/**************************************************************************** * Driver for Solarflare Solarstorm network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2005-2011 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include #include #include #include #include #include #include #include #include #include #include "net_driver.h" #include "efx.h" #include "nic.h" #include "selftest.h" #include "workarounds.h" /* Number of RX descriptors pushed at once. */ #define EFX_RX_BATCH 8 /* Maximum length for an RX descriptor sharing a page */ #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state) \ - EFX_PAGE_IP_ALIGN) /* Size of buffer allocated for skb header area. */ #define EFX_SKB_HEADERS 64u /* This is the percentage fill level below which new RX descriptors * will be added to the RX descriptor ring. */ static unsigned int rx_refill_threshold; /* * RX maximum head room required. * * This must be at least 1 to prevent overflow and at least 2 to allow * pipelined receives. */ #define EFX_RXD_HEAD_ROOM 2 /* Offset of ethernet header within page */ static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx, struct efx_rx_buffer *buf) { return buf->page_offset + efx->type->rx_buffer_hash_size; } static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf) { return page_address(buf->page) + buf->page_offset; } static inline u32 efx_rx_buf_hash(const u8 *eh) { /* The ethernet header is always directly after any hash. */ #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0 return __le32_to_cpup((const __le32 *)(eh - 4)); #else const u8 *data = eh - 4; return (u32)data[0] | (u32)data[1] << 8 | (u32)data[2] << 16 | (u32)data[3] << 24; #endif } /** * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers * * @rx_queue: Efx RX queue * * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA, * and populates struct efx_rx_buffers for each one. Return a negative error * code or 0 on success. If a single page can be split between two buffers, * then the page will either be inserted fully, or not at at all. */ static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; struct efx_rx_buffer *rx_buf; struct page *page; unsigned int page_offset; struct efx_rx_page_state *state; dma_addr_t dma_addr; unsigned index, count; /* We can split a page between two buffers */ BUILD_BUG_ON(EFX_RX_BATCH & 1); for (count = 0; count < EFX_RX_BATCH; ++count) { page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC, efx->rx_buffer_order); if (unlikely(page == NULL)) return -ENOMEM; dma_addr = dma_map_page(&efx->pci_dev->dev, page, 0, PAGE_SIZE << efx->rx_buffer_order, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&efx->pci_dev->dev, dma_addr))) { __free_pages(page, efx->rx_buffer_order); return -EIO; } state = page_address(page); state->refcnt = 0; state->dma_addr = dma_addr; dma_addr += sizeof(struct efx_rx_page_state); page_offset = sizeof(struct efx_rx_page_state); split: index = rx_queue->added_count & rx_queue->ptr_mask; rx_buf = efx_rx_buffer(rx_queue, index); rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN; rx_buf->page = page; rx_buf->page_offset = page_offset + EFX_PAGE_IP_ALIGN; rx_buf->len = efx->rx_dma_len; rx_buf->flags = 0; ++rx_queue->added_count; ++state->refcnt; if ((~count & 1) && (efx->rx_dma_len <= EFX_RX_HALF_PAGE)) { /* Use the second half of the page */ get_page(page); dma_addr += (PAGE_SIZE >> 1); page_offset += (PAGE_SIZE >> 1); ++count; goto split; } } return 0; } static void efx_unmap_rx_buffer(struct efx_nic *efx, struct efx_rx_buffer *rx_buf, unsigned int used_len) { if (rx_buf->page) { struct efx_rx_page_state *state; state = page_address(rx_buf->page); if (--state->refcnt == 0) { dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, PAGE_SIZE << efx->rx_buffer_order, DMA_FROM_DEVICE); } else if (used_len) { dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, used_len, DMA_FROM_DEVICE); } } } static void efx_free_rx_buffer(struct efx_nic *efx, struct efx_rx_buffer *rx_buf) { if (rx_buf->page) { __free_pages(rx_buf->page, efx->rx_buffer_order); rx_buf->page = NULL; } } static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) { efx_unmap_rx_buffer(rx_queue->efx, rx_buf, 0); efx_free_rx_buffer(rx_queue->efx, rx_buf); } /* Attempt to resurrect the other receive buffer that used to share this page, * which had previously been passed up to the kernel and freed. */ static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) { struct efx_rx_page_state *state = page_address(rx_buf->page); struct efx_rx_buffer *new_buf; unsigned fill_level, index; /* +1 because efx_rx_packet() incremented removed_count. +1 because * we'd like to insert an additional descriptor whilst leaving * EFX_RXD_HEAD_ROOM for the non-recycle path */ fill_level = (rx_queue->added_count - rx_queue->removed_count + 2); if (unlikely(fill_level > rx_queue->max_fill)) { /* We could place "state" on a list, and drain the list in * efx_fast_push_rx_descriptors(). For now, this will do. */ return; } ++state->refcnt; get_page(rx_buf->page); index = rx_queue->added_count & rx_queue->ptr_mask; new_buf = efx_rx_buffer(rx_queue, index); new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1); new_buf->page = rx_buf->page; new_buf->len = rx_buf->len; ++rx_queue->added_count; } /* Recycle the given rx buffer directly back into the rx_queue. There is * always room to add this buffer, because we've just popped a buffer. */ static void efx_recycle_rx_buffer(struct efx_channel *channel, struct efx_rx_buffer *rx_buf) { struct efx_nic *efx = channel->efx; struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); struct efx_rx_buffer *new_buf; unsigned index; rx_buf->flags = 0; if (efx->rx_dma_len <= EFX_RX_HALF_PAGE && page_count(rx_buf->page) == 1) efx_resurrect_rx_buffer(rx_queue, rx_buf); index = rx_queue->added_count & rx_queue->ptr_mask; new_buf = efx_rx_buffer(rx_queue, index); memcpy(new_buf, rx_buf, sizeof(*new_buf)); rx_buf->page = NULL; ++rx_queue->added_count; } /** * efx_fast_push_rx_descriptors - push new RX descriptors quickly * @rx_queue: RX descriptor queue * * This will aim to fill the RX descriptor queue up to * @rx_queue->@max_fill. If there is insufficient atomic * memory to do so, a slow fill will be scheduled. * * The caller must provide serialisation (none is used here). In practise, * this means this function must run from the NAPI handler, or be called * when NAPI is disabled. */ void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue) { unsigned fill_level; int space, rc = 0; /* Calculate current fill level, and exit if we don't need to fill */ fill_level = (rx_queue->added_count - rx_queue->removed_count); EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries); if (fill_level >= rx_queue->fast_fill_trigger) goto out; /* Record minimum fill level */ if (unlikely(fill_level < rx_queue->min_fill)) { if (fill_level) rx_queue->min_fill = fill_level; } space = rx_queue->max_fill - fill_level; EFX_BUG_ON_PARANOID(space < EFX_RX_BATCH); netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, "RX queue %d fast-filling descriptor ring from" " level %d to level %d\n", efx_rx_queue_index(rx_queue), fill_level, rx_queue->max_fill); do { rc = efx_init_rx_buffers(rx_queue); if (unlikely(rc)) { /* Ensure that we don't leave the rx queue empty */ if (rx_queue->added_count == rx_queue->removed_count) efx_schedule_slow_fill(rx_queue); goto out; } } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH); netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, "RX queue %d fast-filled descriptor ring " "to level %d\n", efx_rx_queue_index(rx_queue), rx_queue->added_count - rx_queue->removed_count); out: if (rx_queue->notified_count != rx_queue->added_count) efx_nic_notify_rx_desc(rx_queue); } void efx_rx_slow_fill(unsigned long context) { struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context; /* Post an event to cause NAPI to run and refill the queue */ efx_nic_generate_fill_event(rx_queue); ++rx_queue->slow_fill_count; } static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf, int len) { struct efx_nic *efx = rx_queue->efx; unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; if (likely(len <= max_len)) return; /* The packet must be discarded, but this is only a fatal error * if the caller indicated it was */ rx_buf->flags |= EFX_RX_PKT_DISCARD; if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) { if (net_ratelimit()) netif_err(efx, rx_err, efx->net_dev, " RX queue %d seriously overlength " "RX event (0x%x > 0x%x+0x%x). Leaking\n", efx_rx_queue_index(rx_queue), len, max_len, efx->type->rx_buffer_padding); efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); } else { if (net_ratelimit()) netif_err(efx, rx_err, efx->net_dev, " RX queue %d overlength RX event " "(0x%x > 0x%x)\n", efx_rx_queue_index(rx_queue), len, max_len); } efx_rx_queue_channel(rx_queue)->n_rx_overlength++; } /* Pass a received packet up through GRO. GRO can handle pages * regardless of checksum state and skbs with a good checksum. */ static void efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, const u8 *eh) { struct napi_struct *napi = &channel->napi_str; gro_result_t gro_result; struct efx_nic *efx = channel->efx; struct page *page = rx_buf->page; struct sk_buff *skb; rx_buf->page = NULL; skb = napi_get_frags(napi); if (!skb) { put_page(page); return; } if (efx->net_dev->features & NETIF_F_RXHASH) skb->rxhash = efx_rx_buf_hash(eh); skb_fill_page_desc(skb, 0, page, efx_rx_buf_offset(efx, rx_buf), rx_buf->len); skb->len = rx_buf->len; skb->data_len = rx_buf->len; skb->truesize += rx_buf->len; skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE); skb_record_rx_queue(skb, channel->rx_queue.core_index); gro_result = napi_gro_frags(napi); if (gro_result != GRO_DROP) channel->irq_mod_score += 2; } /* Allocate and construct an SKB around a struct page.*/ static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, u8 *eh, int hdr_len) { struct efx_nic *efx = channel->efx; struct sk_buff *skb; /* Allocate an SKB to store the headers */ skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN); if (unlikely(skb == NULL)) return NULL; EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len); skb_reserve(skb, EFX_PAGE_SKB_ALIGN); skb->len = rx_buf->len; skb->truesize = rx_buf->len + sizeof(struct sk_buff); memcpy(skb->data, eh, hdr_len); skb->tail += hdr_len; /* Append the remaining page onto the frag list */ if (rx_buf->len > hdr_len) { skb->data_len = skb->len - hdr_len; skb_fill_page_desc(skb, 0, rx_buf->page, efx_rx_buf_offset(efx, rx_buf) + hdr_len, skb->data_len); } else { __free_pages(rx_buf->page, efx->rx_buffer_order); skb->data_len = 0; } /* Ownership has transferred from the rx_buf to skb */ rx_buf->page = NULL; /* Move past the ethernet header */ skb->protocol = eth_type_trans(skb, efx->net_dev); return skb; } void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, unsigned int len, u16 flags) { struct efx_nic *efx = rx_queue->efx; struct efx_channel *channel = efx_rx_queue_channel(rx_queue); struct efx_rx_buffer *rx_buf; rx_buf = efx_rx_buffer(rx_queue, index); rx_buf->flags |= flags; /* This allows the refill path to post another buffer. * EFX_RXD_HEAD_ROOM ensures that the slot we are using * isn't overwritten yet. */ rx_queue->removed_count++; /* Validate the length encoded in the event vs the descriptor pushed */ efx_rx_packet__check_len(rx_queue, rx_buf, len); netif_vdbg(efx, rx_status, efx->net_dev, "RX queue %d received id %x at %llx+%x %s%s\n", efx_rx_queue_index(rx_queue), index, (unsigned long long)rx_buf->dma_addr, len, (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "", (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : ""); /* Discard packet, if instructed to do so */ if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) { efx_recycle_rx_buffer(channel, rx_buf); /* Don't hold off the previous receive */ rx_buf = NULL; goto out; } /* Release and/or sync DMA mapping - assumes all RX buffers * consumed in-order per RX queue */ efx_unmap_rx_buffer(efx, rx_buf, len); /* Prefetch nice and early so data will (hopefully) be in cache by * the time we look at it. */ prefetch(efx_rx_buf_va(rx_buf) + efx->type->rx_buffer_hash_size); /* Pipeline receives so that we give time for packet headers to be * prefetched into cache. */ rx_buf->len = len - efx->type->rx_buffer_hash_size; out: efx_rx_flush_packet(channel); channel->rx_pkt = rx_buf; } static void efx_rx_deliver(struct efx_channel *channel, u8 *eh, struct efx_rx_buffer *rx_buf) { struct sk_buff *skb; u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS); skb = efx_rx_mk_skb(channel, rx_buf, eh, hdr_len); if (unlikely(skb == NULL)) { efx_free_rx_buffer(channel->efx, rx_buf); return; } skb_record_rx_queue(skb, channel->rx_queue.core_index); /* Set the SKB flags */ skb_checksum_none_assert(skb); if (channel->type->receive_skb) if (channel->type->receive_skb(channel, skb)) return; /* Pass the packet up */ netif_receive_skb(skb); } /* Handle a received packet. Second half: Touches packet payload. */ void __efx_rx_packet(struct efx_channel *channel, struct efx_rx_buffer *rx_buf) { struct efx_nic *efx = channel->efx; u8 *eh = efx_rx_buf_va(rx_buf) + efx->type->rx_buffer_hash_size; /* If we're in loopback test, then pass the packet directly to the * loopback layer, and free the rx_buf here */ if (unlikely(efx->loopback_selftest)) { efx_loopback_rx_packet(efx, eh, rx_buf->len); efx_free_rx_buffer(efx, rx_buf); return; } if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) rx_buf->flags &= ~EFX_RX_PKT_CSUMMED; if (!channel->type->receive_skb) efx_rx_packet_gro(channel, rx_buf, eh); else efx_rx_deliver(channel, eh, rx_buf); } int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; unsigned int entries; int rc; /* Create the smallest power-of-two aligned ring */ entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); rx_queue->ptr_mask = entries - 1; netif_dbg(efx, probe, efx->net_dev, "creating RX queue %d size %#x mask %#x\n", efx_rx_queue_index(rx_queue), efx->rxq_entries, rx_queue->ptr_mask); /* Allocate RX buffers */ rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), GFP_KERNEL); if (!rx_queue->buffer) return -ENOMEM; rc = efx_nic_probe_rx(rx_queue); if (rc) { kfree(rx_queue->buffer); rx_queue->buffer = NULL; } return rc; } void efx_init_rx_queue(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; unsigned int max_fill, trigger, max_trigger; netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); /* Initialise ptr fields */ rx_queue->added_count = 0; rx_queue->notified_count = 0; rx_queue->removed_count = 0; rx_queue->min_fill = -1U; /* Initialise limit fields */ max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; max_trigger = max_fill - EFX_RX_BATCH; if (rx_refill_threshold != 0) { trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; if (trigger > max_trigger) trigger = max_trigger; } else { trigger = max_trigger; } rx_queue->max_fill = max_fill; rx_queue->fast_fill_trigger = trigger; /* Set up RX descriptor ring */ rx_queue->enabled = true; efx_nic_init_rx(rx_queue); } void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) { int i; struct efx_rx_buffer *rx_buf; netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); /* A flush failure might have left rx_queue->enabled */ rx_queue->enabled = false; del_timer_sync(&rx_queue->slow_fill); efx_nic_fini_rx(rx_queue); /* Release RX buffers NB start at index 0 not current HW ptr */ if (rx_queue->buffer) { for (i = 0; i <= rx_queue->ptr_mask; i++) { rx_buf = efx_rx_buffer(rx_queue, i); efx_fini_rx_buffer(rx_queue, rx_buf); } } } void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) { netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); efx_nic_remove_rx(rx_queue); kfree(rx_queue->buffer); rx_queue->buffer = NULL; } module_param(rx_refill_threshold, uint, 0444); MODULE_PARM_DESC(rx_refill_threshold, "RX descriptor ring refill threshold (%)");