/* * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit) * * Copyright (C) 2011 Samsung Electronics * Donggeun Kim * Amit Daniel Kachhap * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include "exynos_thermal_common.h" #include "exynos_tmu.h" #include "exynos_tmu_data.h" struct exynos_tmu_data { struct exynos_tmu_platform_data *pdata; struct resource *mem; void __iomem *base; int irq; enum soc_type soc; struct work_struct irq_work; struct mutex lock; struct clk *clk; u8 temp_error1, temp_error2; }; /* * TMU treats temperature as a mapped temperature code. * The temperature is converted differently depending on the calibration type. */ static int temp_to_code(struct exynos_tmu_data *data, u8 temp) { struct exynos_tmu_platform_data *pdata = data->pdata; int temp_code; if (data->soc == SOC_ARCH_EXYNOS4210) /* temp should range between 25 and 125 */ if (temp < 25 || temp > 125) { temp_code = -EINVAL; goto out; } switch (pdata->cal_type) { case TYPE_TWO_POINT_TRIMMING: temp_code = (temp - pdata->first_point_trim) * (data->temp_error2 - data->temp_error1) / (pdata->second_point_trim - pdata->first_point_trim) + data->temp_error1; break; case TYPE_ONE_POINT_TRIMMING: temp_code = temp + data->temp_error1 - pdata->first_point_trim; break; default: temp_code = temp + pdata->default_temp_offset; break; } out: return temp_code; } /* * Calculate a temperature value from a temperature code. * The unit of the temperature is degree Celsius. */ static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code) { struct exynos_tmu_platform_data *pdata = data->pdata; int temp; if (data->soc == SOC_ARCH_EXYNOS4210) /* temp_code should range between 75 and 175 */ if (temp_code < 75 || temp_code > 175) { temp = -ENODATA; goto out; } switch (pdata->cal_type) { case TYPE_TWO_POINT_TRIMMING: temp = (temp_code - data->temp_error1) * (pdata->second_point_trim - pdata->first_point_trim) / (data->temp_error2 - data->temp_error1) + pdata->first_point_trim; break; case TYPE_ONE_POINT_TRIMMING: temp = temp_code - data->temp_error1 + pdata->first_point_trim; break; default: temp = temp_code - pdata->default_temp_offset; break; } out: return temp; } static int exynos_tmu_initialize(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct exynos_tmu_platform_data *pdata = data->pdata; const struct exynos_tmu_registers *reg = pdata->registers; unsigned int status, trim_info; unsigned int rising_threshold = 0, falling_threshold = 0; int ret = 0, threshold_code, i, trigger_levs = 0; mutex_lock(&data->lock); clk_enable(data->clk); status = readb(data->base + reg->tmu_status); if (!status) { ret = -EBUSY; goto out; } if (data->soc == SOC_ARCH_EXYNOS) __raw_writel(1, data->base + reg->triminfo_ctrl); /* Save trimming info in order to perform calibration */ trim_info = readl(data->base + reg->triminfo_data); data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK; data->temp_error2 = ((trim_info >> reg->triminfo_85_shift) & EXYNOS_TMU_TEMP_MASK); if ((pdata->min_efuse_value > data->temp_error1) || (data->temp_error1 > pdata->max_efuse_value) || (data->temp_error2 != 0)) data->temp_error1 = pdata->efuse_value; /* Count trigger levels to be enabled */ for (i = 0; i < MAX_THRESHOLD_LEVS; i++) if (pdata->trigger_levels[i]) trigger_levs++; if (data->soc == SOC_ARCH_EXYNOS4210) { /* Write temperature code for threshold */ threshold_code = temp_to_code(data, pdata->threshold); if (threshold_code < 0) { ret = threshold_code; goto out; } writeb(threshold_code, data->base + reg->threshold_temp); for (i = 0; i < trigger_levs; i++) writeb(pdata->trigger_levels[i], data->base + reg->threshold_th0 + i * sizeof(reg->threshold_th0)); writel(reg->inten_rise_mask, data->base + reg->tmu_intclear); } else if (data->soc == SOC_ARCH_EXYNOS) { /* Write temperature code for rising and falling threshold */ for (i = 0; i < trigger_levs; i++) { threshold_code = temp_to_code(data, pdata->trigger_levels[i]); if (threshold_code < 0) { ret = threshold_code; goto out; } rising_threshold |= threshold_code << 8 * i; if (pdata->threshold_falling) { threshold_code = temp_to_code(data, pdata->trigger_levels[i] - pdata->threshold_falling); if (threshold_code > 0) falling_threshold |= threshold_code << 8 * i; } } writel(rising_threshold, data->base + reg->threshold_th0); writel(falling_threshold, data->base + reg->threshold_th1); writel((reg->inten_rise_mask << reg->inten_rise_shift) | (reg->inten_fall_mask << reg->inten_fall_shift), data->base + reg->tmu_intclear); } out: clk_disable(data->clk); mutex_unlock(&data->lock); return ret; } static void exynos_tmu_control(struct platform_device *pdev, bool on) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct exynos_tmu_platform_data *pdata = data->pdata; const struct exynos_tmu_registers *reg = pdata->registers; unsigned int con, interrupt_en; mutex_lock(&data->lock); clk_enable(data->clk); con = readl(data->base + reg->tmu_ctrl); if (pdata->reference_voltage) { con &= ~(reg->buf_vref_sel_mask << reg->buf_vref_sel_shift); con |= pdata->reference_voltage << reg->buf_vref_sel_shift; } if (pdata->gain) { con &= ~(reg->buf_slope_sel_mask << reg->buf_slope_sel_shift); con |= (pdata->gain << reg->buf_slope_sel_shift); } if (pdata->noise_cancel_mode) { con &= ~(reg->therm_trip_mode_mask << reg->therm_trip_mode_shift); con |= (pdata->noise_cancel_mode << reg->therm_trip_mode_shift); } if (on) { con |= (1 << reg->core_en_shift); interrupt_en = pdata->trigger_enable[3] << reg->inten_rise3_shift | pdata->trigger_enable[2] << reg->inten_rise2_shift | pdata->trigger_enable[1] << reg->inten_rise1_shift | pdata->trigger_enable[0] << reg->inten_rise0_shift; if (pdata->threshold_falling) interrupt_en |= interrupt_en << reg->inten_fall0_shift; } else { con &= ~(1 << reg->core_en_shift); interrupt_en = 0; /* Disable all interrupts */ } writel(interrupt_en, data->base + reg->tmu_inten); writel(con, data->base + reg->tmu_ctrl); clk_disable(data->clk); mutex_unlock(&data->lock); } static int exynos_tmu_read(struct exynos_tmu_data *data) { struct exynos_tmu_platform_data *pdata = data->pdata; const struct exynos_tmu_registers *reg = pdata->registers; u8 temp_code; int temp; mutex_lock(&data->lock); clk_enable(data->clk); temp_code = readb(data->base + reg->tmu_cur_temp); temp = code_to_temp(data, temp_code); clk_disable(data->clk); mutex_unlock(&data->lock); return temp; } #ifdef CONFIG_THERMAL_EMULATION static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp) { struct exynos_tmu_data *data = drv_data; struct exynos_tmu_platform_data *pdata = data->pdata; const struct exynos_tmu_registers *reg = pdata->registers; unsigned int val; int ret = -EINVAL; if (data->soc == SOC_ARCH_EXYNOS4210) goto out; if (temp && temp < MCELSIUS) goto out; mutex_lock(&data->lock); clk_enable(data->clk); val = readl(data->base + reg->emul_con); if (temp) { temp /= MCELSIUS; val = (EXYNOS_EMUL_TIME << reg->emul_time_shift) | (temp_to_code(data, temp) << reg->emul_temp_shift) | EXYNOS_EMUL_ENABLE; } else { val &= ~EXYNOS_EMUL_ENABLE; } writel(val, data->base + reg->emul_con); clk_disable(data->clk); mutex_unlock(&data->lock); return 0; out: return ret; } #else static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp) { return -EINVAL; } #endif/*CONFIG_THERMAL_EMULATION*/ static void exynos_tmu_work(struct work_struct *work) { struct exynos_tmu_data *data = container_of(work, struct exynos_tmu_data, irq_work); struct exynos_tmu_platform_data *pdata = data->pdata; const struct exynos_tmu_registers *reg = pdata->registers; exynos_report_trigger(); mutex_lock(&data->lock); clk_enable(data->clk); if (data->soc == SOC_ARCH_EXYNOS) writel((reg->inten_rise_mask << reg->inten_rise_shift) | (reg->inten_fall_mask << reg->inten_fall_shift), data->base + reg->tmu_intclear); else writel(reg->inten_rise_mask, data->base + reg->tmu_intclear); clk_disable(data->clk); mutex_unlock(&data->lock); enable_irq(data->irq); } static irqreturn_t exynos_tmu_irq(int irq, void *id) { struct exynos_tmu_data *data = id; disable_irq_nosync(irq); schedule_work(&data->irq_work); return IRQ_HANDLED; } static struct thermal_sensor_conf exynos_sensor_conf = { .name = "exynos-therm", .read_temperature = (int (*)(void *))exynos_tmu_read, .write_emul_temp = exynos_tmu_set_emulation, }; #ifdef CONFIG_OF static const struct of_device_id exynos_tmu_match[] = { { .compatible = "samsung,exynos4210-tmu", .data = (void *)EXYNOS4210_TMU_DRV_DATA, }, { .compatible = "samsung,exynos4412-tmu", .data = (void *)EXYNOS5250_TMU_DRV_DATA, }, { .compatible = "samsung,exynos5250-tmu", .data = (void *)EXYNOS5250_TMU_DRV_DATA, }, {}, }; MODULE_DEVICE_TABLE(of, exynos_tmu_match); #endif static struct platform_device_id exynos_tmu_driver_ids[] = { { .name = "exynos4210-tmu", .driver_data = (kernel_ulong_t)EXYNOS4210_TMU_DRV_DATA, }, { .name = "exynos5250-tmu", .driver_data = (kernel_ulong_t)EXYNOS5250_TMU_DRV_DATA, }, { }, }; MODULE_DEVICE_TABLE(platform, exynos_tmu_driver_ids); static inline struct exynos_tmu_platform_data *exynos_get_driver_data( struct platform_device *pdev) { #ifdef CONFIG_OF if (pdev->dev.of_node) { const struct of_device_id *match; match = of_match_node(exynos_tmu_match, pdev->dev.of_node); if (!match) return NULL; return (struct exynos_tmu_platform_data *) match->data; } #endif return (struct exynos_tmu_platform_data *) platform_get_device_id(pdev)->driver_data; } static int exynos_tmu_probe(struct platform_device *pdev) { struct exynos_tmu_data *data; struct exynos_tmu_platform_data *pdata = pdev->dev.platform_data; int ret, i; if (!pdata) pdata = exynos_get_driver_data(pdev); if (!pdata) { dev_err(&pdev->dev, "No platform init data supplied.\n"); return -ENODEV; } data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data), GFP_KERNEL); if (!data) { dev_err(&pdev->dev, "Failed to allocate driver structure\n"); return -ENOMEM; } data->irq = platform_get_irq(pdev, 0); if (data->irq < 0) { dev_err(&pdev->dev, "Failed to get platform irq\n"); return data->irq; } INIT_WORK(&data->irq_work, exynos_tmu_work); data->mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); data->base = devm_ioremap_resource(&pdev->dev, data->mem); if (IS_ERR(data->base)) return PTR_ERR(data->base); ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq, IRQF_TRIGGER_RISING, "exynos-tmu", data); if (ret) { dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq); return ret; } data->clk = devm_clk_get(&pdev->dev, "tmu_apbif"); if (IS_ERR(data->clk)) { dev_err(&pdev->dev, "Failed to get clock\n"); return PTR_ERR(data->clk); } ret = clk_prepare(data->clk); if (ret) return ret; if (pdata->type == SOC_ARCH_EXYNOS || pdata->type == SOC_ARCH_EXYNOS4210) data->soc = pdata->type; else { ret = -EINVAL; dev_err(&pdev->dev, "Platform not supported\n"); goto err_clk; } data->pdata = pdata; platform_set_drvdata(pdev, data); mutex_init(&data->lock); ret = exynos_tmu_initialize(pdev); if (ret) { dev_err(&pdev->dev, "Failed to initialize TMU\n"); goto err_clk; } exynos_tmu_control(pdev, true); /* Register the sensor with thermal management interface */ (&exynos_sensor_conf)->private_data = data; exynos_sensor_conf.trip_data.trip_count = pdata->trigger_enable[0] + pdata->trigger_enable[1] + pdata->trigger_enable[2]+ pdata->trigger_enable[3]; for (i = 0; i < exynos_sensor_conf.trip_data.trip_count; i++) exynos_sensor_conf.trip_data.trip_val[i] = pdata->threshold + pdata->trigger_levels[i]; exynos_sensor_conf.trip_data.trigger_falling = pdata->threshold_falling; exynos_sensor_conf.cooling_data.freq_clip_count = pdata->freq_tab_count; for (i = 0; i < pdata->freq_tab_count; i++) { exynos_sensor_conf.cooling_data.freq_data[i].freq_clip_max = pdata->freq_tab[i].freq_clip_max; exynos_sensor_conf.cooling_data.freq_data[i].temp_level = pdata->freq_tab[i].temp_level; } ret = exynos_register_thermal(&exynos_sensor_conf); if (ret) { dev_err(&pdev->dev, "Failed to register thermal interface\n"); goto err_clk; } return 0; err_clk: clk_unprepare(data->clk); return ret; } static int exynos_tmu_remove(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); exynos_tmu_control(pdev, false); exynos_unregister_thermal(); clk_unprepare(data->clk); return 0; } #ifdef CONFIG_PM_SLEEP static int exynos_tmu_suspend(struct device *dev) { exynos_tmu_control(to_platform_device(dev), false); return 0; } static int exynos_tmu_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); exynos_tmu_initialize(pdev); exynos_tmu_control(pdev, true); return 0; } static SIMPLE_DEV_PM_OPS(exynos_tmu_pm, exynos_tmu_suspend, exynos_tmu_resume); #define EXYNOS_TMU_PM (&exynos_tmu_pm) #else #define EXYNOS_TMU_PM NULL #endif static struct platform_driver exynos_tmu_driver = { .driver = { .name = "exynos-tmu", .owner = THIS_MODULE, .pm = EXYNOS_TMU_PM, .of_match_table = of_match_ptr(exynos_tmu_match), }, .probe = exynos_tmu_probe, .remove = exynos_tmu_remove, .id_table = exynos_tmu_driver_ids, }; module_platform_driver(exynos_tmu_driver); MODULE_DESCRIPTION("EXYNOS TMU Driver"); MODULE_AUTHOR("Donggeun Kim "); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:exynos-tmu");