_size(&vpd_data[rodi]); if (len != VENDOR_ID_LEN) goto out_not_found; rodi += PCI_VPD_INFO_FLD_HDR_SIZE; /* vendor specific info */ snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL); if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) || !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) { rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, PCI_VPD_RO_KEYWORD_VENDOR0); if (rodi >= 0) { len = pci_vpd_info_field_size(&vpd_data[rodi]); rodi += PCI_VPD_INFO_FLD_HDR_SIZE; if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) { memcpy(bp->fw_ver, &vpd_data[rodi], len); bp->fw_ver[len] = ' '; } } kfree(vpd_extended_data); return; } out_not_found: kfree(vpd_extended_data); return; } static void bnx2x_set_modes_bitmap(struct bnx2x *bp) { u32 flags = 0; if (CHIP_REV_IS_FPGA(bp)) SET_FLAGS(flags, MODE_FPGA); else if (CHIP_REV_IS_EMUL(bp)) SET_FLAGS(flags, MODE_EMUL); else SET_FLAGS(flags, MODE_ASIC); if (CHIP_MODE_IS_4_PORT(bp)) SET_FLAGS(flags, MODE_PORT4); else SET_FLAGS(flags, MODE_PORT2); if (CHIP_IS_E2(bp)) SET_FLAGS(flags, MODE_E2); else if (CHIP_IS_E3(bp)) { SET_FLAGS(flags, MODE_E3); if (CHIP_REV(bp) == CHIP_REV_Ax) SET_FLAGS(flags, MODE_E3_A0); else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); } if (IS_MF(bp)) { SET_FLAGS(flags, MODE_MF); switch (bp->mf_mode) { case MULTI_FUNCTION_SD: SET_FLAGS(flags, MODE_MF_SD); break; case MULTI_FUNCTION_SI: SET_FLAGS(flags, MODE_MF_SI); break; case MULTI_FUNCTION_AFEX: SET_FLAGS(flags, MODE_MF_AFEX); break; } } else SET_FLAGS(flags, MODE_SF); #if defined(__LITTLE_ENDIAN) SET_FLAGS(flags, MODE_LITTLE_ENDIAN); #else /*(__BIG_ENDIAN)*/ SET_FLAGS(flags, MODE_BIG_ENDIAN); #endif INIT_MODE_FLAGS(bp) = flags; } static int bnx2x_init_bp(struct bnx2x *bp) { int func; int rc; mutex_init(&bp->port.phy_mutex); mutex_init(&bp->fw_mb_mutex); spin_lock_init(&bp->stats_lock); sema_init(&bp->stats_sema, 1); INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); if (IS_PF(bp)) { rc = bnx2x_get_hwinfo(bp); if (rc) return rc; } else { eth_zero_addr(bp->dev->dev_addr); } bnx2x_set_modes_bitmap(bp); rc = bnx2x_alloc_mem_bp(bp); if (rc) return rc; bnx2x_read_fwinfo(bp); func = BP_FUNC(bp); /* need to reset chip if undi was active */ if (IS_PF(bp) && !BP_NOMCP(bp)) { /* init fw_seq */ bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & DRV_MSG_SEQ_NUMBER_MASK; BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); bnx2x_prev_unload(bp); } if (CHIP_REV_IS_FPGA(bp)) dev_err(&bp->pdev->dev, "FPGA detected\n"); if (BP_NOMCP(bp) && (func == 0)) dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); bp->disable_tpa = disable_tpa; bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp); /* Set TPA flags */ if (bp->disable_tpa) { bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG); bp->dev->features &= ~NETIF_F_LRO; } else { bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG); bp->dev->features |= NETIF_F_LRO; } if (CHIP_IS_E1(bp)) bp->dropless_fc = 0; else bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp); bp->mrrs = mrrs; bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL; if (IS_VF(bp)) bp->rx_ring_size = MAX_RX_AVAIL; /* make sure that the numbers are in the right granularity */ bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; init_timer(&bp->timer); bp->timer.expires = jiffies + bp->current_interval; bp->timer.data = (unsigned long) bp; bp->timer.function = bnx2x_timer; if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) && SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) && SHMEM2_RD(bp, dcbx_lldp_params_offset) && SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) { bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); bnx2x_dcbx_init_params(bp); } else { bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF); } if (CHIP_IS_E1x(bp)) bp->cnic_base_cl_id = FP_SB_MAX_E1x; else bp->cnic_base_cl_id = FP_SB_MAX_E2; /* multiple tx priority */ if (IS_VF(bp)) bp->max_cos = 1; else if (CHIP_IS_E1x(bp)) bp->max_cos = BNX2X_MULTI_TX_COS_E1X; else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; else if (CHIP_IS_E3B0(bp)) bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; else BNX2X_ERR("unknown chip %x revision %x\n", CHIP_NUM(bp), CHIP_REV(bp)); BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos); /* We need at least one default status block for slow-path events, * second status block for the L2 queue, and a third status block for * CNIC if supported. */ if (CNIC_SUPPORT(bp)) bp->min_msix_vec_cnt = 3; else bp->min_msix_vec_cnt = 2; BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt); bp->dump_preset_idx = 1; return rc; } /**************************************************************************** * General service functions ****************************************************************************/ /* * net_device service functions */ /* called with rtnl_lock */ static int bnx2x_open(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); bool global = false; int other_engine = BP_PATH(bp) ? 0 : 1; bool other_load_status, load_status; int rc; bp->stats_init = true; netif_carrier_off(dev); bnx2x_set_power_state(bp, PCI_D0); /* If parity had happen during the unload, then attentions * and/or RECOVERY_IN_PROGRES may still be set. In this case we * want the first function loaded on the current engine to * complete the recovery. * Parity recovery is only relevant for PF driver. */ if (IS_PF(bp)) { other_load_status = bnx2x_get_load_status(bp, other_engine); load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || bnx2x_chk_parity_attn(bp, &global, true)) { do { /* If there are attentions and they are in a * global blocks, set the GLOBAL_RESET bit * regardless whether it will be this function * that will complete the recovery or not. */ if (global) bnx2x_set_reset_global(bp); /* Only the first function on the current * engine should try to recover in open. In case * of attentions in global blocks only the first * in the chip should try to recover. */ if ((!load_status && (!global || !other_load_status)) && bnx2x_trylock_leader_lock(bp) && !bnx2x_leader_reset(bp)) { netdev_info(bp->dev, "Recovered in open\n"); break; } /* recovery has failed... */ bnx2x_set_power_state(bp, PCI_D3hot); bp->recovery_state = BNX2X_RECOVERY_FAILED; BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" "If you still see this message after a few retries then power cycle is required.