#ifndef _ASM_IA64_TLB_H #define _ASM_IA64_TLB_H /* * Based on . * * Copyright (C) 2002-2003 Hewlett-Packard Co * David Mosberger-Tang */ /* * Removing a translation from a page table (including TLB-shootdown) is a four-step * procedure: * * (1) Flush (virtual) caches --- ensures virtual memory is coherent with kernel memory * (this is a no-op on ia64). * (2) Clear the relevant portions of the page-table * (3) Flush the TLBs --- ensures that stale content is gone from CPU TLBs * (4) Release the pages that were freed up in step (2). * * Note that the ordering of these steps is crucial to avoid races on MP machines. * * The Linux kernel defines several platform-specific hooks for TLB-shootdown. When * unmapping a portion of the virtual address space, these hooks are called according to * the following template: * * tlb <- tlb_gather_mmu(mm, start, end); // start unmap for address space MM * { * for each vma that needs a shootdown do { * tlb_start_vma(tlb, vma); * for each page-table-entry PTE that needs to be removed do { * tlb_remove_tlb_entry(tlb, pte, address); * if (pte refers to a normal page) { * tlb_remove_page(tlb, page); * } * } * tlb_end_vma(tlb, vma); * } * } * tlb_finish_mmu(tlb, start, end); // finish unmap for address space MM */ #include #include #include #include #include #include #include /* * If we can't allocate a page to make a big batch of page pointers * to work on, then just handle a few from the on-stack structure. */ #define IA64_GATHER_BUNDLE 8 struct mmu_gather { struct mm_struct *mm; unsigned int nr; unsigned int max; unsigned char fullmm; /* non-zero means full mm flush */ unsigned char need_flush; /* really unmapped some PTEs? */ unsigned long start, end; unsigned long start_addr; unsigned long end_addr; struct page **pages; struct page *local[IA64_GATHER_BUNDLE]; }; struct ia64_tr_entry { u64 ifa; u64 itir; u64 pte; u64 rr; }; /*Record for tr entry!*/ extern int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size); extern void ia64_ptr_entry(u64 target_mask, int slot); extern struct ia64_tr_entry *ia64_idtrs[NR_CPUS]; /* region register macros */ #define RR_TO_VE(val) (((val) >> 0) & 0x0000000000000001) #define RR_VE(val) (((val) & 0x0000000000000001) << 0) #define RR_VE_MASK 0x0000000000000001L #define RR_VE_SHIFT 0 #define RR_TO_PS(val) (((val) >> 2) & 0x000000000000003f) #define RR_PS(val) (((val) & 0x000000000000003f) << 2) #define RR_PS_MASK 0x00000000000000fcL #define RR_PS_SHIFT 2 #define RR_RID_MASK 0x00000000ffffff00L #define RR_TO_RID(val) ((val >> 8) & 0xffffff) static inline void ia64_tlb_flush_mmu_tlbonly(struct mmu_gather *tlb, unsigned long start, unsigned long end) { tlb->need_flush = 0; if (tlb->fullmm) { /* * Tearing down the entire address space. This happens both as a result * of exit() and execve(). The latter case necessitates the call to * flush_tlb_mm() here. */ flush_tlb_mm(tlb->mm); } else if (unlikely (end - start >= 1024*1024*1024*1024UL || REGION_NUMBER(start) != REGION_NUMBER(end - 1))) { /* * If we flush more than a tera-byte or across regions, we're probably * better off just flushing the entire TLB(s). This should be very rare * and is not worth optimizing for. */ flush_tlb_all(); } else { /* * XXX fix me: flush_tlb_range() should take an mm pointer instead of a * vma pointer. */ struct vm_area_struct vma; vma.vm_mm = tlb->mm; /* flush the address range from the tlb: */ flush_tlb_range(&vma, start, end); /* now flush the virt. page-table area mapping the address range: */ flush_tlb_range(&vma, ia64_thash(start), ia64_thash(end)); } } static inline void ia64_tlb_flush_mmu_free(struct mmu_gather *tlb) { unsigned long i; unsigned int nr; /* lastly, release the freed pages */ nr = tlb->nr; tlb->nr = 0; tlb->start_addr = ~0UL; for (i = 0; i < nr; ++i) free_page_and_swap_cache(tlb->pages[i]); } /* * Flush the TLB for address range START to END and, if not in fast mode, release the * freed pages that where gathered up to this point. */ static inline void ia64_tlb_flush_mmu (struct mmu_gather *tlb, unsigned long start, unsigned long end) { if (!tlb->need_flush) return; ia64_tlb_flush_mmu_tlbonly(tlb, start, end); ia64_tlb_flush_mmu_free(tlb); } static inline void __tlb_alloc_page(struct mmu_gather *tlb) { unsigned long addr = __get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); if (addr) { tlb->pages = (void *)addr; tlb->max = PAGE_SIZE / sizeof(void *); } } static inline void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) { tlb->mm = mm; tlb->max = ARRAY_SIZE(tlb->local); tlb->pages = tlb->local; tlb->nr = 0; tlb->fullmm = !(start | (end+1)); tlb->start = start; tlb->end = end; tlb->start_addr = ~0UL; } /* * Called at the end of the shootdown operation to free up any resources that were * collected. */ static inline void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) { /* * Note: tlb->nr may be 0 at this point, so we can't rely on tlb->start_addr and * tlb->end_addr. */ ia64_tlb_flush_mmu(tlb, start, end); /* keep the page table cache within bounds */ check_pgt_cache(); if (tlb->pages != tlb->local) free_pages((unsigned long)tlb->pages, 0); } /* * Logically, this routine frees PAGE. On MP machines, the actual freeing of the page * must be delayed until after the TLB has been flushed (see comments at the beginning of * this file). */ static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page) { if (tlb->nr == tlb->max) return true; tlb->need_flush = 1; if (!tlb->nr && tlb->pages == tlb->local) __tlb_alloc_page(tlb); tlb->pages[tlb->nr++] = page; return false; } static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) { ia64_tlb_flush_mmu_tlbonly(tlb, tlb->start_addr, tlb->end_addr); } static inline void tlb_flush_mmu_free(struct mmu_gather *tlb) { ia64_tlb_flush_mmu_free(tlb); } static inline void tlb_flush_mmu(struct mmu_gather *tlb) { ia64_tlb_flush_mmu(tlb, tlb->start_addr, tlb->end_addr); } static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page) { if (__tlb_remove_page(tlb, page)) { tlb_flush_mmu(tlb); __tlb_remove_page(tlb, page); } } static inline bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) { return __tlb_remove_page(tlb, page); } static inline bool __tlb_remove_pte_page(struct mmu_gather *tlb, struct page *page) { return __tlb_remove_page(tlb, page); } static inline void tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) { return tlb_remove_page(tlb, page); } /* * Remove TLB entry for PTE mapped at virtual address ADDRESS. This is called for any * PTE, not just those pointing to (normal) physical memory. */ static inline void __tlb_remove_tlb_entry (struct mmu_gather *tlb, pte_t *ptep, unsigned long address) { if (tlb->start_addr == ~0UL) tlb->start_addr = address; tlb->end_addr = address + PAGE_SIZE; } #define tlb_migrate_finish(mm) platform_tlb_migrate_finish(mm) #define tlb_start_vma(tlb, vma) do { } while (0) #define tlb_end_vma(tlb, vma) do { } while (0) #define tlb_remove_tlb_entry(tlb, ptep, addr) \ do { \ tlb->need_flush = 1; \ __tlb_remove_tlb_entry(tlb, ptep, addr); \ } while (0) #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \ tlb_remove_tlb_entry(tlb, ptep, address) #define pte_free_tlb(tlb, ptep, address) \ do { \ tlb->need_flush = 1; \ __pte_free_tlb(tlb, ptep, address); \ } while (0) #define pmd_free_tlb(tlb, ptep, address) \ do { \ tlb->need_flush = 1; \ __pmd_free_tlb(tlb, ptep, address); \ } while (0) #define pud_free_tlb(tlb, pudp, address) \ do { \ tlb->need_flush = 1; \ __pud_free_tlb(tlb, pudp, address); \ } while (0) #endif /* _ASM_IA64_TLB_H */