#ifndef _LINUX_SIGNAL_H #define _LINUX_SIGNAL_H #include #include #ifdef __KERNEL__ #include /* for sysctl */ extern int print_fatal_signals; /* * Real Time signals may be queued. */ struct sigqueue { struct list_head list; int flags; siginfo_t info; struct user_struct *user; }; /* flags values. */ #define SIGQUEUE_PREALLOC 1 struct sigpending { struct list_head list; sigset_t signal; }; /* * Define some primitives to manipulate sigset_t. */ #ifndef __HAVE_ARCH_SIG_BITOPS #include /* We don't use for these because there is no need to be atomic. */ static inline void sigaddset(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) set->sig[0] |= 1UL << sig; else set->sig[sig / _NSIG_BPW] |= 1UL << (sig % _NSIG_BPW); } static inline void sigdelset(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) set->sig[0] &= ~(1UL << sig); else set->sig[sig / _NSIG_BPW] &= ~(1UL << (sig % _NSIG_BPW)); } static inline int sigismember(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) return 1 & (set->sig[0] >> sig); else return 1 & (set->sig[sig / _NSIG_BPW] >> (sig % _NSIG_BPW)); } static inline int sigfindinword(unsigned long word) { return ffz(~word); } #endif /* __HAVE_ARCH_SIG_BITOPS */ static inline int sigisemptyset(sigset_t *set) { extern void _NSIG_WORDS_is_unsupported_size(void); switch (_NSIG_WORDS) { case 4: return (set->sig[3] | set->sig[2] | set->sig[1] | set->sig[0]) == 0; case 2: return (set->sig[1] | set->sig[0]) == 0; case 1: return set->sig[0] == 0; default: _NSIG_WORDS_is_unsupported_size(); return 0; } } #define sigmask(sig) (1UL << ((sig) - 1)) #ifndef __HAVE_ARCH_SIG_SETOPS #include #define _SIG_SET_BINOP(name, op) \ static inline void name(sigset_t *r, const sigset_t *a, const sigset_t *b) \ { \ extern void _NSIG_WORDS_is_unsupported_size(void); \ unsigned long a0, a1, a2, a3, b0, b1, b2, b3; \ \ switch (_NSIG_WORDS) { \ case 4: \ a3 = a->sig[3]; a2 = a->sig[2]; \ b3 = b->sig[3]; b2 = b->sig[2]; \ r->sig[3] = op(a3, b3); \ r->sig[2] = op(a2, b2); \ case 2: \ a1 = a->sig[1]; b1 = b->sig[1]; \ r->sig[1] = op(a1, b1); \ case 1: \ a0 = a->sig[0]; b0 = b->sig[0]; \ r->sig[0] = op(a0, b0); \ break; \ default: \ _NSIG_WORDS_is_unsupported_size(); \ } \ } #define _sig_or(x,y) ((x) | (y)) _SIG_SET_BINOP(sigorsets, _sig_or) #define _sig_and(x,y) ((x) & (y)) _SIG_SET_BINOP(sigandsets, _sig_and) #define _sig_nand(x,y) ((x) & ~(y)) _SIG_SET_BINOP(signandsets, _sig_nand) #undef _SIG_SET_BINOP #undef _sig_or #undef _sig_and #undef _sig_nand #define _SIG_SET_OP(name, op) \ static inline void name(sigset_t *set) \ { \ extern void _NSIG_WORDS_is_unsupported_size(void); \ \ switch (_NSIG_WORDS) { \ case 4: set->sig[3] = op(set->sig[3]); \ set->sig[2] = op(set->sig[2]); \ case 2: set->sig[1] = op(set->sig[1]); \ case 1: set->sig[0] = op(set->sig[0]); \ break; \ default: \ _NSIG_WORDS_is_unsupported_size(); \ } \ } #define _sig_not(x) (~(x)) _SIG_SET_OP(signotset, _sig_not) #undef _SIG_SET_OP #undef _sig_not static inline void sigemptyset(sigset_t *set) { switch (_NSIG_WORDS) { default: memset(set, 0, sizeof(sigset_t)); break; case 2: set->sig[1] = 0; case 1: set->sig[0] = 0; break; } } static inline void sigfillset(sigset_t *set) { switch (_NSIG_WORDS) { default: memset(set, -1, sizeof(sigset_t)); break; case 2: set->sig[1] = -1; case 