\n"); return -EAGAIN; } while (0); } } bp->recovery_state = BNX2X_RECOVERY_DONE; rc = bnx2x_nic_load(bp, LOAD_OPEN); if (rc) return rc; return bnx2x_open_epilog(bp); } /* called with rtnl_lock */ static int bnx2x_close(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); /* Unload the driver, release IRQs */ bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); return 0; } static int bnx2x_init_mcast_macs_list(struct bnx2x *bp, struct bnx2x_mcast_ramrod_params *p) { int mc_count = netdev_mc_count(bp->dev); struct bnx2x_mcast_list_elem *mc_mac = kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC); struct netdev_hw_addr *ha; if (!mc_mac) return -ENOMEM; INIT_LIST_HEAD(&p->mcast_list); netdev_for_each_mc_addr(ha, bp->dev) { mc_mac->mac = bnx2x_mc_addr(ha); list_add_tail(&mc_mac->link, &p->mcast_list); mc_mac++; } p->mcast_list_len = mc_count; return 0; } static void bnx2x_free_mcast_macs_list( struct bnx2x_mcast_ramrod_params *p) { struct bnx2x_mcast_list_elem *mc_mac = list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem, link); WARN_ON(!mc_mac); kfree(mc_mac); } /** * bnx2x_set_uc_list - configure a new unicast MACs list. * * @bp: driver handle * * We will use zero (0) as a MAC type for these MACs. */ static int bnx2x_set_uc_list(struct bnx2x *bp) { int rc; struct net_device *dev = bp->dev; struct netdev_hw_addr *ha; struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; unsigned long ramrod_flags = 0; /* First schedule a cleanup up of old configuration */ rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); if (rc < 0) { BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); return rc; } netdev_for_each_uc_addr(ha, dev) { rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, BNX2X_UC_LIST_MAC, &ramrod_flags); if (rc == -EEXIST) { DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); /* do not treat adding same MAC as error */ rc = 0; } else if (rc < 0) { BNX2X_ERR("Failed to schedule ADD operations: %d\n", rc); return rc; } } /* Execute the pending commands */ __set_bit(RAMROD_CONT, &ramrod_flags); return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, BNX2X_UC_LIST_MAC, &ramrod_flags); } static int bnx2x_set_mc_list(struct bnx2x *bp) { struct net_device *dev = bp->dev; struct bnx2x_mcast_ramrod_params rparam = {NULL}; int rc = 0; rparam.mcast_obj = &bp->mcast_obj; /* first, clear all configured multicast MACs */ rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); if (rc < 0) { BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); return rc; } /* then, configure a new MACs list */ if (netdev_mc_count(dev)) { rc = bnx2x_init_mcast_macs_list(bp, &rparam); if (rc) { BNX2X_ERR("Failed to create multicast MACs list: %d\n", rc); return rc; } /* Now add the new MACs */ rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_ADD); if (rc < 0) BNX2X_ERR("Failed to set a new multicast configuration: %d\n", rc); bnx2x_free_mcast_macs_list(&rparam); } return rc; } /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ void bnx2x_set_rx_mode(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); if (bp->state != BNX2X_STATE_OPEN) { DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); return; } else { /* Schedule an SP task to handle rest of change */ DP(NETIF_MSG_IFUP, "Scheduling an Rx mode change\n"); smp_mb__before_clear_bit(); set_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state); smp_mb__after_clear_bit(); schedule_delayed_work(&bp->sp_rtnl_task, 0); } } void bnx2x_set_rx_mode_inner(struct bnx2x *bp) { u32 rx_mode = BNX2X_RX_MODE_NORMAL; DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); netif_addr_lock_bh(bp->dev); if (bp->dev->flags & IFF_PROMISC) { rx_mode = BNX2X_RX_MODE_PROMISC; } else if ((bp->dev->flags & IFF_ALLMULTI) || ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) && CHIP_IS_E1(bp))) { rx_mode = BNX2X_RX_MODE_ALLMULTI; } else { if (IS_PF(bp)) { /* some multicasts */ if (bnx2x_set_mc_list(bp) < 0) rx_mode = BNX2X_RX_MODE_ALLMULTI; /* release bh lock, as bnx2x_set_uc_list might sleep */ netif_addr_unlock_bh(bp->dev); if (bnx2x_set_uc_list(bp) < 0) rx_mode = BNX2X_RX_MODE_PROMISC; netif_addr_lock_bh(bp->dev); } else { /* configuring mcast to a vf involves sleeping (when we * wait for the pf's response). */ smp_mb__before_clear_bit(); set_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state); smp_mb__after_clear_bit(); schedule_delayed_work(&bp->sp_rtnl_task, 0); } } bp->rx_mode = rx_mode; /* handle ISCSI SD mode */ if (IS_MF_ISCSI_SD(bp)) bp->rx_mode = BNX2X_RX_MODE_NONE; /* Schedule the rx_mode command */ if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); netif_addr_unlock_bh(bp->dev); return; } if (IS_PF(bp)) { bnx2x_set_storm_rx_mode(bp); netif_addr_unlock_bh(bp->dev); } else { /* VF will need to request the PF to make this change, and so * the VF needs to release the bottom-half lock prior to the * request (as it will likely require sleep on the VF side) */ netif_addr_unlock_bh(bp->dev); bnx2x_vfpf_storm_rx_mode(bp); } } /* called with rtnl_lock */ static int bnx2x_mdio_read(struct net_device *netdev, int prtad, int devad, u16 addr) { struct bnx2x *bp = netdev_priv(netdev); u16 value; int rc; DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", prtad, devad, addr); /* The HW expects different devad if CL22 is used */ devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; bnx2x_acquire_phy_lock(bp); rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); bnx2x_release_phy_lock(bp); DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); if (!rc) rc = value; return rc; } /* called with rtnl_lock */ static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad, u16 addr, u16 value) { struct bnx2x *bp = netdev_priv(netdev); int rc; DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", prtad, devad, addr, value); /* The HW expects different devad if CL22 is used */ devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; bnx2x_acquire_phy_lock(bp); rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); bnx2x_release_phy_lock(bp); return rc; } /* called with rtnl_lock */ static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct bnx2x *bp = netdev_priv(dev); struct mii_ioctl_data *mdio = if_mii(ifr); DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", mdio->phy_id, mdio->reg_num, mdio->val_in); if (!netif_running(dev)) return -EAGAIN; return mdio_mii_ioctl(&bp->mdio, mdio, cmd); } #ifdef CONFIG_NET_POLL_CONTROLLER static void poll_bnx2x(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); int i; for_each_eth_queue(bp, i) { struct bnx2x_fastpath *fp = &bp->fp[i]; napi_schedule(&bnx2x_fp(bp, fp->index, napi)); } } #endif static int bnx2x_validate_addr(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); /* query the bulletin board for mac address configured by the PF */ if (IS_VF(bp)) bnx2x_sample_bulletin(bp); if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) { BNX2X_ERR("Non-valid Ethernet address\n"); return -EADDRNOTAVAIL; } return 0; } static const struct net_device_ops bnx2x_netdev_ops = { .ndo_open = bnx2x_open, .ndo_stop = bnx2x_close, .ndo_start_xmit = bnx2x_start_xmit, .ndo_select_queue = bnx2x_select_queue, .ndo_set_rx_mode = bnx2x_set_rx_mode, .ndo_set_mac_address = bnx2x_change_mac_addr, .ndo_validate_addr = bnx2x_validate_addr, .ndo_do_ioctl = bnx2x_ioctl, .ndo_change_mtu = bnx2x_change_mtu, .ndo_fix_features = bnx2x_fix_features, .ndo_set_features = bnx2x_set_features, .ndo_tx_timeout = bnx2x_tx_timeout, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = poll_bnx2x, #endif .ndo_setup_tc = bnx2x_setup_tc, #ifdef CONFIG_BNX2X_SRIOV .ndo_set_vf_mac = bnx2x_set_vf_mac, .ndo_set_vf_vlan = bnx2x_set_vf_vlan, .ndo_get_vf_config = bnx2x_get_vf_config, #endif #ifdef NETDEV_FCOE_WWNN .