/* * Copyright (c) 2008-2009 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "hw.h" static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah, struct ath9k_tx_queue_info *qi) { ath_print(ath9k_hw_common(ah), ATH_DBG_INTERRUPT, "tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", ah->txok_interrupt_mask, ah->txerr_interrupt_mask, ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask, ah->txurn_interrupt_mask); REG_WRITE(ah, AR_IMR_S0, SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK) | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC)); REG_WRITE(ah, AR_IMR_S1, SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR) | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL)); ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN; ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN); REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); } u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q) { return REG_READ(ah, AR_QTXDP(q)); } EXPORT_SYMBOL(ath9k_hw_gettxbuf); void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp) { REG_WRITE(ah, AR_QTXDP(q), txdp); } EXPORT_SYMBOL(ath9k_hw_puttxbuf); void ath9k_hw_txstart(struct ath_hw *ah, u32 q) { ath_print(ath9k_hw_common(ah), ATH_DBG_QUEUE, "Enable TXE on queue: %u\n", q); REG_WRITE(ah, AR_Q_TXE, 1 << q); } EXPORT_SYMBOL(ath9k_hw_txstart); void ath9k_hw_cleartxdesc(struct ath_hw *ah, void *ds) { struct ar5416_desc *ads = AR5416DESC(ds); ads->ds_txstatus0 = ads->ds_txstatus1 = 0; ads->ds_txstatus2 = ads->ds_txstatus3 = 0; ads->ds_txstatus4 = ads->ds_txstatus5 = 0; ads->ds_txstatus6 = ads->ds_txstatus7 = 0; ads->ds_txstatus8 = ads->ds_txstatus9 = 0; } EXPORT_SYMBOL(ath9k_hw_cleartxdesc); u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q) { u32 npend; npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT; if (npend == 0) { if (REG_READ(ah, AR_Q_TXE) & (1 << q)) npend = 1; } return npend; } EXPORT_SYMBOL(ath9k_hw_numtxpending); /** * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level * * @ah: atheros hardware struct * @bIncTrigLevel: whether or not the frame trigger level should be updated * * The frame trigger level specifies the minimum number of bytes, * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO * before the PCU will initiate sending the frame on the air. This can * mean we initiate transmit before a full frame is on the PCU TX FIFO. * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs * first) * * Caution must be taken to ensure to set the frame trigger level based * on the DMA request size. For example if the DMA request size is set to * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because * there need to be enough space in the tx FIFO for the requested transfer * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set * the threshold to a value beyond 6, then the transmit will hang. * * Current dual stream devices have a PCU TX FIFO size of 8 KB. * Current single stream devices have a PCU TX FIFO size of 4 KB, however, * there is a hardware issue which forces us to use 2 KB instead so the * frame trigger level must not exceed 2 KB for these chipsets. */ bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel) { u32 txcfg, curLevel, newLevel; enum ath9k_int omask; if (ah->tx_trig_level >= ah->config.max_txtrig_level) return false; omask = ath9k_hw_set_interrupts(ah, ah->imask & ~ATH9K_INT_GLOBAL); txcfg = REG_READ(ah, AR_TXCFG); curLevel = MS(txcfg, AR_FTRIG); newLevel = curLevel; if (bIncTrigLevel) { if (curLevel < ah->config.max_txtrig_level) newLevel++; } else if (curLevel > MIN_TX_FIFO_THRESHOLD) newLevel--; if (newLevel != curLevel) REG_WRITE(ah, AR_TXCFG, (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG)); ath9k_hw_set_interrupts(ah, omask); ah->tx_trig_level = newLevel; return newLevel != curLevel; } EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel); bool ath9k_hw_stoptxdma(struct ath_hw *ah, u32 q) { #define ATH9K_TX_STOP_DMA_TIMEOUT 4000 /* usec */ #define ATH9K_TIME_QUANTUM 100 /* usec */ struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_capabilities *pCap = &ah->caps; struct ath9k_tx_queue_info *qi; u32 tsfLow, j, wait; u32 wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM; if (q >= pCap->total_queues) { ath_print(common, ATH_DBG_QUEUE, "Stopping TX DMA, " "invalid queue: %u\n", q); return false; } qi = &ah->txq[q]; if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) { ath_print(common, ATH_DBG_QUEUE, "Stopping TX DMA, " "inactive queue: %u\n", q); return false; } REG_WRITE(ah, AR_Q_TXD, 1 << q); for (wait = wait_time; wait != 0; wait--) { if (ath9k_hw_numtxpending(ah, q) == 0) break; udelay(ATH9K_TIME_QUANTUM); } if (ath9k_hw_numtxpending(ah, q)) { ath_print(common, ATH_DBG_QUEUE, "%s: Num of pending TX Frames %d on Q %d\n", __func__, ath9k_hw_numtxpending(ah, q), q); for (j = 0; j < 2; j++) { tsfLow = REG_READ(ah, AR_TSF_L32); REG_WRITE(ah, AR_QUIET2, SM(10, AR_QUIET2_QUIET_DUR)); REG_WRITE(ah, AR_QUIET_PERIOD, 100); REG_WRITE(ah, AR_NEXT_QUIET_TIMER, tsfLow >> 10); REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN); if ((REG_READ(ah, AR_TSF_L32) >> 10) == (tsfLow >> 10)) break; ath_print(common, ATH_DBG_QUEUE, "TSF has moved while trying to set " "quiet time TSF: 0x%08x\n", tsfLow); } REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH); udelay(200); REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN); wait = wait_time; while (ath9k_hw_numtxpending(ah, q)) { if ((--wait) == 0) { ath_print(common, ATH_DBG_FATAL, "Failed to stop TX DMA in 100 " "msec after killing last frame\n"); break; } udelay(ATH9K_TIME_QUANTUM); } REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH); } REG_WRITE(ah, AR_Q_TXD, 0); return wait != 0; #undef ATH9K_TX_STOP_DMA_TIMEOUT #undef ATH9K_TIME_QUANTUM } EXPORT_SYMBOL(ath9k_hw_stoptxdma); void ath9k_hw_gettxintrtxqs(struct ath_hw *ah, u32 *txqs) { *txqs &= ah->intr_txqs; ah->intr_txqs &= ~(*txqs); } EXPORT_SYMBOL(ath9k_hw_gettxintrtxqs); bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q, const struct ath9k_tx_queue_info *qinfo) { u32 cw; struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_capabilities *pCap = &ah->caps; struct ath9k_tx_queue_info *qi; if (q >= pCap->total_queues) { ath_print(common, ATH_DBG_QUEUE, "Set TXQ properties, " "invalid queue: %u\n", q); return false; } qi = &ah->txq[q]; if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) { ath_print(common, ATH_DBG_QUEUE, "Set TXQ properties, " "inactive queue: %u\n", q); return false; } ath_print(common, ATH_DBG_QUEUE, "Set queue properties for: %u\n", q); qi->tqi_ver = qinfo->tqi_ver; qi->tqi_subtype = qinfo->tqi_subtype; qi->tqi_qflags = qinfo->tqi_qflags; qi->tqi_priority = qinfo->tqi_priority; if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT) qi->tqi_aifs = min(qinfo->tqi_aifs, 255U); else qi->tqi_aifs = INIT_AIFS; if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) { cw = min(qinfo->tqi_cwmin, 1024U); qi->tqi_cwmin = 1; while (qi->tqi_cwmin < cw) qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1; } else qi->tqi_cwmin = qinfo->tqi_cwmin; if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) { cw = min(qinfo->tqi_cwmax, 1024U); qi->tqi_cwmax = 1; while (qi->tqi_cwmax < cw) qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1; } else qi->tqi_cwmax = INIT_CWMAX; if (qinfo->tqi_shretry != 0) qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U); else qi->tqi_shretry = INIT_SH_RETRY; if (qinfo->tqi_lgretry != 0) qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U); else qi->tqi_lgretry = INIT_LG_RETRY; qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod; qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit; qi->tqi_burstTime = qinfo->tqi_burstTime; qi->tqi_readyTime = qinfo->tqi_readyTime; switch (qinfo->tqi_subtype) { case ATH9K_WME_UPSD: if (qi->tqi_type == ATH9K_TX_QUEUE_DATA) qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS; break; default: break; } return true; } EXPORT_SYMBOL(ath9k_hw_set_txq_props); bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q, struct ath9k_tx_queue_info *qinfo) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_capabilities *pCap = &ah->caps; struct ath9k_tx_queue_info *qi; if (q >= pCap->total_queues) { ath_print(common, ATH_DBG_QUEUE, "Get TXQ properties, " "invalid queue: %u\n", q); return false; } qi = &ah->txq[q]; if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) { ath_print(common, ATH_DBG_QUEUE, "Get TXQ properties, " "inactive queue: %u\n", q); return false; } qinfo->tqi_qflags = qi->tqi_qflags; qinfo->tqi_ver = qi->tqi_ver; qinfo->tqi_subtype = qi->tqi_subtype; qinfo->tqi_qflags = qi->tqi_qflags; qinfo->tqi_priority = qi->tqi_priority; qinfo->tqi_aifs = qi->tqi_aifs; qinfo->tqi_cwmin = qi->tqi_cwmin; qinfo->tqi_cwmax = qi->tqi_cwmax; qinfo->tqi_shretry = qi->tqi_shretry; qinfo->tqi_lgretry = qi->tqi_lgretry; qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod; qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit; qinfo->tqi_burstTime = qi->tqi_burstTime; qinfo->tqi_readyTime = qi->tqi_readyTime; return true; } EXPORT_SYMBOL(ath9k_hw_get_txq_props); int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type, const struct ath9k_tx_queue_info *qinfo) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_tx_queue_info *qi; struct ath9k_hw_capabilities *pCap = &ah->caps; int q; switch (type) { case ATH9K_TX_QUEUE_BEACON: q = pCap->total_queues - 1; break; case ATH9K_TX_QUEUE_CAB: q = pCap->total_queues - 2; break; case ATH9K_TX_QUEUE_PSPOLL: q = 1; break; case ATH9K_TX_QUEUE_UAPSD: q = pCap->total_queues - 3; break; case ATH9K_TX_QUEUE_DATA: for (q = 0; q < pCap->total_queues; q++) if (ah->txq[q].tqi_type == ATH9K_TX_QUEUE_INACTIVE) break; if (q == pCap->total_queues) { ath_print(common, ATH_DBG_FATAL, "No available TX queue\n"); return -1; } break; default: ath_print(common, ATH_DBG_FATAL, "Invalid TX queue type: %u\n", type); return -1; } ath_print(common, ATH_DBG_QUEUE, "Setup TX queue: %u\n", q); qi = &ah->txq[q]; if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) { ath_print(common, ATH_DBG_FATAL, "TX queue: %u already active\n", q); return -1; } memset(qi, 0, sizeof(struct ath9k_tx_queue_info)); qi->tqi_type = type; if (qinfo == NULL) { qi->tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE | TXQ_FLAG_TXERRINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE | TXQ_FLAG_TXURNINT_ENABLE; qi->tqi_aifs = INIT_AIFS; qi->tqi_cwmin = ATH9K_TXQ_USEDEFAULT; qi->tqi_cwmax = INIT_CWMAX; qi->tqi_shretry = INIT_SH_RETRY; qi->tqi_lgretry = INIT_LG_RETRY; qi->tqi_physCompBuf = 0; } else { qi->tqi_physCompBuf = qinfo->tqi_physCompBuf; (void) ath9k_hw_set_txq_props(ah, q, qinfo); } return q; } EXPORT_SYMBOL(ath9k_hw_setuptxqueue); bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q) { struct ath9k_hw_capabilities *pCap = &ah->caps; struct ath_common *common = ath9k_hw_common(ah); struct ath9k_tx_queue_info *qi; if (q >= pCap->total_queues) { ath_print(common, ATH_DBG_QUEUE, "Release TXQ, " "invalid queue: %u\n", q); return false; } qi = &ah->txq[q]; if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) { ath_print(common, ATH_DBG_QUEUE, "Release TXQ, " "inactive queue: %u\n", q); return false; } ath_print(common, ATH_DBG_QUEUE, "Release TX queue: %u\n", q); qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE; ah->txok_interrupt_mask &= ~(1 << q); ah->txerr_interrupt_mask &= ~(1 << q); ah->txdesc_interrupt_mask &= ~(1 << q); ah->txeol_interrupt_mask &= ~(1 << q); ah->txurn_interrupt_mask &= ~(1 << q); ath9k_hw_set_txq_interrupts(ah, qi); return true; } EXPORT_SYMBOL(ath9k_hw_releasetxqueue); bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q) { struct ath9k_hw_capabilities *pCap = &ah->caps; struct ath_common *common = ath9k_hw_common(ah); struct ath9k_channel *chan = ah->curchan; struct ath9k_tx_queue_info *qi; u32 cwMin, chanCwMin, value; if (q >= pCap->total_queues) { ath_print(common, ATH_DBG_QUEUE, "Reset TXQ, " "invalid queue: %u\n", q); return false; } qi = &ah->txq[q]; if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) { ath_print(common, ATH_DBG_QUEUE, "Reset TXQ, " "inactive queue: %u\n", q); return true; } ath_print(common, ATH_DBG_QUEUE, "Reset TX queue: %u\n", q); if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) { if (chan && IS_CHAN_B(chan)) chanCwMin = INIT_CWMIN_11B; else chanCwMin = INIT_CWMIN; for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1); } else cwMin = qi->tqi_cwmin; REG_WRITE(ah, AR_DLCL_IFS(q), SM(cwMin, AR_D_LCL_IFS_CWMIN) | SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS)); REG_WRITE(ah, AR_DRETRY_LIMIT(q), SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)); REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ); REG_WRITE(ah, AR_DMISC(q), AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2); if (qi->tqi_cbrPeriod) { REG_WRITE(ah, AR_QCBRCFG(q), SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) | SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH)); REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_FSP_CBR | (qi->tqi_cbrOverflowLimit ? AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0)); } if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) { REG_WRITE(ah, AR_QRDYTIMECFG(q), SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) | AR_Q_RDYTIMECFG_EN); } REG_WRITE(ah, AR_DCHNTIME(q), SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) | (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0)); if (qi->tqi_burstTime && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)) { REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_RDYTIME_EXP_POLICY); } if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE) { REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q)) | AR_D_MISC_POST_FR_BKOFF_DIS); } if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE) { REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q)) | AR_D_MISC_FRAG_BKOFF_EN); } switch (qi->tqi_type) { case ATH9K_TX_QUEUE_BEACON: REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE | AR_Q_MISC_CBR_INCR_DIS1); REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q)) | (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL << AR_D_MISC_ARB_LOCKOUT_CNTRL_S) | AR_D_MISC_BEACON_USE | AR_D_MISC_POST_FR_BKOFF_DIS); break; case ATH9K_TX_QUEUE_CAB: REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 | AR_Q_MISC_CBR_INCR_DIS0); value = (qi->tqi_readyTime - (ah->config.sw_beacon_response_time - ah->config.dma_beacon_response_time) - ah->config.additional_swba_backoff) * 1024; REG_WRITE(ah, AR_QRDYTIMECFG(q), value | AR_Q_RDYTIMECFG_EN); REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q)) | (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL << AR_D_MISC_ARB_LOCKOUT_CNTRL_S)); break; case ATH9K_TX_QUEUE_PSPOLL: REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_CBR_INCR_DIS1); break; case ATH9K_TX_QUEUE_UAPSD: REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q)) | AR_D_MISC_POST_FR_BKOFF_DIS); break; default: break; } if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) { REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q)) | SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, AR_D_MISC_ARB_LOCKOUT_CNTRL) | AR_D_MISC_POST_FR_BKOFF_DIS); } if (qi->tqi_qflags & TXQ_FLAG_TXOKINT_ENABLE) ah->txok_interrupt_mask |= 1 << q; else ah->txok_interrupt_mask &= ~(1 << q); if (qi->tqi_qflags & TXQ_FLAG_TXERRINT_ENABLE) ah->txerr_interrupt_mask |= 1 << q; else ah->txerr_interrupt_mask &= ~(1 << q); if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE) ah->txdesc_interrupt_mask |= 1 << q; else ah->txdesc_interrupt_mask &= ~(1 << q); if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE) ah->txeol_interrupt_mask |= 1 << q; else ah->txeol_interrupt_mask &= ~(1 << q); if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE) ah->txurn_interrupt_mask |= 1 << q; else ah->txurn_interrupt_mask &= ~(1 << q); ath9k_hw_set_txq_interrupts(ah, qi); return true; } EXPORT_SYMBOL(ath9k_hw_resettxqueue); int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds, struct ath_rx_status *rs, u64 tsf) { struct ar5416_desc ads; struct ar5416_desc *adsp = AR5416DESC(ds); u32 phyerr; if ((adsp->ds_rxstatus8 & AR_RxDone) == 0) return -EINPROGRESS; ads.u.rx = adsp->u.rx; rs->rs_status = 0; rs->rs_flags = 0; rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen; rs->rs_tstamp = ads.AR_RcvTimestamp; if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) { rs->rs_rssi = ATH9K_RSSI_BAD; rs->rs_rssi_ctl0 = ATH9K_RSSI_BAD; rs->rs_rssi_ctl1 = ATH9K_RSSI_BAD; rs->rs_rssi_ctl2 = ATH9K_RSSI_BAD; rs->rs_rssi_ext0 = ATH9K_RSSI_BAD; rs->rs_rssi_ext1 = ATH9K_RSSI_BAD; rs->rs_rssi_ext2 = ATH9K_RSSI_BAD; } else { rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined); rs->rs_rssi_ctl0 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt00); rs->rs_rssi_ctl1 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt01); rs->rs_rssi_ctl2 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt02); rs->rs_rssi_ext0 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt10); rs->rs_rssi_ext1 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt11); rs->rs_rssi_ext2 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt12); } if (ads.ds_rxstatus8 & AR_RxKeyIdxValid) rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx); else rs->rs_keyix = ATH9K_RXKEYIX_INVALID; rs->rs_rate = RXSTATUS_RATE(ah, (&ads)); rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0; rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0; rs->rs_moreaggr = (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0; rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna); rs->rs_flags = (ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0; rs->rs_flags |= (ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0; if (ads.ds_rxstatus8 & AR_PreDelimCRCErr) rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE; if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST; if (ads.ds_rxstatus8 & AR_DecryptBusyErr) rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY; if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) { if (ads.ds_rxstatus8 & AR_CRCErr) rs->rs_status |= ATH9K_RXERR_CRC; else if (ads.ds_rxstatus8 & AR_PHYErr) { rs->rs_status |= ATH9K_RXERR_PHY; phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode); rs->rs_phyerr = phyerr; } else if (ads.ds_rxstatus8 & AR_DecryptCRCErr) rs->rs_status |= ATH9K_RXERR_DECRYPT; else if (ads.ds_rxstatus8 & AR_MichaelErr) rs->rs_status |= ATH9K_RXERR_MIC; } return 0; } EXPORT_SYMBOL(ath9k_hw_rxprocdesc); /* * This can stop or re-enables RX. * * If bool is set this will kill any frame which is currently being * transferred between the MAC and baseband and also prevent any new * frames from getting started. */ bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set) { u32 reg; if (set) { REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE, 0, AH_WAIT_TIMEOUT)) { REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); reg = REG_READ(ah, AR_OBS_BUS_1); ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL, "RX failed to go idle in 10 ms RXSM=0x%x\n", reg); return false; } } else { REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); } return true; } EXPORT_SYMBOL(ath9k_hw_setrxabort); void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp) { REG_WRITE(ah, AR_RXDP, rxdp); } EXPORT_SYMBOL(ath9k_hw_putrxbuf); void ath9k_hw_startpcureceive(struct ath_hw *ah) { ath9k_enable_mib_counters(ah); ath9k_ani_reset(ah); REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); } EXPORT_SYMBOL(ath9k_hw_startpcureceive); void ath9k_hw_stoppcurecv(struct ath_hw *ah) { REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS); ath9k_hw_disable_mib_counters(ah); } EXPORT_SYMBOL(ath9k_hw_stoppcurecv); bool ath9k_hw_stopdmarecv(struct ath_hw *ah) { #define AH_RX_STOP_DMA_TIMEOUT 10000 /* usec */ #define AH_RX_TIME_QUANTUM 100 /* usec */ struct ath_common *common = ath9k_hw_common(ah); int i; REG_WRITE(ah, AR_CR, AR_CR_RXD); /* Wait for rx enable bit to go low */ for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) { if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0) break; udelay(AH_TIME_QUANTUM); } if (i == 0) { ath_print(common, ATH_DBG_FATAL, "DMA