/* * Copyright 2007-8 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher */ #include "drmP.h" #include "radeon_drm.h" #include "radeon.h" #include "atom.h" #include "atom-bits.h" /* from radeon_encoder.c */ extern uint32_t radeon_get_encoder_enum(struct drm_device *dev, uint32_t supported_device, uint8_t dac); extern void radeon_link_encoder_connector(struct drm_device *dev); extern void radeon_add_atom_encoder(struct drm_device *dev, uint32_t encoder_enum, uint32_t supported_device); /* from radeon_connector.c */ extern void radeon_add_atom_connector(struct drm_device *dev, uint32_t connector_id, uint32_t supported_device, int connector_type, struct radeon_i2c_bus_rec *i2c_bus, uint32_t igp_lane_info, uint16_t connector_object_id, struct radeon_hpd *hpd, struct radeon_router *router); /* from radeon_legacy_encoder.c */ extern void radeon_add_legacy_encoder(struct drm_device *dev, uint32_t encoder_enum, uint32_t supported_device); union atom_supported_devices { struct _ATOM_SUPPORTED_DEVICES_INFO info; struct _ATOM_SUPPORTED_DEVICES_INFO_2 info_2; struct _ATOM_SUPPORTED_DEVICES_INFO_2d1 info_2d1; }; static inline struct radeon_i2c_bus_rec radeon_lookup_i2c_gpio(struct radeon_device *rdev, uint8_t id) { struct atom_context *ctx = rdev->mode_info.atom_context; ATOM_GPIO_I2C_ASSIGMENT *gpio; struct radeon_i2c_bus_rec i2c; int index = GetIndexIntoMasterTable(DATA, GPIO_I2C_Info); struct _ATOM_GPIO_I2C_INFO *i2c_info; uint16_t data_offset, size; int i, num_indices; memset(&i2c, 0, sizeof(struct radeon_i2c_bus_rec)); i2c.valid = false; if (atom_parse_data_header(ctx, index, &size, NULL, NULL, &data_offset)) { i2c_info = (struct _ATOM_GPIO_I2C_INFO *)(ctx->bios + data_offset); num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_GPIO_I2C_ASSIGMENT); for (i = 0; i < num_indices; i++) { gpio = &i2c_info->asGPIO_Info[i]; /* some evergreen boards have bad data for this entry */ if (ASIC_IS_DCE4(rdev)) { if ((i == 7) && (gpio->usClkMaskRegisterIndex == 0x1936) && (gpio->sucI2cId.ucAccess == 0)) { gpio->sucI2cId.ucAccess = 0x97; gpio->ucDataMaskShift = 8; gpio->ucDataEnShift = 8; gpio->ucDataY_Shift = 8; gpio->ucDataA_Shift = 8; } } if (gpio->sucI2cId.ucAccess == id) { i2c.mask_clk_reg = le16_to_cpu(gpio->usClkMaskRegisterIndex) * 4; i2c.mask_data_reg = le16_to_cpu(gpio->usDataMaskRegisterIndex) * 4; i2c.en_clk_reg = le16_to_cpu(gpio->usClkEnRegisterIndex) * 4; i2c.en_data_reg = le16_to_cpu(gpio->usDataEnRegisterIndex) * 4; i2c.y_clk_reg = le16_to_cpu(gpio->usClkY_RegisterIndex) * 4; i2c.y_data_reg = le16_to_cpu(gpio->usDataY_RegisterIndex) * 4; i2c.a_clk_reg = le16_to_cpu(gpio->usClkA_RegisterIndex) * 4; i2c.a_data_reg = le16_to_cpu(gpio->usDataA_RegisterIndex) * 4; i2c.mask_clk_mask = (1 << gpio->ucClkMaskShift); i2c.mask_data_mask = (1 << gpio->ucDataMaskShift); i2c.en_clk_mask = (1 << gpio->ucClkEnShift); i2c.en_data_mask = (1 << gpio->ucDataEnShift); i2c.y_clk_mask = (1 << gpio->ucClkY_Shift); i2c.y_data_mask = (1 << gpio->ucDataY_Shift); i2c.a_clk_mask = (1 << gpio->ucClkA_Shift); i2c.a_data_mask = (1 << gpio->ucDataA_Shift); if (gpio->sucI2cId.sbfAccess.bfHW_Capable) i2c.hw_capable = true; else i2c.hw_capable = false; if (gpio->sucI2cId.ucAccess == 0xa0) i2c.mm_i2c = true; else i2c.mm_i2c = false; i2c.i2c_id = gpio->sucI2cId.ucAccess; if (i2c.mask_clk_reg) i2c.valid = true; break; } } } return i2c; } void radeon_atombios_i2c_init(struct radeon_device *rdev) { struct atom_context *ctx = rdev->mode_info.atom_context; ATOM_GPIO_I2C_ASSIGMENT *gpio; struct radeon_i2c_bus_rec i2c; int index = GetIndexIntoMasterTable(DATA, GPIO_I2C_Info); struct _ATOM_GPIO_I2C_INFO *i2c_info; uint16_t data_offset, size; int i, num_indices; char stmp[32]; memset(&i2c, 0, sizeof(struct radeon_i2c_bus_rec)); if (atom_parse_data_header(ctx, index, &size, NULL, NULL, &data_offset)) { i2c_info = (struct _ATOM_GPIO_I2C_INFO *)(ctx->bios + data_offset); num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_GPIO_I2C_ASSIGMENT); for (i = 0; i < num_indices; i++) { gpio = &i2c_info->asGPIO_Info[i]; i2c.valid = false; /* some evergreen boards have bad data for this entry */ if (ASIC_IS_DCE4(rdev)) { if ((i == 7) && (gpio->usClkMaskRegisterIndex == 0x1936) && (gpio->sucI2cId.ucAccess == 0)) { gpio->sucI2cId.ucAccess = 0x97; gpio->ucDataMaskShift = 8; gpio->ucDataEnShift = 8; gpio->ucDataY_Shift = 8; gpio->ucDataA_Shift = 8; } } i2c.mask_clk_reg = le16_to_cpu(gpio->usClkMaskRegisterIndex) * 4; i2c.mask_data_reg = le16_to_cpu(gpio->usDataMaskRegisterIndex) * 4; i2c.en_clk_reg = le16_to_cpu(gpio->usClkEnRegisterIndex) * 4; i2c.en_data_reg = le16_to_cpu(gpio->usDataEnRegisterIndex) * 4; i2c.y_clk_reg = le16_to_cpu(gpio->usClkY_RegisterIndex) * 4; i2c.y_data_reg = le16_to_cpu(gpio->usDataY_RegisterIndex) * 4; i2c.a_clk_reg = le16_to_cpu(gpio->usClkA_RegisterIndex) * 4; i2c.a_data_reg = le16_to_cpu(gpio->usDataA_RegisterIndex) * 4; i2c.mask_clk_mask = (1 << gpio->ucClkMaskShift); i2c.mask_data_mask = (1 << gpio->ucDataMaskShift); i2c.en_clk_mask = (1 << gpio->ucClkEnShift); i2c.en_data_mask = (1 << gpio->ucDataEnShift); i2c.y_clk_mask = (1 << gpio->ucClkY_Shift); i2c.y_data_mask = (1 << gpio->ucDataY_Shift); i2c.a_clk_mask = (1 << gpio->ucClkA_Shift); i2c.a_data_mask = (1 << gpio->ucDataA_Shift); if (gpio->sucI2cId.sbfAccess.bfHW_Capable) i2c.hw_capable = true; else i2c.hw_capable = false; if (gpio->sucI2cId.ucAccess == 0xa0) i2c.mm_i2c = true; else i2c.mm_i2c = false; i2c.i2c_id = gpio->sucI2cId.ucAccess; if (i2c.mask_clk_reg) { i2c.valid = true; sprintf(stmp, "0x%x", i2c.i2c_id); rdev->i2c_bus[i] = radeon_i2c_create(rdev->ddev, &i2c, stmp); } } } } static inline struct radeon_gpio_rec radeon_lookup_gpio(struct radeon_device *rdev, u8 id) { struct atom_context *ctx = rdev->mode_info.atom_context; struct radeon_gpio_rec gpio; int index = GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT); struct _ATOM_GPIO_PIN_LUT *gpio_info; ATOM_GPIO_PIN_ASSIGNMENT *pin; u16 data_offset, size; int i, num_indices; memset(&gpio, 0, sizeof(struct radeon_gpio_rec)); gpio.valid = false; if (atom_parse_data_header(ctx, index, &size, NULL, NULL, &data_offset)) { gpio_info = (struct _ATOM_GPIO_PIN_LUT *)(ctx->bios + data_offset); num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_GPIO_PIN_ASSIGNMENT); for (i = 0; i < num_indices; i++) { pin = &gpio_info->asGPIO_Pin[i]; if (id == pin->ucGPIO_ID) { gpio.id = pin->ucGPIO_ID; gpio.reg = pin->usGpioPin_AIndex * 4; gpio.mask = (1 << pin->ucGpioPinBitShift); gpio.valid = true; break; } } } return gpio; } static struct radeon_hpd radeon_atom_get_hpd_info_from_gpio(struct radeon_device *rdev, struct radeon_gpio_rec *gpio) { struct radeon_hpd hpd; u32 reg; memset(&hpd, 0, sizeof(struct radeon_hpd)); if (ASIC_IS_DCE4(rdev)) reg = EVERGREEN_DC_GPIO_HPD_A; else reg = AVIVO_DC_GPIO_HPD_A; hpd.gpio = *gpio; if (gpio->reg == reg) { switch(gpio->mask) { case (1 << 0): hpd.hpd = RADEON_HPD_1; break; case (1 << 8): hpd.hpd = RADEON_HPD_2; break; case (1 << 16): hpd.hpd = RADEON_HPD_3; break; case (1 << 24): hpd.hpd = RADEON_HPD_4; break; case (1 << 26): hpd.hpd = RADEON_HPD_5; break; case (1 << 28): hpd.hpd = RADEON_HPD_6; break; default: hpd.hpd = RADEON_HPD_NONE; break; } } else hpd.hpd = RADEON_HPD_NONE; return hpd; } static bool radeon_atom_apply_quirks(struct drm_device *dev, uint32_t supported_device, int *connector_type, struct radeon_i2c_bus_rec *i2c_bus, uint16_t *line_mux, struct radeon_hpd *hpd) { struct radeon_device *rdev = dev->dev_private; /* Asus M2A-VM HDMI board lists the DVI port as HDMI */ if ((dev->pdev->device == 0x791e) && (dev->pdev->subsystem_vendor == 0x1043) && (dev->pdev->subsystem_device == 0x826d)) { if ((*connector_type == DRM_MODE_CONNECTOR_HDMIA) && (supported_device == ATOM_DEVICE_DFP3_SUPPORT)) *connector_type = DRM_MODE_CONNECTOR_DVID; } /* Asrock RS600 board lists the DVI port as HDMI */ if ((dev->pdev->device == 0x7941) && (dev->pdev->subsystem_vendor == 0x1849) && (dev->pdev->subsystem_device == 0x7941)) { if ((*connector_type == DRM_MODE_CONNECTOR_HDMIA) && (supported_device == ATOM_DEVICE_DFP3_SUPPORT)) *connector_type = DRM_MODE_CONNECTOR_DVID; } /* MSI K9A2GM V2/V3 board has no HDMI or DVI */ if ((dev->pdev->device == 0x796e) && (dev->pdev->subsystem_vendor == 0x1462) && (dev->pdev->subsystem_device == 0x7302)) { if ((supported_device == ATOM_DEVICE_DFP2_SUPPORT) || (supported_device == ATOM_DEVICE_DFP3_SUPPORT)) return false; } /* a-bit f-i90hd - ciaranm on #radeonhd - this board has no DVI */ if ((dev->pdev->device == 0x7941) && (dev->pdev->subsystem_vendor == 0x147b) && (dev->pdev->subsystem_device == 0x2412)) { if (*connector_type == DRM_MODE_CONNECTOR_DVII) return false; } /* Falcon NW laptop lists vga ddc line for LVDS */ if ((dev->pdev->device == 0x5653) && (dev->pdev->subsystem_vendor == 0x1462) && (dev->pdev->subsystem_device == 0x0291)) { if (*connector_type == DRM_MODE_CONNECTOR_LVDS) { i2c_bus->valid = false; *line_mux = 53; } } /* HIS X1300 is DVI+VGA, not DVI+DVI */ if ((dev->pdev->device == 0x7146) && (dev->pdev->subsystem_vendor == 0x17af) && (dev->pdev->subsystem_device == 0x2058)) { if (supported_device == ATOM_DEVICE_DFP1_SUPPORT) return false; } /* Gigabyte X1300 is DVI+VGA, not DVI+DVI */ if ((dev->pdev->device == 0x7142) && (dev->pdev->subsystem_vendor == 0x1458) && (dev->pdev->subsystem_device == 0x2134)) { if (supported_device == ATOM_DEVICE_DFP1_SUPPORT) return false; } /* Funky macbooks */ if ((dev->pdev->device == 0x71C5) && (dev->pdev->subsystem_vendor == 0x106b) && (dev->pdev->subsystem_device == 0x0080)) { if ((supported_device == ATOM_DEVICE_CRT1_SUPPORT) || (supported_device == ATOM_DEVICE_DFP2_SUPPORT)) return false; if (supported_device == ATOM_DEVICE_CRT2_SUPPORT) *line_mux = 0x90; } /* ASUS HD 3600 XT board lists the DVI port as HDMI */ if ((dev->pdev->device == 0x9598) && (dev->pdev->subsystem_vendor == 0x1043) && (dev->pdev->subsystem_device == 0x01da)) { if (*connector_type == DRM_MODE_CONNECTOR_HDMIA) { *connector_type = DRM_MODE_CONNECTOR_DVII; } } /* ASUS HD 3600 board lists the DVI port as HDMI */ if ((dev->pdev->device == 0x9598) && (dev->pdev->subsystem_vendor == 0x1043) && (dev->pdev->subsystem_device == 0x01e4)) { if (*connector_type == DRM_MODE_CONNECTOR_HDMIA) { *connector_type = DRM_MODE_CONNECTOR_DVII; } } /* ASUS HD 3450 board lists the DVI port as HDMI */ if ((dev->pdev->device == 0x95C5) && (dev->pdev->subsystem_vendor == 0x1043) && (dev->pdev->subsystem_device == 0x01e2)) { if (*connector_type == DRM_MODE_CONNECTOR_HDMIA) { *connector_type = DRM_MODE_CONNECTOR_DVII; } } /* some BIOSes seem to report DAC on HDMI - usually this is a board with * HDMI + VGA reporting as HDMI */ if (*connector_type == DRM_MODE_CONNECTOR_HDMIA) { if (supported_device & (ATOM_DEVICE_CRT_SUPPORT)) { *connector_type = DRM_MODE_CONNECTOR_VGA; *line_mux = 0; } } /* Acer laptop reports DVI-D as DVI-I and hpd pins reversed */ if ((dev->pdev->device == 0x95c4) && (dev->pdev->subsystem_vendor == 0x1025) && (dev->pdev->subsystem_device == 0x013c)) { struct radeon_gpio_rec gpio; if ((*connector_type == DRM_MODE_CONNECTOR_DVII) && (supported_device == ATOM_DEVICE_DFP1_SUPPORT)) { gpio = radeon_lookup_gpio(rdev, 6); *hpd = radeon_atom_get_hpd_info_from_gpio(rdev, &gpio); *connector_type = DRM_MODE_CONNECTOR_DVID; } else if ((*connector_type == DRM_MODE_CONNECTOR_HDMIA) && (supported_device == ATOM_DEVICE_DFP1_SUPPORT)) { gpio = radeon_lookup_gpio(rdev, 7); *hpd = radeon_atom_get_hpd_info_from_gpio(rdev, &gpio); } } /* XFX Pine Group device rv730 reports no VGA DDC lines * even though they are wired up to record 0x93 */ if ((dev->pdev->device == 0x9498) && (dev->pdev->subsystem_vendor == 0x1682) && (dev->pdev->subsystem_device == 0x2452)) { struct radeon_device *rdev = dev->dev_private; *i2c_bus = radeon_lookup_i2c_gpio(rdev, 0x93); } return true; } const int supported_devices_connector_convert[] = { DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_VGA, DRM_MODE_CONNECTOR_DVII, DRM_MODE_CONNECTOR_DVID, DRM_MODE_CONNECTOR_DVIA, DRM_MODE_CONNECTOR_SVIDEO, DRM_MODE_CONNECTOR_Composite, DRM_MODE_CONNECTOR_LVDS, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_HDMIA, DRM_MODE_CONNECTOR_HDMIB, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_9PinDIN, DRM_MODE_CONNECTOR_DisplayPort }; const uint16_t supported_devices_connector_object_id_convert[] = { CONNECTOR_OBJECT_ID_NONE, CONNECTOR_OBJECT_ID_VGA, CONNECTOR_OBJECT_ID_DUAL_LINK_DVI_I, /* not all boards support DL */ CONNECTOR_OBJECT_ID_DUAL_LINK_DVI_D, /* not