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn, #endif #ifdef CONFIG_NET_RX_BUSY_POLL .ndo_busy_poll = bnx2x_low_latency_recv, #endif }; static int bnx2x_set_coherency_mask(struct bnx2x *bp) { struct device *dev = &bp->pdev->dev; if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) { bp->flags |= USING_DAC_FLAG; if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) { dev_err(dev, "dma_set_coherent_mask failed, aborting\n"); return -EIO; } } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) { dev_err(dev, "System does not support DMA, aborting\n"); return -EIO; } return 0; } static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev, struct net_device *dev, unsigned long board_type) { int rc; u32 pci_cfg_dword; bool chip_is_e1x = (board_type == BCM57710 || board_type == BCM57711 || board_type == BCM57711E); SET_NETDEV_DEV(dev, &pdev->dev); bp->dev = dev; bp->pdev = pdev; rc = pci_enable_device(pdev); if (rc) { dev_err(&bp->pdev->dev, "Cannot enable PCI device, aborting\n"); goto err_out; } if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { dev_err(&bp->pdev->dev, "Cannot find PCI device base address, aborting\n"); rc = -ENODEV; goto err_out_disable; } if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n"); rc = -ENODEV; goto err_out_disable; } pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword); if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) == PCICFG_REVESION_ID_ERROR_VAL) { pr_err("PCI device error, probably due to fan failure, aborting\n"); rc = -ENODEV; goto err_out_disable; } if (atomic_read(&pdev->enable_cnt) == 1) { rc = pci_request_regions(pdev, DRV_MODULE_NAME); if (rc) { dev_err(&bp->pdev->dev, "Cannot obtain PCI resources, aborting\n"); goto err_out_disable; } pci_set_master(pdev); pci_save_state(pdev); } if (IS_PF(bp)) { bp->pm_cap = pdev->pm_cap; if (bp->pm_cap == 0) { dev_err(&bp->pdev->dev, "Cannot find power management capability, aborting\n"); rc = -EIO; goto err_out_release; } } if (!pci_is_pcie(pdev)) { dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); rc = -EIO; goto err_out_release; } rc = bnx2x_set_coherency_mask(bp); if (rc) goto err_out_release; dev->mem_start = pci_resource_start(pdev, 0); dev->base_addr = dev->mem_start; dev->mem_end = pci_resource_end(pdev, 0); dev->irq = pdev->irq; bp->regview = pci_ioremap_bar(pdev, 0); if (!bp->regview) { dev_err(&bp->pdev->dev, "Cannot map register space, aborting\n"); rc = -ENOMEM; goto err_out_release; } /* In E1/E1H use pci device function given by kernel. * In E2/E3 read physical function from ME register since these chips * support Physical Device Assignment where kernel BDF maybe arbitrary * (depending on hypervisor). */ if (chip_is_e1x) { bp->pf_num = PCI_FUNC(pdev->devfn); } else { /* chip is E2/3*/ pci_read_config_dword(bp->pdev, PCICFG_ME_REGISTER, &pci_cfg_dword); bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT); } BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); /* clean indirect addresses */ pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET); /* * Clean the following indirect addresses for all functions since it * is not used by the driver. */ if (IS_PF(bp)) { REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); if (chip_is_e1x) { REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); } /* Enable internal target-read (in case we are probed after PF * FLR). Must be done prior to any BAR read access. Only for * 57712 and up */ if (!chip_is_e1x) REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); } dev->watchdog_timeo = TX_TIMEOUT; dev->netdev_ops = &bnx2x_netdev_ops; bnx2x_set_ethtool_ops(bp, dev); dev->priv_flags |= IFF_UNICAST_FLT; dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX; if (!CHIP_IS_E1x(bp)) { dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL; dev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL; } dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA; dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX; if (bp->flags & USING_DAC_FLAG) dev->features |= NETIF_F_HIGHDMA; /* Add Loopback capability to the device */ dev->hw_features |= NETIF_F_LOOPBACK; #ifdef BCM_DCBNL dev->dcbnl_ops = &bnx2x_dcbnl_ops; #endif /* get_port_hwinfo() will set prtad and mmds properly */ bp->mdio.prtad = MDIO_PRTAD_NONE; bp->mdio.mmds = 0; bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; bp->mdio.dev = dev; bp->mdio.mdio_read = bnx2x_mdio_read; bp->mdio.mdio_write = bnx2x_mdio_write; return 0; err_out_release: if (atomic_read(&pdev->enable_cnt) == 1) pci_release_regions(pdev); err_out_disable: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); err_out: return rc; } static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width, enum bnx2x_pci_bus_speed *speed) { u32 link_speed, val = 0; pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val); *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT; link_speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT; switch (link_speed) { case 3: *speed = BNX2X_PCI_LINK_SPEED_8000; break; case 2: *speed = BNX2X_PCI_LINK_SPEED_5000; break; default: *speed = BNX2X_PCI_LINK_SPEED_2500; } } static int bnx2x_check_firmware(struct bnx2x *bp) { const struct firmware *firmware = bp->firmware; struct bnx2x_fw_file_hdr *fw_hdr; struct bnx2x_fw_file_section *sections; u32 offset, len, num_ops; __be16 *ops_offsets; int i; const u8 *fw_ver; if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { BNX2X_ERR("Wrong FW size\n"); return -EINVAL; } fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; sections = (struct bnx2x_fw_file_section *)fw_hdr; /* Make sure none of the offsets and sizes make us read beyond * the end of the firmware data */ for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { offset = be32_to_cpu(sections[i].offset); len = be32_to_cpu(sections[i].len); if (offset + len > firmware->size) { BNX2X_ERR("Section %d length is out of bounds\n", i); return -EINVAL; } } /* Likewise for the init_ops offsets */ offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); ops_offsets = (__force __be16 *)(firmware->data + offset); num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { if (be16_to_cpu(ops_offsets[i]) > num_ops) { BNX2X_ERR("Section offset %d is out of bounds\n", i); return -EINVAL; } } /* Check FW version */ offset = be32_to_cpu(fw_hdr->fw_version.offset); fw_ver = firmware->data + offset; if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) || (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) || (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) || (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) { BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], BCM_5710_FW_MAJOR_VERSION, BCM_5710_FW_MINOR_VERSION, BCM_5710_FW_REVISION_VERSION, BCM_5710_FW_ENGINEERING_VERSION); return -EINVAL; } return 0; } static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n) { const __be32 *source = (const __be32 *)_source; u32 *target = (u32 *)_target; u32 i; for (i = 0; i < n/4; i++) target[i] = be32_to_cpu(source[i]); } /* Ops array is stored in the following format: {op(8bit), offset(24bit, big endian), data(32bit, big endian)} */ static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n) { const __be32 *source = (const __be32 *)_source; struct raw_op *target = (struct raw_op *)_target; u32 i, j, tmp; for (i = 0, j = 0; i < n/8; i++, j += 2) { tmp = be32_to_cpu(source[j]); target[i].op = (tmp >> 24) & 0xff; target[i].offset = tmp & 0xffffff; target[i].raw_data = be32_to_cpu(source[j + 1]); } } /* IRO array is stored in the following format: * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } */ static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n) { const __be32 *source = (const __be32 *)_source; struct iro *target = (struct iro *)_target; u32 i, j, tmp; for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { target[i].base = be32_to_cpu(source[j]); j++; tmp = be32_to_cpu(source[j]); target[i].m1 = (tmp >> 16) & 0xffff; target[i].m2 = tmp & 0xffff; j++; tmp = be32_to_cpu(source[j]); target[i].m3 = (tmp >> 16) & 0xffff; target[i].size = tmp & 0xffff; j++; } } static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n) { const __be16 *source = (const __be16 *)_source; u16 *target = (u16 *)_target; u32 i; for (i = 0; i < n/2; i++) target[i] = be16_to_cpu(source[i]); } #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \ do { \ u32 len = be32_to_cpu(fw_hdr->arr.len); \ bp->arr = kmalloc(len, GFP_KERNEL); \ if (!bp->arr) \ goto lbl; \ func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \ (u8 *)bp->arr, len); \ } while (0) static int bnx2x_init_firmware(struct bnx2x *bp) { const char *fw_file_name; struct bnx2x_fw_file_hdr *fw_hdr; int rc; if (bp->firmware) return 0; if (CHIP_IS_E1(bp)) fw_file_name = FW_FILE_NAME_E1; else if (CHIP_IS_E1H(bp)) fw_file_name = FW_FILE_NAME_E1H; else if (!CHIP_IS_E1x(bp)) fw_file_name = FW_FILE_NAME_E2; else { BNX2X_ERR("Unsupported chip revision\n"); return -EINVAL; } BNX2X_DEV_INFO("Loading %s\n", fw_file_name); rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev); if (rc) { BNX2X_ERR("Can't load firmware file %s\n", fw_file_name); goto request_firmware_exit; } rc = bnx2x_check_firmware(bp); if (rc) { BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); goto request_firmware_exit; } fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; /* Initialize the pointers to the init arrays */ /* Blob */ BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); /* Opcodes */ BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); /* Offsets */ BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, be16_to_cpu_n); /* STORMs firmware */ INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + be32_to_cpu(fw_hdr->tsem_int_table_data.offset); INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data + be32_to_cpu(fw_hdr->tsem_pram_data.offset); INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + be32_to_cpu(fw_hdr->usem_int_table_data.offset); INIT_USEM_PRAM_DATA(bp) = bp->firmware->data + be32_to_cpu(fw_hdr->usem_pram_data.offset); INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + be32_to_cpu(fw_hdr->xsem_int_table_data.offset); INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data + be32_to_cpu(fw_hdr->xsem_pram_data.offset); INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + be32_to_cpu(fw_hdr->csem_int_table_data.offset); INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data + be32_to_cpu(fw_hdr->csem_pram_data.offset); /* IRO */ BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); return 0; iro_alloc_err: kfree(bp->init_ops_offsets); init_offsets_alloc_err: kfree(bp->init_ops); init_ops_alloc_err: kfree(bp->init_data); request_firmware_exit: release_firmware(bp->firmware); bp->firmware = NULL; return rc; } static void bnx2x_release_firmware(struct bnx2x *bp) { kfree(bp->init_ops_offsets); kfree(bp->init_ops); kfree(bp->init_data); release_firmware(bp->firmware); bp->firmware = NULL; } static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { .init_hw_cmn_chip = bnx2x_init_hw_common_chip, .init_hw_cmn = bnx2x_init_hw_common, .init_hw_port = bnx2x_init_hw_port, .init_hw_func = bnx2x_init_hw_func, .reset_hw_cmn = bnx2x_reset_common, .reset_hw_port = bnx2x_reset_port, .reset_hw_func = bnx2x_reset_func, .gunzip_init = bnx2x_gunzip_init, .gunzip_end = bnx2x_gunzip_end, .init_fw = bnx2x_init_firmware, .release_fw = bnx2x_release_firmware, }; void bnx2x__init_func_obj(struct bnx2x *bp) { /* Prepare DMAE related driver resources */ bnx2x_setup_dmae(bp); bnx2x_init_func_obj(bp, &bp->func_obj, bnx2x_sp(bp, func_rdata), bnx2x_sp_mapping(bp, func_rdata), bnx2x_sp(bp, func_afex_rdata), bnx2x_sp_mapping(bp, func_afex_rdata), &bnx2x_func_sp_drv); } /* must be called after sriov-enable */ static int bnx2x_set_qm_cid_count(struct bnx2x *bp) { int cid_count = BNX2X_L2_MAX_CID(bp); if (IS_SRIOV(bp)) cid_count += BNX2X_VF_CIDS; if (CNIC_SUPPORT(bp)) cid_count += CNIC_CID_MAX; return roundup(cid_count, QM_CID_ROUND); } /** * bnx2x_get_num_none_def_sbs - return the number of none default SBs * * @dev: pci device * */ static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt, bool is_vf) { int index; u16 control = 0; /* * If MSI-X is not supported - return number of SBs needed to support * one fast path queue: one FP queue + SB for CNIC */ if (!pdev->msix_cap) { dev_info(&pdev->dev, "no msix capability found\n"); return 1 + cnic_cnt; } dev_info(&pdev->dev, "msix