failed to stop in %d ms " "AR_CR=0x%08x AR_DIAG_SW=0x%08x\n", AH_RX_STOP_DMA_TIMEOUT / 1000, REG_READ(ah, AR_CR), REG_READ(ah, AR_DIAG_SW)); return false; } else { return true; } #undef AH_RX_TIME_QUANTUM #undef AH_RX_STOP_DMA_TIMEOUT } EXPORT_SYMBOL(ath9k_hw_stopdmarecv); int ath9k_hw_beaconq_setup(struct ath_hw *ah) { struct ath9k_tx_queue_info qi; memset(&qi, 0, sizeof(qi)); qi.tqi_aifs = 1; qi.tqi_cwmin = 0; qi.tqi_cwmax = 0; /* NB: don't enable any interrupts */ return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi); } EXPORT_SYMBOL(ath9k_hw_beaconq_setup); bool ath9k_hw_intrpend(struct ath_hw *ah) { u32 host_isr; if (AR_SREV_9100(ah)) return true; host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE); if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS)) return true; host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE); if ((host_isr & AR_INTR_SYNC_DEFAULT) && (host_isr != AR_INTR_SPURIOUS)) return true; return false; } EXPORT_SYMBOL(ath9k_hw_intrpend); enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints) { enum ath9k_int omask = ah->imask; u32 mask, mask2; struct ath9k_hw_capabilities *pCap = &ah->caps; struct ath_common *common = ath9k_hw_common(ah); ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints); if (omask & ATH9K_INT_GLOBAL) { ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n"); REG_WRITE(ah, AR_IER, AR_IER_DISABLE); (void) REG_READ(ah, AR_IER); if (!AR_SREV_9100(ah)) { REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0); (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE); REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); (void) REG_READ(ah, AR_INTR_SYNC_ENABLE); } } /* TODO: global int Ref count */ mask = ints & ATH9K_INT_COMMON; mask2 = 0; if (ints & ATH9K_INT_TX) { if (ah->config.tx_intr_mitigation) mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM; if (ah->txok_interrupt_mask) mask |= AR_IMR_TXOK; if (ah->txdesc_interrupt_mask) mask |= AR_IMR_TXDESC; if (ah->txerr_interrupt_mask) mask |= AR_IMR_TXERR; if (ah->txeol_interrupt_mask) mask |= AR_IMR_TXEOL; } if (ints & ATH9K_INT_RX) { if (AR_SREV_9300_20_OR_LATER(ah)) { mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP; if (ah->config.rx_intr_mitigation) { mask &= ~AR_IMR_RXOK_LP; mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM; } else { mask |= AR_IMR_RXOK_LP; } } else { if (ah->config.rx_intr_mitigation) mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM; else mask |= AR_IMR_RXOK | AR_IMR_RXDESC; } if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) mask |= AR_IMR_GENTMR; } if (ints & (ATH9K_INT_BMISC)) { mask |= AR_IMR_BCNMISC; if (ints & ATH9K_INT_TIM) mask2 |= AR_IMR_S2_TIM; if (ints & ATH9K_INT_DTIM) mask2 |= AR_IMR_S2_DTIM; if (ints & ATH9K_INT_DTIMSYNC) mask2 |= AR_IMR_S2_DTIMSYNC; if (ints & ATH9K_INT_CABEND) mask2 |= AR_IMR_S2_CABEND; if (ints & ATH9K_INT_TSFOOR) mask2 |= AR_IMR_S2_TSFOOR; } if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) { mask |= AR_IMR_BCNMISC; if (ints & ATH9K_INT_GTT) mask2 |= AR_IMR_S2_GTT; if (ints & ATH9K_INT_CST) mask2 |= AR_IMR_S2_CST; } ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask); REG_WRITE(ah, AR_IMR, mask); ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST); ah->imrs2_reg |= mask2; REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { if (ints & ATH9K_INT_TIM_TIMER) REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER); else REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER); } if (ints & ATH9K_INT_GLOBAL) { ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n"); REG_WRITE(ah, AR_IER, AR_IER_ENABLE); if (!AR_SREV_9100(ah)) { REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ); REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ); REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); REG_WRITE(ah, AR_INTR_SYNC_MASK, AR_INTR_SYNC_DEFAULT); } ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n", REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER)); } return omask; } EXPORT_SYMBOL(ath9k_hw_set_interrupts);