all boards support DL */ CONNECTOR_OBJECT_ID_VGA, /* technically DVI-A */ CONNECTOR_OBJECT_ID_COMPOSITE, CONNECTOR_OBJECT_ID_SVIDEO, CONNECTOR_OBJECT_ID_LVDS, CONNECTOR_OBJECT_ID_9PIN_DIN, CONNECTOR_OBJECT_ID_9PIN_DIN, CONNECTOR_OBJECT_ID_DISPLAYPORT, CONNECTOR_OBJECT_ID_HDMI_TYPE_A, CONNECTOR_OBJECT_ID_HDMI_TYPE_B, CONNECTOR_OBJECT_ID_SVIDEO }; const int object_connector_convert[] = { DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_DVII, DRM_MODE_CONNECTOR_DVII, DRM_MODE_CONNECTOR_DVID, DRM_MODE_CONNECTOR_DVID, DRM_MODE_CONNECTOR_VGA, DRM_MODE_CONNECTOR_Composite, DRM_MODE_CONNECTOR_SVIDEO, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_9PinDIN, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_HDMIA, DRM_MODE_CONNECTOR_HDMIB, DRM_MODE_CONNECTOR_LVDS, DRM_MODE_CONNECTOR_9PinDIN, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_Unknown, DRM_MODE_CONNECTOR_DisplayPort, DRM_MODE_CONNECTOR_eDP, DRM_MODE_CONNECTOR_Unknown }; bool radeon_get_atom_connector_info_from_object_table(struct drm_device *dev) { struct radeon_device *rdev = dev->dev_private; struct radeon_mode_info *mode_info = &rdev->mode_info; struct atom_context *ctx = mode_info->atom_context; int index = GetIndexIntoMasterTable(DATA, Object_Header); u16 size, data_offset; u8 frev, crev; ATOM_CONNECTOR_OBJECT_TABLE *con_obj; ATOM_OBJECT_TABLE *router_obj; ATOM_DISPLAY_OBJECT_PATH_TABLE *path_obj; ATOM_OBJECT_HEADER *obj_header; int i, j, k, path_size, device_support; int connector_type; u16 igp_lane_info, conn_id, connector_object_id; struct radeon_i2c_bus_rec ddc_bus; struct radeon_router router; struct radeon_gpio_rec gpio; struct radeon_hpd hpd; if (!atom_parse_data_header(ctx, index, &size, &frev, &crev, &data_offset)) return false; if (crev < 2) return false; obj_header = (ATOM_OBJECT_HEADER *) (ctx->bios + data_offset); path_obj = (ATOM_DISPLAY_OBJECT_PATH_TABLE *) (ctx->bios + data_offset + le16_to_cpu(obj_header->usDisplayPathTableOffset)); con_obj = (ATOM_CONNECTOR_OBJECT_TABLE *) (ctx->bios + data_offset + le16_to_cpu(obj_header->usConnectorObjectTableOffset)); router_obj = (ATOM_OBJECT_TABLE *) (ctx->bios + data_offset + le16_to_cpu(obj_header->usRouterObjectTableOffset)); device_support = le16_to_cpu(obj_header->usDeviceSupport); path_size = 0; for (i = 0; i < path_obj->ucNumOfDispPath; i++) { uint8_t *addr = (uint8_t *) path_obj->asDispPath; ATOM_DISPLAY_OBJECT_PATH *path; addr += path_size; path = (ATOM_DISPLAY_OBJECT_PATH *) addr; path_size += le16_to_cpu(path->usSize); if (device_support & le16_to_cpu(path->usDeviceTag)) { uint8_t con_obj_id, con_obj_num, con_obj_type; con_obj_id = (le16_to_cpu(path->usConnObjectId) & OBJECT_ID_MASK) >> OBJECT_ID_SHIFT; con_obj_num = (le16_to_cpu(path->usConnObjectId) & ENUM_ID_MASK) >> ENUM_ID_SHIFT; con_obj_type = (le16_to_cpu(path->usConnObjectId) & OBJECT_TYPE_MASK) >> OBJECT_TYPE_SHIFT; /* TODO CV support */ if (le16_to_cpu(path->usDeviceTag) == ATOM_DEVICE_CV_SUPPORT) continue; /* IGP chips */ if ((rdev->flags & RADEON_IS_IGP) && (con_obj_id == CONNECTOR_OBJECT_ID_PCIE_CONNECTOR)) { uint16_t igp_offset = 