capability found\n"); /* * The value in the PCI configuration space is the index of the last * entry, namely one less than the actual size of the table, which is * exactly what we want to return from this function: number of all SBs * without the default SB. * For VFs there is no default SB, then we return (index+1). */ pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control); index = control & PCI_MSIX_FLAGS_QSIZE; return is_vf ? index + 1 : index; } static int set_max_cos_est(int chip_id) { switch (chip_id) { case BCM57710: case BCM57711: case BCM57711E: return BNX2X_MULTI_TX_COS_E1X; case BCM57712: case BCM57712_MF: case BCM57712_VF: return BNX2X_MULTI_TX_COS_E2_E3A0; case BCM57800: case BCM57800_MF: case BCM57800_VF: case BCM57810: case BCM57810_MF: case BCM57840_4_10: case BCM57840_2_20: case BCM57840_O: case BCM57840_MFO: case BCM57810_VF: case BCM57840_MF: case BCM57840_VF: case BCM57811: case BCM57811_MF: case BCM57811_VF: return BNX2X_MULTI_TX_COS_E3B0; return 1; default: pr_err("Unknown board_type (%d), aborting\n", chip_id); return -ENODEV; } } static int set_is_vf(int chip_id) { switch (chip_id) { case BCM57712_VF: case BCM57800_VF: case BCM57810_VF: case BCM57840_VF: case BCM57811_VF: return true; default: return false; } } struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev); static int bnx2x_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev = NULL; struct bnx2x *bp; int pcie_width; enum bnx2x_pci_bus_speed pcie_speed; int rc, max_non_def_sbs; int rx_count, tx_count, rss_count, doorbell_size; int max_cos_est; bool is_vf; int cnic_cnt; /* An estimated maximum supported CoS number according to the chip * version. * We will try to roughly estimate the maximum number of CoSes this chip * may support in order to minimize the memory allocated for Tx * netdev_queue's. This number will be accurately calculated during the * initialization of bp->max_cos based on the chip versions AND chip * revision in the bnx2x_init_bp(). */ max_cos_est = set_max_cos_est(ent->driver_data); if (max_cos_est < 0) return max_cos_est; is_vf = set_is_vf(ent->driver_data); cnic_cnt = is_vf ? 0 : 1; max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf); /* Maximum number of RSS queues: one IGU SB goes to CNIC */ rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt; if (rss_count < 1) return -EINVAL; /* Maximum number of netdev Rx queues: RSS + FCoE L2 */ rx_count = rss_count + cnic_cnt; /* Maximum number of netdev Tx queues: * Maximum TSS queues * Maximum supported number of CoS + FCoE L2 */ tx_count = rss_count * max_cos_est + cnic_cnt; /* dev zeroed in init_etherdev */ dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); if (!dev) return -ENOMEM; bp = netdev_priv(dev); bp->flags = 0; if (is_vf) bp->flags |= IS_VF_FLAG; bp->igu_sb_cnt = max_non_def_sbs; bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; bp->msg_enable = debug; bp->cnic_support = cnic_cnt; bp->cnic_probe = bnx2x_cnic_probe; pci_set_drvdata(pdev, dev); rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data); if (rc < 0) { free_netdev(dev); return rc; } BNX2X_DEV_INFO("This is a %s function\n", IS_PF(bp) ? "physical" : "virtual"); BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off"); BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs); BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", tx_count, rx_count); rc = bnx2x_init_bp(bp); if (rc) goto init_one_exit; /* Map doorbells here as we need the real value of bp->max_cos which * is initialized in bnx2x_init_bp() to determine the number of * l2 connections. */ if (IS_VF(bp)) { bp->doorbells = bnx2x_vf_doorbells(bp); rc = bnx2x_vf_pci_alloc(bp); if (rc) goto init_one_exit; } else { doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT); if (doorbell_size > pci_resource_len(pdev, 2)) { dev_err(&bp->pdev->dev, "Cannot map doorbells, bar size too small, aborting\n"); rc = -ENOMEM; goto init_one_exit; } bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2), doorbell_size); } if (!bp->doorbells) { dev_err(&bp->pdev->dev, "Cannot map doorbell space, aborting\n"); rc = -ENOMEM; goto init_one_exit; } if (IS_VF(bp)) { rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count); if (rc) goto init_one_exit; } /* Enable SRIOV if capability found in configuration space */ rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS); if (rc) goto init_one_exit; /* calc qm_cid_count */ bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count); /* disable FCOE L2 queue for E1x*/ if (CHIP_IS_E1x(bp)) bp->flags |= NO_FCOE_FLAG; /* Set bp->num_queues for MSI-X mode*/ bnx2x_set_num_queues(bp); /* Configure interrupt mode: try to enable MSI-X/MSI if * needed. */ rc = bnx2x_set_int_mode(bp); if (rc) { dev_err(&pdev->dev, "Cannot set interrupts\n"); goto init_one_exit; } BNX2X_DEV_INFO("set interrupts successfully\n"); /* register the net device */ rc = register_netdev(dev); if (rc) { dev_err(&pdev->dev, "Cannot register net device\n"); goto init_one_exit; } BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name); if (!NO_FCOE(bp)) { /* Add storage MAC address */ rtnl_lock(); dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); rtnl_unlock(); } bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed); BNX2X_DEV_INFO("got pcie width %d and speed %d\n", pcie_width, pcie_speed); BNX2X_DEV_INFO("%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n", board_info[ent->driver_data].name, (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), pcie_width, pcie_speed == BNX2X_PCI_LINK_SPEED_2500 ? "2.5GHz" : pcie_speed == BNX2X_PCI_LINK_SPEED_5000 ? "5.0GHz" : pcie_speed == BNX2X_PCI_LINK_SPEED_8000 ? "8.0GHz" : "Unknown", dev->base_addr, bp->pdev->irq, dev->dev_addr); return 0; init_one_exit: if (bp->regview) iounmap(bp->regview); if (IS_PF(bp) && bp->doorbells) iounmap(bp->doorbells); free_netdev(dev); if (atomic_read(&pdev->enable_cnt) == 1) pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); return rc; } static void __bnx2x_remove(struct pci_dev *pdev, struct net_device *dev, struct bnx2x *bp, bool remove_netdev) { /* Delete storage MAC address */ if (!NO_FCOE(bp)) { rtnl_lock(); dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); rtnl_unlock(); } #ifdef BCM_DCBNL /* Delete app tlvs from dcbnl */ bnx2x_dcbnl_update_applist(bp, true); #endif if (IS_PF(bp) && !BP_NOMCP(bp) && (bp->flags & BC_SUPPORTS_RMMOD_CMD)) bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0); /* Close the interface - either directly or implicitly */ if (remove_netdev) { unregister_netdev(dev); } else { rtnl_lock(); dev_close(dev); rtnl_unlock(); } bnx2x_iov_remove_one(bp); /* Power on: we can't