1: set->sig[0] = -1; break; } } /* Some extensions for manipulating the low 32 signals in particular. */ static inline void sigaddsetmask(sigset_t *set, unsigned long mask) { set->sig[0] |= mask; } static inline void sigdelsetmask(sigset_t *set, unsigned long mask) { set->sig[0] &= ~mask; } static inline int sigtestsetmask(sigset_t *set, unsigned long mask) { return (set->sig[0] & mask) != 0; } static inline void siginitset(sigset_t *set, unsigned long mask) { set->sig[0] = mask; switch (_NSIG_WORDS) { default: memset(&set->sig[1], 0, sizeof(long)*(_NSIG_WORDS-1)); break; case 2: set->sig[1] = 0; case 1: ; } } static inline void siginitsetinv(sigset_t *set, unsigned long mask) { set->sig[0] = ~mask; switch (_NSIG_WORDS) { default: memset(&set->sig[1], -1, sizeof(long)*(_NSIG_WORDS-1)); break; case 2: set->sig[1] = -1; case 1: ; } } #endif /* __HAVE_ARCH_SIG_SETOPS */ static inline void init_sigpending(struct sigpending *sig) { sigemptyset(&sig->signal); INIT_LIST_HEAD(&sig->list); } extern void flush_sigqueue(struct sigpending *queue); /* Test if 'sig' is valid signal. Use this instead of testing _NSIG directly */ static inline int valid_signal(unsigned long sig) { return sig <= _NSIG ? 1 : 0; } extern int next_signal(struct sigpending *pending, sigset_t *mask); extern int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, bool group); extern int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p); extern int __group_send_sig_info(int, struct siginfo *, struct task_struct *); extern long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info); extern long do_sigpending(void __user *, unsigned long); extern int do_sigtimedwait(const sigset_t *, siginfo_t *, const struct timespec *); extern int sigprocmask(int, sigset_t *, sigset_t *); extern void set_current_blocked(const sigset_t *); extern int show_unhandled_signals; struct pt_regs; extern int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, struct pt_regs *regs, void *cookie); extern void exit_signals(struct task_struct *tsk); extern struct kmem_cache *sighand_cachep; int unhandled_signal(struct task_struct *tsk, int sig); /* * In POSIX a signal is sent either to a specific thread (Linux task) * or to the process as a whole (Linux thread group). How the signal * is sent determines whether it's to one thread or the whole group, * which determines which signal mask(s) are involved in blocking it * from being delivered until later. When the signal is delivered, * either it's caught or ignored by a user handler or it has a default * effect that applies to the whole thread group (POSIX process). * * The possible effects an unblocked signal set to SIG_DFL can have are: * ignore - Nothing Happens * terminate - kill the process, i.e. all threads in the group, * similar to exit_group. The group leader (only) reports * WIFSIGNALED status to its parent. * coredump - write a core dump file describing all threads using * the same mm and then kill all those threads * stop - stop all the threads in the group, i.e. TASK_STOPPED state * * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. * Other signals when not blocked and set to SIG_DFL behaves as follows. * The job control signals also have other special effects. * * +--------------------+------------------+ * | POSIX