/* * Copyright (C) 2013 Boris BREZILLON * * Derived from: * https://github.com/yuq/sunxi-nfc-mtd * Copyright (C) 2013 Qiang Yu * * https://github.com/hno/Allwinner-Info * Copyright (C) 2013 Henrik Nordström * * Copyright (C) 2013 Dmitriy B. * Copyright (C) 2013 Sergey Lapin * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define NFC_REG_CTL 0x0000 #define NFC_REG_ST 0x0004 #define NFC_REG_INT 0x0008 #define NFC_REG_TIMING_CTL 0x000C #define NFC_REG_TIMING_CFG 0x0010 #define NFC_REG_ADDR_LOW 0x0014 #define NFC_REG_ADDR_HIGH 0x0018 #define NFC_REG_SECTOR_NUM 0x001C #define NFC_REG_CNT 0x0020 #define NFC_REG_CMD 0x0024 #define NFC_REG_RCMD_SET 0x0028 #define NFC_REG_WCMD_SET 0x002C #define NFC_REG_IO_DATA 0x0030 #define NFC_REG_ECC_CTL 0x0034 #define NFC_REG_ECC_ST 0x0038 #define NFC_REG_DEBUG 0x003C #define NFC_REG_ECC_ERR_CNT(x) ((0x0040 + (x)) & ~0x3) #define NFC_REG_USER_DATA(x) (0x0050 + ((x) * 4)) #define NFC_REG_SPARE_AREA 0x00A0 #define NFC_RAM0_BASE 0x0400 #define NFC_RAM1_BASE 0x0800 /* define bit use in NFC_CTL */ #define NFC_EN BIT(0) #define NFC_RESET BIT(1) #define NFC_BUS_WIDTH_MSK BIT(2) #define NFC_BUS_WIDTH_8 (0 << 2) #define NFC_BUS_WIDTH_16 (1 << 2) #define NFC_RB_SEL_MSK BIT(3) #define NFC_RB_SEL(x) ((x) << 3) #define NFC_CE_SEL_MSK GENMASK(26, 24) #define NFC_CE_SEL(x) ((x) << 24) #define NFC_CE_CTL BIT(6) #define NFC_PAGE_SHIFT_MSK GENMASK(11, 8) #define NFC_PAGE_SHIFT(x) (((x) < 10 ? 0 : (x) - 10) << 8) #define NFC_SAM BIT(12) #define NFC_RAM_METHOD BIT(14) #define NFC_DEBUG_CTL BIT(31) /* define bit use in NFC_ST */ #define NFC_RB_B2R BIT(0) #define NFC_CMD_INT_FLAG BIT(1) #define NFC_DMA_INT_FLAG BIT(2) #define NFC_CMD_FIFO_STATUS BIT(3) #define NFC_STA BIT(4) #define NFC_NATCH_INT_FLAG BIT(5) #define NFC_RB_STATE(x) BIT(x + 8) /* define bit use in NFC_INT */ #define NFC_B2R_INT_ENABLE BIT(0) #define NFC_CMD_INT_ENABLE BIT(1) #define NFC_DMA_INT_ENABLE BIT(2) #define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \ NFC_CMD_INT_ENABLE | \ NFC_DMA_INT_ENABLE) /* define bit use in NFC_TIMING_CTL */ #define NFC_TIMING_CTL_EDO BIT(8) /* define NFC_TIMING_CFG register layout */ #define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD) \ (((tWB) & 0x3) | (((tADL) & 0x3) << 2) | \ (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) | \ (((tCAD) & 0x7) << 8)) /* define bit use in NFC_CMD */ #define NFC_CMD_LOW_BYTE_MSK GENMASK(7, 0) #define NFC_CMD_HIGH_BYTE_MSK GENMASK(15, 8) #define NFC_CMD(x) (x) #define NFC_ADR_NUM_MSK GENMASK(18, 16) #define NFC_ADR_NUM(x) (((x) - 1) << 16) #define NFC_SEND_ADR BIT(19) #define NFC_ACCESS_DIR BIT(20) #define NFC_DATA_TRANS BIT(21) #define NFC_SEND_CMD1 BIT(22) #define NFC_WAIT_FLAG BIT(23) #define NFC_SEND_CMD2 BIT(24) #define NFC_SEQ BIT(25) #define NFC_DATA_SWAP_METHOD BIT(26) #define NFC_ROW_AUTO_INC BIT(27) #define NFC_SEND_CMD3 BIT(28) #define NFC_SEND_CMD4 BIT(29) #define NFC_CMD_TYPE_MSK GENMASK(31, 30) #define NFC_NORMAL_OP (0 << 30) #define NFC_ECC_OP (1 << 30) #define NFC_PAGE_OP (2 << 30) /* define bit use in NFC_RCMD_SET */ #define NFC_READ_CMD_MSK GENMASK(7, 0) #define NFC_RND_READ_CMD0_MSK GENMASK(15, 8) #define NFC_RND_READ_CMD1_MSK GENMASK(23, 16) /* define bit use in NFC_WCMD_SET */ #define NFC_PROGRAM_CMD_MSK GENMASK(7, 0) #define NFC_RND_WRITE_CMD_MSK GENMASK(15, 8) #define NFC_READ_CMD0_MSK GENMASK(23, 16) #define NFC_READ_CMD1_MSK GENMASK(31, 24) /* define bit use in NFC_ECC_CTL */ #define NFC_ECC_EN BIT(0) #define NFC_ECC_PIPELINE BIT(3) #define NFC_ECC_EXCEPTION BIT(4) #define NFC_ECC_BLOCK_SIZE_MSK BIT(5) #define NFC_RANDOM_EN BIT(9) #define NFC_RANDOM_DIRECTION BIT(10) #define NFC_ECC_MODE_MSK GENMASK(15, 12) #define NFC_ECC_MODE(x) ((x) << 12) #define NFC_RANDOM_SEED_MSK GENMASK(30, 16) #define NFC_RANDOM_SEED(x) ((x) << 16) /* define bit use in NFC_ECC_ST */ #define NFC_ECC_ERR(x) BIT(x) #define NFC_ECC_PAT_FOUND(x) BIT(x + 16) #define NFC_ECC_ERR_CNT(b, x) (((x) >> ((b) * 8)) & 0xff) /* NFC_USER_DATA helper macros */ #define NFC_BUF_TO_USER_DATA(buf) ((buf)[0] | ((buf)[1] << 8) | \ ((buf)[2] << 16) | ((buf)[3] << 24)) #define NFC_DEFAULT_TIMEOUT_MS 1000 #define NFC_SRAM_SIZE 1024 #define NFC_MAX_CS 7 /* * Ready/Busy