let PCI layer write to us while we are in D3 */ if (IS_PF(bp)) bnx2x_set_power_state(bp, PCI_D0); /* Disable MSI/MSI-X */ bnx2x_disable_msi(bp); /* Power off */ if (IS_PF(bp)) bnx2x_set_power_state(bp, PCI_D3hot); /* Make sure RESET task is not scheduled before continuing */ cancel_delayed_work_sync(&bp->sp_rtnl_task); /* send message via vfpf channel to release the resources of this vf */ if (IS_VF(bp)) bnx2x_vfpf_release(bp); /* Assumes no further PCIe PM changes will occur */ if (system_state == SYSTEM_POWER_OFF) { pci_wake_from_d3(pdev, bp->wol); pci_set_power_state(pdev, PCI_D3hot); } if (bp->regview) iounmap(bp->regview); /* for vf doorbells are part of the regview and were unmapped along with * it. FW is only loaded by PF. */ if (IS_PF(bp)) { if (bp->doorbells) iounmap(bp->doorbells); bnx2x_release_firmware(bp); } bnx2x_free_mem_bp(bp); if (remove_netdev) free_netdev(dev); if (atomic_read(&pdev->enable_cnt) == 1) pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } static void bnx2x_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct bnx2x *bp; if (!dev) { dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); return; } bp = netdev_priv(dev); __bnx2x_remove(pdev, dev, bp, true); } static int bnx2x_eeh_nic_unload(struct bnx2x *bp) { bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; bp->rx_mode = BNX2X_RX_MODE_NONE; if (CNIC_LOADED(bp)) bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); /* Stop Tx */ bnx2x_tx_disable(bp); /* Delete all NAPI objects */ bnx2x_del_all_napi(bp); if (CNIC_LOADED(bp)) bnx2x_del_all_napi_cnic(bp); netdev_reset_tc(bp->dev); del_timer_sync(&bp->timer); cancel_delayed_work(&bp->sp_task); cancel_delayed_work(&bp->period_task); spin_lock_bh(&bp->stats_lock); bp->stats_state = STATS_STATE_DISABLED; spin_unlock_bh(&bp->stats_lock); bnx2x_save_statistics(bp); netif_carrier_off(bp->dev); return 0; } /** * bnx2x_io_error_detected - called when PCI error is detected * @pdev: Pointer to PCI device * @state: The current pci connection state * * This function is called after a PCI bus error affecting * this device has been detected. */ static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct net_device *dev = pci_get_drvdata(pdev); struct bnx2x *bp = netdev_priv(dev); rtnl_lock(); BNX2X_ERR("IO error detected\n"); netif_device_detach(dev); if (state == pci_channel_io_perm_failure) { rtnl_unlock(); return PCI_ERS_RESULT_DISCONNECT; } if (netif_running(dev)) bnx2x_eeh_nic_unload(bp); bnx2x_prev_path_mark_eeh(bp); pci_disable_device(pdev); rtnl_unlock(); /* Request a slot reset */ return PCI_ERS_RESULT_NEED_RESET; } /** * bnx2x_io_slot_reset - called after the PCI bus has been reset * @pdev: Pointer to PCI device * * Restart the card from scratch, as if from a cold-boot. */ static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct bnx2x *bp = netdev_priv(dev); int i; rtnl_lock(); BNX2X_ERR("IO slot reset initializing...\n"); if (pci_enable_device(pdev)) { dev_err(&pdev->dev, "Cannot re-enable PCI device after reset\n"); rtnl_unlock(); return PCI_ERS_RESULT_DISCONNECT; } pci_set_master(pdev); pci_restore_state(pdev); pci_save_state(pdev); if (netif_running(dev)) bnx2x_set_power_state(bp, PCI_D0); if (netif_running(dev)) { BNX2X_ERR("IO slot reset --> driver unload\n"); /* MCP should have been reset; Need to wait for validity */ bnx2x_init_shmem(bp); if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { u32 v; v = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); } bnx2x_drain_tx_queues(bp); bnx2x_send_unload_req(bp, UNLOAD_RECOVERY); bnx2x_netif_stop(bp, 1); bnx2x_free_irq(bp); /* Report UNLOAD_DONE to MCP */ bnx2x_send_unload_done(bp, true); bp->sp_state = 0; bp->port.pmf = 0; bnx2x_prev_unload(bp); /* We should have reseted the engine, so It's fair to * assume the FW will no longer write to the bnx2x driver. */ bnx2x_squeeze_objects(bp); bnx2x_free_skbs(bp); for_each_rx_queue(bp, i) bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); bnx2x_free_fp_mem(bp); bnx2x_free_mem(bp); bp->state = BNX2X_STATE_CLOSED; } rtnl_unlock(); return PCI_ERS_RESULT_RECOVERED; } /** * bnx2x_io_resume - called when traffic can start flowing again * @pdev: Pointer to PCI device * * This callback is called when the error recovery driver tells us that * its OK to resume normal operation. */ static void bnx2x_io_resume(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct bnx2x *bp = netdev_priv(dev); if (bp->recovery_state != BNX2X_RECOVERY_DONE) { netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); return; } rtnl_lock(); bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & DRV_MSG_SEQ_NUMBER_MASK; if (netif_running(dev)) bnx2x_nic_load(bp, LOAD_NORMAL); netif_device_attach(dev); rtnl_unlock(); } static const struct pci_error_handlers bnx2x_err_handler = { .error_detected = bnx2x_io_error_detected, .slot_reset = bnx2x_io_slot_reset, .resume = bnx2x_io_resume, }; static void bnx2x_shutdown(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct bnx2x *bp; if (!dev) return; bp = netdev_priv(dev); if (!bp) return; rtnl_lock(); netif_device_detach(dev); rtnl_unlock(); /* Don't remove the netdevice, as there are scenarios which will cause * the kernel to hang, e.g., when trying to remove bnx2i while the * rootfs is mounted from SAN. */ __bnx2x_remove(pdev, dev, bp, false); } static struct pci_driver bnx2x_pci_driver = { .name = DRV_MODULE_NAME, .id_table = bnx2x_pci_tbl, .probe = bnx2x_init_one, .remove = bnx2x_remove_one, .suspend = bnx2x_suspend, .resume = bnx2x_resume, .err_handler = &bnx2x_err_handler, #ifdef CONFIG_BNX2X_SRIOV .sriov_configure = bnx2x_sriov_configure, #endif .shutdown = bnx2x_shutdown, }; static int __init bnx2x_init(void) { int ret; pr_info("%s", version); bnx2x_wq = create_singlethread_workqueue("bnx2x"); if (bnx2x_wq == NULL) { pr_err("Cannot create workqueue\n"); return -ENOMEM; } ret = pci_register_driver(&bnx2x_pci_driver); if (ret) { pr_err("Cannot register driver\n"); destroy_workqueue(bnx2x_wq); } return ret; } static void __exit bnx2x_cleanup(void) { struct list_head *pos, *q; pci_unregister_driver(&bnx2x_pci_driver); destroy_workqueue(bnx2x_wq); /* Free globally allocated resources */ list_for_each_safe(pos, q, &bnx2x_prev_list) { struct bnx2x_prev_path_list *tmp = list_entry(pos, struct bnx2x_prev_path_list, list); list_del(pos); kfree(tmp); } } void bnx2x_notify_link_changed(struct bnx2x *bp) { REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1); } module_init(bnx2x_init); module_exit(bnx2x_cleanup); /** * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). * * @bp: driver handle * @set: set or clear the CAM entry * * This function will