signal | default action | * +--------------------+------------------+ * | SIGHUP | terminate | * | SIGINT | terminate | * | SIGQUIT | coredump | * | SIGILL | coredump | * | SIGTRAP | coredump | * | SIGABRT/SIGIOT | coredump | * | SIGBUS | coredump | * | SIGFPE | coredump | * | SIGKILL | terminate(+) | * | SIGUSR1 | terminate | * | SIGSEGV | coredump | * | SIGUSR2 | terminate | * | SIGPIPE | terminate | * | SIGALRM | terminate | * | SIGTERM | terminate | * | SIGCHLD | ignore | * | SIGCONT | ignore(*) | * | SIGSTOP | stop(*)(+) | * | SIGTSTP | stop(*) | * | SIGTTIN | stop(*) | * | SIGTTOU | stop(*) | * | SIGURG | ignore | * | SIGXCPU | coredump | * | SIGXFSZ | coredump | * | SIGVTALRM | terminate | * | SIGPROF | terminate | * | SIGPOLL/SIGIO | terminate | * | SIGSYS/SIGUNUSED | coredump | * | SIGSTKFLT | terminate | * | SIGWINCH | ignore | * | SIGPWR | terminate | * | SIGRTMIN-SIGRTMAX | terminate | * +--------------------+------------------+ * | non-POSIX signal | default action | * +--------------------+------------------+ * | SIGEMT | coredump | * +--------------------+------------------+ * * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". * (*) Special job control effects: * When SIGCONT is sent, it resumes the process (all threads in the group) * from TASK_STOPPED state and also clears any pending/queued stop signals * (any of those marked with "stop(*)"). This happens regardless of blocking, * catching, or ignoring SIGCONT. When any stop signal is sent, it clears * any pending/queued SIGCONT signals; this happens regardless of blocking, * catching, or ignored the stop signal, though (except for SIGSTOP) the * default action of stopping the process may happen later or never. */ #ifdef SIGEMT #define SIGEMT_MASK rt_sigmask(SIGEMT) #else #define SIGEMT_MASK 0 #endif #if SIGRTMIN > BITS_PER_LONG #define rt_sigmask(sig) (1ULL << ((sig)-1)) #else #define rt_sigmask(sig) sigmask(sig) #endif #define siginmask(sig, mask) (rt_sigmask(sig) & (mask)) #define SIG_KERNEL_ONLY_MASK (\ rt_sigmask(SIGKILL) | rt_sigmask(SIGSTOP)) #define SIG_KERNEL_STOP_MASK (\ rt_sigmask(SIGSTOP) | rt_sigmask(SIGTSTP) | \ rt_sigmask(SIGTTIN) | rt_sigmask(SIGTTOU) ) #define SIG_KERNEL_COREDUMP_MASK (\ rt_sigmask(SIGQUIT) | rt_sigmask(SIGILL) | \ rt_sigmask(SIGTRAP) | rt_sigmask(SIGABRT) | \ rt_sigmask(SIGFPE) | rt_sigmask(SIGSEGV) | \ rt_sigmask(SIGBUS) | rt_sigmask(SIGSYS) | \ rt_sigmask(SIGXCPU) | rt_sigmask(SIGXFSZ) | \ SIGEMT_MASK ) #define SIG_KERNEL_IGNORE_MASK (\ rt_sigmask(SIGCONT) | rt_sigmask(SIGCHLD) | \ rt_sigmask(SIGWINCH) | rt_sigmask(SIGURG) ) #define sig_kernel_only(sig) \ (((sig) < SIGRTMIN) && siginmask(sig, SIG_KERNEL_ONLY_MASK)) #define sig_kernel_coredump(sig) \ (((sig) < SIGRTMIN) && siginmask(sig, SIG_KERNEL_COREDUMP_MASK)) #define sig_kernel_ignore(sig) \ (((sig) < SIGRTMIN) && siginmask(sig, SIG_KERNEL_IGNORE_MASK)) #define sig_kernel_stop(sig) \ (((sig) < SIGRTMIN) && siginmask(sig, SIG_KERNEL_STOP_MASK)) #define sig_user_defined(t, signr) \ (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \ ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN)) #define sig_fatal(t, signr) \ (!siginmask(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) void signals_init(void); #endif /* __KERNEL__ */ #endif /* _LINUX_SIGNAL_H */