detection type: describes the Ready/Busy detection modes * * @RB_NONE: no external detection available, rely on STATUS command * and software timeouts * @RB_NATIVE: use sunxi NAND controller Ready/Busy support. The Ready/Busy * pin of the NAND flash chip must be connected to one of the * native NAND R/B pins (those which can be muxed to the NAND * Controller) * @RB_GPIO: use a simple GPIO to handle Ready/Busy status. The Ready/Busy * pin of the NAND flash chip must be connected to a GPIO capable * pin. */ enum sunxi_nand_rb_type { RB_NONE, RB_NATIVE, RB_GPIO, }; /* * Ready/Busy structure: stores information related to Ready/Busy detection * * @type: the Ready/Busy detection mode * @info: information related to the R/B detection mode. Either a gpio * id or a native R/B id (those supported by the NAND controller). */ struct sunxi_nand_rb { enum sunxi_nand_rb_type type; union { int gpio; int nativeid; } info; }; /* * Chip Select structure: stores information related to NAND Chip Select * * @cs: the NAND CS id used to communicate with a NAND Chip * @rb: the Ready/Busy description */ struct sunxi_nand_chip_sel { u8 cs; struct sunxi_nand_rb rb; }; /* * sunxi HW ECC infos: stores information related to HW ECC support * * @mode: the sunxi ECC mode field deduced from ECC requirements * @layout: the OOB layout depending on the ECC requirements and the * selected ECC mode */ struct sunxi_nand_hw_ecc { int mode; struct nand_ecclayout layout; }; /* * NAND chip structure: stores NAND chip device related information * * @node: used to store NAND chips into a list * @nand: base NAND chip structure * @mtd: base MTD structure * @clk_rate: clk_rate required for this NAND chip * @timing_cfg TIMING_CFG register value for this NAND chip * @selected: current active CS * @nsels: number of CS lines required by the NAND chip * @sels: array of CS lines descriptions */ struct sunxi_nand_chip { struct list_head node; struct nand_chip nand; struct mtd_info mtd; unsigned long clk_rate; u32 timing_cfg; u32 timing_ctl; int selected; int nsels; struct sunxi_nand_chip_sel sels[0]; }; static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand) { return container_of(nand, struct sunxi_nand_chip, nand); } /* * NAND Controller structure: stores sunxi NAND controller information * * @controller: base controller structure * @dev: parent device (used to print error messages) * @regs: NAND controller registers * @ahb_clk: NAND Controller AHB clock * @mod_clk: NAND Controller mod clock * @assigned_cs: bitmask describing already assigned CS lines * @clk_rate: NAND controller current clock rate * @chips: a list containing all the NAND chips attached to * this NAND controller * @complete: a completion object used to wait for NAND * controller events */ struct sunxi_nfc { struct nand_hw_control controller; struct device *dev; void __iomem *regs; struct clk *ahb_clk; struct clk *mod_clk; unsigned long assigned_cs; unsigned long clk_rate; struct list_head chips; struct completion complete; }; static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl) { return container_of(ctrl, struct sunxi_nfc, controller); } static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id) { struct sunxi_nfc *nfc = dev_id; u32 st = readl(nfc->regs + NFC_REG_ST); u32 ien = readl(nfc->regs + NFC_REG_INT); if (!(ien & st)) return IRQ_NONE; if ((ien & st) == ien) complete(&nfc->complete); writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST); writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT); return IRQ_HANDLED; } static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags, unsigned int timeout_ms) { init_completion(&nfc->complete); writel(flags, nfc->regs + NFC_REG_INT); if (!timeout_ms) timeout_ms = NFC_DEFAULT_TIMEOUT_MS; if (!wait_for_completion_timeout(&nfc->complete, msecs_to_jiffies(timeout_ms))) { dev_err(nfc->dev, "wait interrupt timedout\n"); return -ETIMEDOUT; } return 0; } static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc) { unsigned long timeout = jiffies + msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS); do { if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS)) return 0; } while (time_before(jiffies, timeout)); dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n"); return -ETIMEDOUT; } static int sunxi_nfc_rst(struct sunxi_nfc *nfc) { unsigned long timeout = jiffies + msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS); writel(0, nfc->regs + NFC_REG_ECC_CTL); writel(NFC_RESET, nfc->regs + NFC_REG_CTL); do { if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET)) return 0; } while (time_before(jiffies, timeout)); dev_err(nfc->dev, "wait for NAND controller reset timedout\n"); return -ETIMEDOUT; } static int sunxi_nfc_dev_ready(struct mtd_info *mtd) { struct nand_chip *nand = mtd->priv; struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); struct sunxi_nand_rb *rb; unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20); int ret; if (sunxi_nand->selected < 0) return 0; rb = &sunxi_nand->sels[sunxi_nand->selected].rb; switch (rb->type) { case RB_NATIVE: ret = !!(readl(nfc->regs + NFC_REG_ST) & NFC_RB_STATE(rb->info.nativeid)); if (ret) break; sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo); ret = !!(readl(nfc->regs + NFC_REG_ST) & NFC_RB_STATE(rb->info.nativeid)); break; case RB_GPIO: ret = gpio_get_value(rb->info.gpio); break; case RB_NONE: default: ret = 0; dev_err(nfc->dev, "cannot check R/B NAND status!\n"); break; } return ret; } static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip) { struct nand_chip *nand = mtd->priv; struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); struct sunxi_nand_chip_sel *sel; u32 ctl; if (chip > 0 && chip >= sunxi_nand->nsels) return; if (chip == sunxi_nand->selected) return; ctl = readl(nfc->regs + NFC_REG_CTL) & ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN); if (chip >= 0) { sel = &sunxi_nand->sels[chip]; ctl |= NFC_CE_SEL(sel->cs) | NFC_EN | NFC_PAGE_SHIFT(nand->page_shift - 10); if (sel->rb.type == RB_NONE) { nand->dev_ready = NULL; } else { nand->dev_ready = sunxi_nfc_dev_ready; if (sel->rb.type == RB_NATIVE) ctl |= NFC_RB_SEL(sel->rb.info.nativeid); } writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA); if (nfc->clk_rate != sunxi_nand->clk_rate) { clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate); nfc->clk_rate = sunxi_nand->clk_rate; } } writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL); writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG); writel(ctl, nfc->regs + NFC_REG_CTL); sunxi_nand->selected = chip; } static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct nand_chip *nand = mtd->priv; struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); int ret; int cnt; int offs = 0; u32 tmp; while (len > offs) { cnt = min(len - offs, NFC_SRAM_SIZE); ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); if (ret) break; writel(cnt, nfc->regs + NFC_REG_CNT); tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD; writel(tmp, nfc->regs + NFC_REG_CMD); ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); if (ret) break; if (buf) memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE, cnt); offs += cnt; } } static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct nand_chip *nand = mtd->priv; struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); int ret; int cnt; int offs = 0; u32 tmp; while (len > offs) { cnt = min(len - offs, NFC_SRAM_SIZE); ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); if (ret) break; writel(cnt, nfc->regs + NFC_REG_CNT); memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt); tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR; writel(tmp, nfc->regs + NFC_REG_CMD); ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); if (ret) break; offs += cnt; } } static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd) { uint8_t ret; sunxi_nfc_read_buf(mtd, &ret, 1); return ret; } static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl) { struct nand_chip *nand = mtd->priv; struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); int ret; u32 tmp; ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); if (ret) return; if (ctrl & NAND_CTRL_CHANGE) { tmp = readl(nfc->regs + NFC_REG_CTL); if (ctrl & NAND_NCE) tmp |= NFC_CE_CTL; else tmp &= ~NFC_CE_CTL; writel(tmp, nfc->regs + NFC_REG_CTL); } if (dat == NAND_CMD_NONE) return; if (ctrl & NAND_CLE) { writel(NFC_SEND_CMD1 | dat, nfc->regs + NFC_REG_CMD); } else { writel(dat, nfc->regs + NFC_REG_ADDR_LOW); writel(NFC_SEND_ADR, nfc->regs + NFC_REG_CMD); } sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); } static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller); struct nand_ecc_ctrl *ecc = &chip->ecc; struct nand_ecclayout *layout = ecc->layout; struct sunxi_nand_hw_ecc *data = ecc->priv; unsigned int max_bitflips = 0; int offset; int ret; u32 tmp; int i; int cnt; tmp = readl(nfc->regs + NFC_REG_ECC_CTL); tmp &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE_MSK); tmp |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION; writel(tmp, nfc->regs + NFC_REG_ECC_CTL); for (i = 0; i < ecc->steps; i++) { if (i) chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i * ecc->size, -1); offset = mtd->writesize + layout->eccpos[i * ecc->bytes] - 4; chip->read_buf(mtd, NULL, ecc->size); chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1); ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); if (ret) return ret; tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP; writel(tmp, nfc->regs + NFC_REG_CMD); ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); if (ret) return ret; memcpy_fromio(buf + (i * ecc->size), nfc->regs + NFC_RAM0_BASE, ecc->size); if (readl(nfc->regs + NFC_REG_ECC_ST) & NFC_ECC_ERR(0)) { mtd->ecc_stats.failed++; } else { tmp = readl(nfc->regs + NFC_REG_ECC_ERR_CNT(0)); mtd->ecc_stats.corrected += NFC_ECC_ERR_CNT(0, tmp); max_bitflips = max_t(unsigned int, max_bitflips, tmp); } if (oob_required) { chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1); ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); if (ret) return ret; offset -= mtd->writesize; chip->read_buf(mtd, chip->oob_poi + offset, ecc->bytes + 4); } } if (oob_required) { cnt = ecc->layout->oobfree[ecc->steps].length; if (cnt > 0) { offset = mtd->writesize + ecc->layout->oobfree[ecc->steps].offset; chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1); offset -= mtd->writesize; chip->read_buf(mtd, chip->oob_poi + offset, cnt); } } tmp = readl(nfc->regs + NFC_REG_ECC_CTL); tmp &= ~NFC_ECC_EN; writel(tmp, nfc->regs + NFC_REG_ECC_CTL); return max_bitflips; } static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller); struct nand_ecc_ctrl *ecc = &chip->ecc; struct nand_ecclayout *layout = ecc->layout; struct sunxi_nand_hw_ecc *data = ecc->priv; int offset; int ret; u32 tmp; int i; int cnt; tmp = readl(nfc->regs + NFC_REG_ECC_CTL); tmp &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE_MSK); tmp |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION; writel(tmp, nfc->regs + NFC_REG_ECC_CTL); for (i = 0; i < ecc->steps; i++) { if (i) chip->cmdfunc(mtd, NAND_CMD_RNDIN, i * ecc->size, -1); chip->write_buf(mtd, buf + (i * ecc->size), ecc->size); offset = layout->eccpos[i * ecc->bytes] - 4 + mtd->writesize; /* Fill OOB data in */ writel(NFC_BUF_TO_USER_DATA(chip->oob_poi + layout->oobfree[i].offset), nfc->regs + NFC_REG_USER_DATA(0)); chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1); ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); if (ret) return ret; tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR | NFC_ECC_OP; writel(tmp, nfc->regs + NFC_REG_CMD); ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); if (ret) return ret; } if (oob_required) { cnt = ecc->layout->oobfree[i].length; if (cnt > 0) { offset = mtd->writesize + ecc->layout->oobfree[i].offset; chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1); offset -= mtd->writesize; chip->write_buf(mtd, chip->oob_poi + offset, cnt); } } tmp = readl(nfc->regs + NFC_REG_ECC_CTL); tmp &= ~NFC_ECC_EN; writel(tmp, nfc->regs + NFC_REG_ECC_CTL); return 0; } static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller); struct nand_ecc_ctrl *ecc = &chip->ecc; struct sunxi_nand_hw_ecc *data = ecc->priv; unsigned int max_bitflips = 0; uint8_t *oob = chip->oob_poi; int offset = 0; int ret; int cnt; u32 tmp; int i; tmp = readl(nfc->regs + NFC_REG_ECC_CTL); tmp &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE_MSK); tmp |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION; writel(tmp, nfc->regs + NFC_REG_ECC_CTL); for (i = 0; i < ecc->steps; i++) { chip->read_buf(mtd, NULL, ecc->size); tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP; writel(tmp, nfc->regs + NFC_REG_CMD); ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); if (ret) return ret; memcpy_fromio(buf, nfc->regs + NFC_RAM0_BASE, ecc->size); buf += ecc->size; offset += ecc->size; if (readl(nfc->regs + NFC_REG_ECC_ST) & NFC_ECC_ERR(0)) { mtd->ecc_stats.failed++; } else { tmp = readl(nfc->regs + NFC_REG_ECC_ERR_CNT(0)); mtd->ecc_stats.corrected += NFC_ECC_ERR_CNT(0, tmp); max_bitflips = max_t(unsigned int, max_bitflips, tmp); } if (oob_required) { chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1); chip->read_buf(mtd, oob, ecc->bytes + ecc->prepad); oob += ecc->bytes + ecc->prepad; } offset += ecc->bytes + ecc->prepad; } if (oob_required) { cnt = mtd->oobsize - (oob - chip->oob_poi); if (cnt > 0) { chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1); chip->read_buf(mtd, oob, cnt); } } writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN, nfc->regs + NFC_REG_ECC_CTL); return max_bitflips; } static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller); struct nand_ecc_ctrl *ecc = &chip->ecc; struct sunxi_nand_hw_ecc *data = ecc->priv; uint8_t *oob = chip->oob_poi; int offset = 0; int ret; int cnt; u32 tmp; int i; tmp = readl(nfc->regs + NFC_REG_ECC_CTL); tmp &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE_MSK); tmp |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION; writel(tmp, nfc->regs + NFC_REG_ECC_CTL); for (i = 0; i < ecc->steps; i++) { chip->write_buf(mtd, buf + (i * ecc->size), ecc->size); offset += ecc->size; /* Fill OOB data in */ writel(NFC_BUF_TO_USER_DATA(oob), nfc->regs + NFC_REG_USER_DATA(0)); tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR | NFC_ECC_OP; writel(tmp, nfc->regs + NFC_REG_CMD); ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0); if (ret) return ret; offset += ecc->bytes + ecc->prepad; oob += ecc->bytes + ecc->prepad; } if (oob_required) { cnt = mtd->oobsize - (oob - chip->oob_poi); if (cnt > 0) { chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1); chip->write_buf(mtd, oob, cnt); } } tmp = readl(nfc->regs + NFC_REG_ECC_CTL); tmp &= ~NFC_ECC_EN; writel(tmp, nfc->regs + NFC_REG_ECC_CTL); return 0; } static const s32 tWB_lut[] = {6, 12, 16, 20}; static const s32 tRHW_lut[] = {4, 8, 12, 20}; static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration, u32 clk_period) { u32 clk_cycles = DIV_ROUND_UP(duration, clk_period); int i; for (i = 0; i < lut_size; i++) { if (clk_cycles <= lut[i]) return i; } /* Doesn't fit */ return -EINVAL; } #define sunxi_nand_lookup_timing(l, p, c) \ _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c) static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip, const struct nand_sdr_timings *timings) { struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller); u32 min_clk_period = 0; s32 tWB, tADL, tWHR, tRHW, tCAD; /* T1 <=> tCLS */ if (timings->tCLS_min > min_clk_period) min_clk_period = timings->tCLS_min; /* T2 <=> tCLH */ if (timings->tCLH_min > min_clk_period) min_clk_period = timings->tCLH_min; /* T3 <=> tCS */ if (timings->tCS_min > min_clk_period) min_clk_period = timings->tCS_min; /* T4 <=> tCH */ if (timings->tCH_min > min_clk_period) min_clk_period = timings->tCH_min; /* T5 <=> tWP */ if (timings->tWP_min > min_clk_period) min_clk_period = timings->tWP_min; /* T6 <=> tWH */ if (timings->tWH_min > min_clk_period) min_clk_period = timings->tWH_min; /* T7 <=> tALS */ if (timings->tALS_min > min_clk_period) min_clk_period = timings->tALS_min; /* T8 <=> tDS */ if (timings->tDS_min > min_clk_period) min_clk_period = timings->tDS_min; /* T9 <=> tDH */ if (timings->tDH_min > min_clk_period) min_clk_period = timings->tDH_min; /* T10 <=> tRR */ if (timings->tRR_min > (min_clk_period * 3)) min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3); /* T11 <=> tALH */ if (timings->tALH_min > min_clk_period) min_clk_period = timings->tALH_min; /* T12 <=> tRP */ if (timings->tRP_min > min_clk_period) min_clk_period = timings->tRP_min; /* T13 <=> tREH */ if (timings->tREH_min > min_clk_period) min_clk_period = timings->tREH_min; /* T14 <=> tRC */ if (timings->tRC_min > (min_clk_period * 2)) min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2); /* T15 <=> tWC */ if (timings->tWC_min > (min_clk_period * 2)) min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2); /* T16 - T19 + tCAD */ tWB = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max, min_clk_period); if (tWB < 0) { dev_err(nfc->dev, "unsupported tWB\n"); return tWB; } tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3; if (tADL > 3) { dev_err(nfc->dev, "unsupported tADL\n"); return -EINVAL; } tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3; if (tWHR > 3) { dev_err(nfc->dev, "unsupported tWHR\n"); return -EINVAL; } tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min, min_clk_period); if (tRHW < 0) { dev_err(nfc->dev, "unsupported tRHW\n"); return tRHW; } /* * TODO: according to ONFI specs this value only applies for DDR NAND, * but Allwinner seems to set this to 0x7. Mimic them for now. */ tCAD = 0x7; /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */ chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD); /* * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data * output cycle timings shall be used if the host drives tRC less than * 30 ns. */ chip->timing_ctl = (timings->tRC_min < 30000) ? NFC_TIMING_CTL_EDO : 0; /* Convert min_clk_period from picoseconds to nanoseconds */ min_clk_period = DIV_ROUND_UP(min_clk_period, 1000); /* * Convert min_clk_period into a clk frequency, then get the * appropriate rate for the NAND controller IP given this formula * (specified in the datasheet): * nand clk_rate = 2 * min_clk_rate */ chip->clk_rate = (2 * NSEC_PER_SEC) / min_clk_period; return 0; } static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip, struct device_node *np) { const struct nand_sdr_timings *timings; int ret; int mode; mode = onfi_get_async_timing_mode(&chip->nand); if (mode == ONFI_TIMING_MODE_UNKNOWN) { mode = chip->nand.onfi_timing_mode_default; } else { uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {}; int i; mode = fls(mode) - 1; if (mode < 0) mode = 0; feature[0] = mode; for (i = 0; i < chip->nsels; i++) { chip->nand.select_chip(&chip->mtd, i); ret = chip->nand.onfi_set_features(&chip->mtd, &chip->nand, ONFI_FEATURE_ADDR_TIMING_MODE, feature); chip->nand.select_chip(&chip->mtd, -1); if (ret) return ret; } } timings = onfi_async_timing_mode_to_sdr_timings(mode); if (IS_ERR(timings)) return PTR_ERR(timings); return sunxi_nand_chip_set_timings(chip, timings); } static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, struct device_node *np) { static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 }; struct nand_chip *nand = mtd->priv; struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); struct sunxi_nand_hw_ecc *data; struct nand_ecclayout *layout; int nsectors; int ret; int i; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; /* Add ECC info retrieval from DT */ for (i = 0; i < ARRAY_SIZE(strengths); i++) { if (ecc->strength <= strengths[i]) break; } if (i >= ARRAY_SIZE(strengths)) { dev_err(nfc->dev, "unsupported strength\n"); ret = -ENOTSUPP; goto err; } data->mode = i; /* HW ECC always request ECC bytes for 1024 bytes blocks */ ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); /* HW ECC always work with even numbers of ECC bytes */ ecc->bytes = ALIGN(ecc->bytes, 2); layout = &data->layout; nsectors = mtd->writesize / ecc->size; if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) { ret = -EINVAL; goto err; } layout->eccbytes = (ecc->bytes * nsectors); ecc->layout = layout; ecc->priv = data; return 0; err: kfree(data); return ret; } static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc) { kfree(ecc->priv); } static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, struct device_node *np) { struct nand_ecclayout *layout; int nsectors; int i, j; int ret; ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np); if (ret) return ret; ecc->read_page = sunxi_nfc_hw_ecc_read_page; ecc->write_page = sunxi_nfc_hw_ecc_write_page; layout = ecc->layout; nsectors = mtd->writesize / ecc->size; for (i = 0; i < nsectors; i++) { if (i) { layout->oobfree[i].offset = layout->oobfree[i - 