wait until the ramrod completion returns. * Return 0 if success, -ENODEV if ramrod doesn't return. */ static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) { unsigned long ramrod_flags = 0; __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, &bp->iscsi_l2_mac_obj, true, BNX2X_ISCSI_ETH_MAC, &ramrod_flags); } /* count denotes the number of new completions we have seen */ static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) { struct eth_spe *spe; int cxt_index, cxt_offset; #ifdef BNX2X_STOP_ON_ERROR if (unlikely(bp->panic)) return; #endif spin_lock_bh(&bp->spq_lock); BUG_ON(bp->cnic_spq_pending < count); bp->cnic_spq_pending -= count; for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) & SPE_HDR_CONN_TYPE) >> SPE_HDR_CONN_TYPE_SHIFT; u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) >> SPE_HDR_CMD_ID_SHIFT) & 0xff; /* Set validation for iSCSI L2 client before sending SETUP * ramrod */ if (type == ETH_CONNECTION_TYPE) { if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) { cxt_index = BNX2X_ISCSI_ETH_CID(bp) / ILT_PAGE_CIDS; cxt_offset = BNX2X_ISCSI_ETH_CID(bp) - (cxt_index * ILT_PAGE_CIDS); bnx2x_set_ctx_validation(bp, &bp->context[cxt_index]. vcxt[cxt_offset].eth, BNX2X_ISCSI_ETH_CID(bp)); } } /* * There may be not more than 8 L2, not more than 8 L5 SPEs * and in the air. We also check that number of outstanding * COMMON ramrods is not more than the EQ and SPQ can * accommodate. */ if (type == ETH_CONNECTION_TYPE) { if (!atomic_read(&bp->cq_spq_left)) break; else atomic_dec(&bp->cq_spq_left); } else if (type == NONE_CONNECTION_TYPE) { if (!atomic_read(&bp->eq_spq_left)) break; else atomic_dec(&bp->eq_spq_left); } else if ((type == ISCSI_CONNECTION_TYPE) || (type == FCOE_CONNECTION_TYPE)) { if (bp->cnic_spq_pending >= bp->cnic_eth_dev.max_kwqe_pending) break; else bp->cnic_spq_pending++; } else { BNX2X_ERR("Unknown SPE type: %d\n", type); bnx2x_panic(); break; } spe = bnx2x_sp_get_next(bp); *spe = *bp->cnic_kwq_cons; DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", bp->cnic_spq_pending, bp->cnic_kwq_pending, count); if (bp->cnic_kwq_cons == bp->cnic_kwq_last) bp->cnic_kwq_cons = bp->cnic_kwq; else bp->cnic_kwq_cons++; } bnx2x_sp_prod_update(bp); spin_unlock_bh(&bp->spq_lock); } static int bnx2x_cnic_sp_queue(struct net_device *dev, struct kwqe_16 *kwqes[], u32 count) { struct bnx2x *bp = netdev_priv(dev); int i; #ifdef BNX2X_STOP_ON_ERROR if (unlikely(bp->panic)) { BNX2X_ERR("Can't post to SP queue while panic\n"); return -EIO; } #endif if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { BNX2X_ERR("Handling parity error recovery. Try again later\n"); return -EAGAIN; } spin_lock_bh(&bp->spq_lock); for (i = 0; i < count; i++) { struct eth_spe *spe = (struct eth_spe *)kwqes[i]; if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) break; *bp->cnic_kwq_prod = *spe; bp->cnic_kwq_pending++; DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", spe->hdr.conn_and_cmd_data, spe->hdr.type, spe->data.update_data_addr.hi, spe->data.update_data_addr.lo, bp->cnic_kwq_pending); if (bp->cnic_kwq_prod == bp->cnic_kwq_last) bp->cnic_kwq_prod = bp->cnic_kwq; else bp->cnic_kwq_prod++; } spin_unlock_bh(&bp->spq_lock); if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) bnx2x_cnic_sp_post(bp, 0); return i; } static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) { struct cnic_ops *c_ops; int rc = 0; mutex_lock(&bp->cnic_mutex); c_ops = rcu_dereference_protected(bp->cnic_ops, lockdep_is_held(&bp->cnic_mutex)); if (c_ops) rc = c_ops->cnic_ctl(bp->cnic_data, ctl); mutex_unlock(&bp->cnic_mutex); return rc; } static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) { struct cnic_ops *c_ops; int rc = 0; rcu_read_lock(); c_ops = rcu_dereference(bp->cnic_ops); if (c_ops) rc = c_ops->cnic_ctl(bp->cnic_data, ctl); rcu_read_unlock(); return rc; } /* * for commands that have no data */ int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) { struct cnic_ctl_info ctl = {0}; ctl.cmd = cmd; return bnx2x_cnic_ctl_send(bp, &ctl); } static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err) { struct cnic_ctl_info ctl = {0}; /* first we tell CNIC and only then we count this as a completion */ ctl.cmd = CNIC_CTL_COMPLETION_CMD; ctl.data.comp.cid = cid; ctl.data.comp.error = err; bnx2x_cnic_ctl_send_bh(bp, &ctl); bnx2x_cnic_sp_post(bp, 0); } /* Called with netif_addr_lock_bh() taken. * Sets an rx_mode config for an iSCSI ETH client. * Doesn't block. * Completion should be checked outside. */ static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) { unsigned long accept_flags = 0, ramrod_flags = 0; u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; if (start) { /* Start accepting on iSCSI L2 ring. Accept all multicasts * because it's the only way for UIO Queue to accept * multicasts (in non-promiscuous mode only one Queue per * function will receive multicast packets (leading in our * case). */ __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); /* Clear STOP_PENDING bit if START is requested */ clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; } else /* Clear START_PENDING bit if STOP is requested */ clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) set_bit(sched_state, &bp->sp_state); else { __set_bit(RAMROD_RX, &ramrod_flags); bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, ramrod_flags); } } static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl) { struct bnx2x *bp = netdev_priv(dev); int rc = 0; switch (ctl->cmd) { case DRV_CTL_CTXTBL_WR_CMD: { u32 index = ctl->data.io.offset; dma_addr_t addr = ctl->data.io.dma_addr; bnx2x_ilt_wr(bp, index, addr); break; } case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { int count = ctl->data.credit.credit_count; bnx2x_cnic_sp_post(bp, count); break; } /* rtnl_lock is held. */ case DRV_CTL_START_L2_CMD: { struct cnic_eth_dev *cp = &bp->cnic_eth_dev; unsigned long sp_bits = 0; /* Configure the iSCSI classification object */ bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, cp->iscsi_l2_client_id, cp->iscsi_l2_cid, BP_FUNC(bp), bnx2x_sp(bp, mac_rdata), bnx2x_sp_mapping(bp, mac_rdata), BNX2X_FILTER_MAC_PENDING, &bp->sp_state, BNX2X_OBJ_TYPE_RX, &bp->macs_pool); /* Set iSCSI MAC address */ rc = bnx2x_set_iscsi_eth_mac_addr(bp); if (rc) break; mmiowb(); barrier(); /* Start accepting on iSCSI L2 ring */ netif_addr_lock_bh(dev); bnx2x_set_iscsi_eth_rx_mode(bp, true); netif_addr_unlock_bh(dev); /* bits to wait on */ __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); if (!bnx2x_wait_sp_comp(bp, sp_bits)) BNX2X_ERR("rx_mode completion timed out!\n"); break; } /* rtnl_lock is held. */ case DRV_CTL_STOP_L2_CMD: { unsigned long sp_bits = 0; /* Stop accepting on iSCSI L2 ring */ netif_addr_lock_bh(dev); bnx2x_set_iscsi_eth_rx_mode(bp, false); netif_addr_unlock_bh(dev); /* bits to wait on */ __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); if (!bnx2x_wait_sp_comp(bp, sp_bits)) BNX2X_ERR("rx_mode completion timed out!\n"); mmiowb(); barrier(); /* Unset iSCSI L2 MAC */ rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, BNX2X_ISCSI_ETH_MAC, true); break; } case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { int count = ctl->data.credit.credit_count; smp_mb__before_atomic_inc(); atomic_add(count, &bp->cq_spq_left); smp_mb__after_atomic_inc(); break; } case DRV_CTL_ULP_REGISTER_CMD: { int ulp_type = ctl->data.register_data.ulp_type; if (CHIP_IS_E3(bp)) { int idx = BP_FW_MB_IDX(bp); u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); int path = BP_PATH(bp); int port = BP_PORT(bp); int i; u32 scratch_offset; u32 *host_addr; /* first write capability to shmem2 */ if (ulp_type == CNIC_ULP_ISCSI) cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; else if (ulp_type == CNIC_ULP_FCOE) cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); if ((ulp_type != CNIC_ULP_FCOE) || (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) || (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES))) break; /* if reached here - should write fcoe capabilities */ scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr); if (!scratch_offset) break; scratch_offset += offsetof(struct glob_ncsi_oem_data, fcoe_features[path][port]); host_addr = (u32 *) &(ctl->data.register_data. fcoe_features); for (i = 0; i < sizeof(struct fcoe_capabilities); i += 4) REG_WR(bp, scratch_offset + i, *(host_addr + i/4)); } break; } case DRV_CTL_ULP_UNREGISTER_CMD: { int ulp_type = ctl->data.ulp_type; if (CHIP_IS_E3(bp)) { int idx = BP_FW_MB_IDX(bp); u32 cap; cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); if (ulp_type == CNIC_ULP_ISCSI) cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; else if (ulp_type == CNIC_ULP_FCOE) cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); } break; } default: BNX2X_ERR("unknown command %x\n", ctl->cmd); rc = -EINVAL; } return rc; } void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) { struct cnic_eth_dev *cp = &bp->cnic_eth_dev; if (bp->flags & USING_MSIX_FLAG) { cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; cp->irq_arr[0].vector = bp->msix_table[1].vector; } else { cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; } if (!CHIP_IS_E1x(bp)) cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; else cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp); cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); cp->irq_arr[1].status_blk = bp->def_status_blk; cp->irq_arr[1].status_blk_num = DEF_SB_ID; cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; cp->num_irq = 2; } void bnx2x_setup_cnic_info(struct bnx2x *bp) { struct cnic_eth_dev *cp = &bp->cnic_eth_dev; cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + bnx2x_cid_ilt_lines(bp); cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); if (NO_ISCSI_OOO(bp)) cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; } static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops, void *data) { struct bnx2x *bp = netdev_priv(dev); struct cnic_eth_dev *cp = &bp->cnic_eth_dev; int rc; DP(NETIF_MSG_IFUP, "Register_cnic called\n"); if (ops == NULL) { BNX2X_ERR("NULL ops received\n"); return -EINVAL; } if (!CNIC_SUPPORT(bp)) { BNX2X_ERR("Can't register CNIC when not supported\n"); return -EOPNOTSUPP; } if (!CNIC_LOADED(bp)) { rc = bnx2x_load_cnic(bp); if (rc) { BNX2X_ERR("CNIC-related load failed\n"); return rc; } } bp->cnic_enabled = true; bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL); if (!bp->cnic_kwq) return -ENOMEM; bp->cnic_kwq_cons = bp->cnic_kwq; bp->cnic_kwq_prod = bp->cnic_kwq; bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; bp->cnic_spq_pending = 0; bp->cnic_kwq_pending = 0; bp->cnic_data = data; cp->num_irq = 0; cp->drv_state |= CNIC_DRV_STATE_REGD; cp->iro_arr = bp->iro_arr; bnx2x_setup_cnic_irq_info(bp); rcu_assign_pointer(bp->cnic_ops, ops); return 0; } static int bnx2x_unregister_cnic(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); struct cnic_eth_dev *cp = &bp->cnic_eth_dev; mutex_lock(&bp->cnic_mutex); cp->drv_state = 0; RCU_INIT_POINTER(bp->cnic_ops, NULL); mutex_unlock(&bp->cnic_mutex); synchronize_rcu(); bp->cnic_enabled = false; kfree(bp->cnic_kwq); bp->cnic_kwq = NULL; return 0; } struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); struct cnic_eth_dev *cp = &bp->cnic_eth_dev; /* If both iSCSI and FCoE are disabled - return NULL in * order to indicate CNIC that it should not try to work * with this device. */ if (NO_ISCSI(bp) && NO_FCOE(bp)) return NULL; cp->drv_owner = THIS_MODULE; cp->chip_id = CHIP_ID(bp); cp->pdev = bp->pdev; cp->io_base = bp->regview; cp->io_base2 = bp->doorbells; cp->max_kwqe_pending = 8; cp->ctx_blk_size = CDU_ILT_PAGE_SZ; cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + bnx2x_cid_ilt_lines(bp); cp->ctx_tbl_len = CNIC_ILT_LINES; cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; cp->drv_ctl = bnx2x_drv_ctl; cp->drv_register_cnic = bnx2x_register_cnic; cp->drv_unregister_cnic = bnx2x_unregister_cnic; cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); cp->iscsi_l2_client_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); if (NO_ISCSI_OOO(bp)) cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; if (NO_ISCSI(bp)) cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; if (NO_FCOE(bp)) cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; BNX2X_DEV_INFO( "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", cp->ctx_blk_size, cp->ctx_tbl_offset, cp->ctx_tbl_len, cp->starting_cid); return cp; } u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) { struct bnx2x *bp = fp->bp; u32 offset = BAR_USTRORM_INTMEM; if (IS_VF(bp)) return bnx2x_vf_ustorm_prods_offset(bp, fp); else if (!CHIP_IS_E1x(bp)) offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); else offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); return offset; } /* called only on E1H or E2. * When pretending to be PF, the pretend value is the function number 0...7 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID * combination */ int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val) { u32 pretend_reg; if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX) return -1; /* get my own pretend register */ pretend_reg = bnx2x_get_pretend_reg(bp); REG_WR(bp, pretend_reg, pretend_func_val); REG_RD(bp, pretend_reg); return 0; }