1].offset + layout->oobfree[i - 1].length + ecc->bytes; layout->oobfree[i].length = 4; } else { /* * The first 2 bytes are used for BB markers, hence we * only have 2 bytes available in the first user data * section. */ layout->oobfree[i].length = 2; layout->oobfree[i].offset = 2; } for (j = 0; j < ecc->bytes; j++) layout->eccpos[(ecc->bytes * i) + j] = layout->oobfree[i].offset + layout->oobfree[i].length + j; } if (mtd->oobsize > (ecc->bytes + 4) * nsectors) { layout->oobfree[nsectors].offset = layout->oobfree[nsectors - 1].offset + layout->oobfree[nsectors - 1].length + ecc->bytes; layout->oobfree[nsectors].length = mtd->oobsize - ((ecc->bytes + 4) * nsectors); } return 0; } static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, struct device_node *np) { struct nand_ecclayout *layout; int nsectors; int i; int ret; ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np); if (ret) return ret; ecc->prepad = 4; ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page; ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page; layout = ecc->layout; nsectors = mtd->writesize / ecc->size; for (i = 0; i < (ecc->bytes * nsectors); i++) layout->eccpos[i] = i; layout->oobfree[0].length = mtd->oobsize - i; layout->oobfree[0].offset = i; return 0; } static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc) { switch (ecc->mode) { case NAND_ECC_HW: case NAND_ECC_HW_SYNDROME: sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc); break; case NAND_ECC_NONE: kfree(ecc->layout); default: break; } } static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, struct device_node *np) { struct nand_chip *nand = mtd->priv; int ret; if (!ecc->size) { ecc->size = nand->ecc_step_ds; ecc->strength = nand->ecc_strength_ds; } if (!ecc->size || !ecc->strength) return -EINVAL; switch (ecc->mode) { case NAND_ECC_SOFT_BCH: break; case NAND_ECC_HW: ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np); if (ret) return ret; break; case NAND_ECC_HW_SYNDROME: ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np); if (ret) return ret; break; case NAND_ECC_NONE: ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL); if (!ecc->layout) return -ENOMEM; ecc->layout->oobfree[0].length = mtd->oobsize; case NAND_ECC_SOFT: break; default: return -EINVAL; } return 0; } static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc, struct device_node *np) { const struct nand_sdr_timings *timings; struct sunxi_nand_chip *chip; struct mtd_part_parser_data ppdata; struct mtd_info *mtd; struct nand_chip *nand; int nsels; int ret; int i; u32 tmp; if (!of_get_property(np, "reg", &nsels)) return -EINVAL; nsels /= sizeof(u32); if (!nsels) { dev_err(dev, "invalid reg property size\n"); return -EINVAL; } chip = devm_kzalloc(dev, sizeof(*chip) + (nsels * sizeof(struct sunxi_nand_chip_sel)), GFP_KERNEL); if (!chip) { dev_err(dev, "could not allocate chip\n"); return -ENOMEM; } chip->nsels = nsels; chip->selected = -1; for (i = 0; i < nsels; i++) { ret = of_property_read_u32_index(np, "reg", i, &tmp); if (ret) { dev_err(dev, "could not retrieve reg property: %d\n", ret); return ret; } if (tmp > NFC_MAX_CS) { dev_err(dev, "invalid reg value: %u (max CS = 7)\n", tmp); return -EINVAL; } if (test_and_set_bit(tmp, &nfc->assigned_cs)) { dev_err(dev, "CS %d already assigned\n", tmp); return -EINVAL; } chip->sels[i].cs = tmp; if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) && tmp < 2) { chip->sels[i].rb.type = RB_NATIVE; chip->sels[i].rb.info.nativeid = tmp; } else { ret = of_get_named_gpio(np, "rb-gpios", i); if (ret >= 0) { tmp = ret; chip->sels[i].rb.type = RB_GPIO; chip->sels[i].rb.info.gpio = tmp; ret = devm_gpio_request(dev, tmp, "nand-rb"); if (ret) return ret; ret = gpio_direction_input(tmp); if (ret) return ret; } else { chip->sels[i].rb.type = RB_NONE; } } } timings = onfi_async_timing_mode_to_sdr_timings(0); if (IS_ERR(timings)) { ret = PTR_ERR(timings); dev_err(dev, "could not retrieve timings for ONFI mode 0: %d\n", ret); return ret; } ret = sunxi_nand_chip_set_timings(chip, timings); if (ret) { dev_err(dev, "could not configure chip timings: %d\n", ret); return ret; } nand = &chip->nand; /* Default tR value specified in the ONFI spec (chapter 4.15.1) */ nand->chip_delay = 200; nand->controller = &nfc->controller; /* * Set the ECC mode to the default value in case nothing is specified * in the DT. */ nand->ecc.mode = NAND_ECC_HW; nand->flash_node = np; nand->select_chip = sunxi_nfc_select_chip; nand->cmd_ctrl = sunxi_nfc_cmd_ctrl; nand->read_buf = sunxi_nfc_read_buf; nand->write_buf = sunxi_nfc_write_buf; nand->read_byte = sunxi_nfc_read_byte; mtd = &chip->mtd; mtd->dev.parent = dev; mtd->priv = nand; mtd->owner = THIS_MODULE; ret = nand_scan_ident(mtd, nsels, NULL); if (ret) return ret; if (nand->bbt_options & NAND_BBT_USE_FLASH) nand->bbt_options |= NAND_BBT_NO_OOB; ret = sunxi_nand_chip_init_timings(chip, np); if (ret) { dev_err(dev, "could not configure chip timings: %d\n", ret); return ret; } ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np); if (ret) { dev_err(dev, "ECC init failed: %d\n", ret); return ret; } ret = nand_scan_tail(mtd); if (ret) { dev_err(dev, "nand_scan_tail failed: %d\n", ret); return ret; } ppdata.of_node = np; ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); if (ret) { dev_err(dev, "failed to register mtd device: %d\n", ret); nand_release(mtd); return ret; } list_add_tail(&chip->node, &nfc->chips); return 0; } static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc) { struct device_node *np = dev->of_node; struct device_node *nand_np; int nchips = of_get_child_count(np); int ret; if (nchips > 8) { dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips); return -EINVAL; } for_each_child_of_node(np, nand_np) { ret = sunxi_nand_chip_init(dev, nfc, nand_np); if (ret) return ret; } return 0; } static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc) { struct sunxi_nand_chip *chip; while (!list_empty(&nfc->chips)) { chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip, node); nand_release(&chip->mtd); sunxi_nand_ecc_cleanup(&chip->nand.ecc); list_del(&chip->node); } } static int sunxi_nfc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct resource *r; struct sunxi_nfc *nfc; int irq; int ret; nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); if (!nfc) return -ENOMEM; nfc->dev = dev; spin_lock_init(&nfc->controller.lock); init_waitqueue_head(&nfc->controller.wq); INIT_LIST_HEAD(&nfc->chips); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); nfc->regs = devm_ioremap_resource(dev, r); if (IS_ERR(nfc->regs)) return PTR_ERR(nfc->regs); irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(dev, "failed to retrieve irq\n"); return irq; } nfc->ahb_clk = devm_clk_get(dev, "ahb"); if (IS_ERR(nfc->ahb_clk)) { dev_err(dev, "failed to retrieve ahb clk\n"); return PTR_ERR(nfc->ahb_clk); } ret = clk_prepare_enable(nfc->ahb_clk); if (ret) return ret; nfc->mod_clk = devm_clk_get(dev, "mod"); if (IS_ERR(nfc->mod_clk)) { dev_err(dev, "failed to retrieve mod clk\n"); ret = PTR_ERR(nfc->mod_clk); goto out_ahb_clk_unprepare; } ret = clk_prepare_enable(nfc->mod_clk); if (ret) goto out_ahb_clk_unprepare; ret = sunxi_nfc_rst(nfc); if (ret) goto out_mod_clk_unprepare; writel(0, nfc->regs + NFC_REG_INT); ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt, 0, "sunxi-nand", nfc); if (ret) goto out_mod_clk_unprepare; platform_set_drvdata(pdev, nfc); ret = sunxi_nand_chips_init(dev, nfc); if (ret) { dev_err(dev, "failed to init nand chips\n"); goto out_mod_clk_unprepare; } return 0; out_mod_clk_unprepare: clk_disable_unprepare(nfc->mod_clk); out_ahb_clk_unprepare: clk_disable_unprepare(nfc->ahb_clk); return ret; } static int sunxi_nfc_remove(struct platform_device *pdev) { struct sunxi_nfc *nfc = platform_get_drvdata(pdev); sunxi_nand_chips_cleanup(nfc); return 0; } static const struct of_device_id sunxi_nfc_ids[] = { { .compatible = "allwinner,sun4i-a10-nand" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, sunxi_nfc_ids); static struct platform_driver sunxi_nfc_driver = { .driver = { .name = "sunxi_nand", .of_match_table = sunxi_nfc_ids, }, .probe = sunxi_nfc_probe, .remove = sunxi_nfc_remove, }; module_platform_driver(sunxi_nfc_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Boris BREZILLON"); MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver"); MODULE_ALIAS("platform:sunxi_nand");