0; ATOM_INTEGRATED_SYSTEM_INFO_V2 *igp_obj; index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo); if (atom_parse_data_header(ctx, index, &size, &frev, &crev, &igp_offset)) { if (crev >= 2) { igp_obj = (ATOM_INTEGRATED_SYSTEM_INFO_V2 *) (ctx->bios + igp_offset); if (igp_obj) { uint32_t slot_config, ct; if (con_obj_num == 1) slot_config = igp_obj-> ulDDISlot1Config; else slot_config = igp_obj-> ulDDISlot2Config; ct = (slot_config >> 16) & 0xff; connector_type = object_connector_convert [ct]; connector_object_id = ct; igp_lane_info = slot_config & 0xffff; } else continue; } else continue; } else { igp_lane_info = 0; connector_type = object_connector_convert[con_obj_id]; connector_object_id = con_obj_id; } } else { igp_lane_info = 0; connector_type = object_connector_convert[con_obj_id]; connector_object_id = con_obj_id; } if (connector_type == DRM_MODE_CONNECTOR_Unknown) continue; router.ddc_valid = false; router.cd_valid = false; for (j = 0; j < ((le16_to_cpu(path->usSize) - 8) / 2); j++) { uint8_t grph_obj_id, grph_obj_num, grph_obj_type; grph_obj_id = (le16_to_cpu(path->usGraphicObjIds[j]) & OBJECT_ID_MASK) >> OBJECT_ID_SHIFT; grph_obj_num = (le16_to_cpu(path->usGraphicObjIds[j]) & ENUM_ID_MASK) >> ENUM_ID_SHIFT; grph_obj_type = (le16_to_cpu(path->usGraphicObjIds[j]) & OBJECT_TYPE_MASK) >> OBJECT_TYPE_SHIFT; if (grph_obj_type == GRAPH_OBJECT_TYPE_ENCODER) { u16 encoder_obj = le16_to_cpu(path->usGraphicObjIds[j]); radeon_add_atom_encoder(dev, encoder_obj, le16_to_cpu (path-> usDeviceTag)); } else if (grph_obj_type == GRAPH_OBJECT_TYPE_ROUTER) { for (k = 0; k < router_obj->ucNumberOfObjects; k++) { u16 router_obj_id = le16_to_cpu(router_obj->asObjects[k].usObjectID); if (le16_to_cpu(path->usGraphicObjIds[j]) == router_obj_id) { ATOM_COMMON_RECORD_HEADER *record = (ATOM_COMMON_RECORD_HEADER *) (ctx->bios + data_offset + le16_to_cpu(router_obj->asObjects[k].usRecordOffset)); ATOM_I2C_RECORD *i2c_record; ATOM_I2C_ID_CONFIG_ACCESS *i2c_config; ATOM_ROUTER_DDC_PATH_SELECT_RECORD *ddc_path; ATOM_ROUTER_DATA_CLOCK_PATH_SELECT_RECORD *cd_path; ATOM_SRC_DST_TABLE_FOR_ONE_OBJECT *router_src_dst_table = (ATOM_SRC_DST_TABLE_FOR_ONE_OBJECT *) (ctx->bios + data_offset + le16_to_cpu(router_obj->asObjects[k].usSrcDstTableOffset)); int enum_id; router.router_id = router_obj_id; for (enum_id = 0; enum_id < router_src_dst_table->ucNumberOfDst; enum_id++) { if (le16_to_cpu(path->usConnObjectId) == le16_to_cpu(router_src_dst_table->usDstObjectID[enum_id])) break; } while (record->ucRecordType > 0 && record->ucRecordType <= ATOM_MAX_OBJECT_RECORD_NUMBER) { switch (record->ucRecordType) { case ATOM_I2C_RECORD_TYPE: i2c_record = (ATOM_I2C_RECORD *) record; i2c_config = (ATOM_I2C_ID_CONFIG_ACCESS *) &i2c_record->sucI2cId; router.i2c_info = radeon_lookup_i2c_gpio(rdev, i2c_config-> ucAccess); router.i2c_addr = i2c_record->ucI2CAddr >> 1; break; case ATOM_ROUTER_DDC_PATH_SELECT_RECORD_TYPE: ddc_path = (ATOM_ROUTER_DDC_PATH_SELECT_RECORD *) record; router.ddc_valid = true; router.ddc_mux_type = ddc_path->ucMuxType; router.ddc_mux_control_pin = ddc_path->ucMuxControlPin; router.ddc_mux_state = ddc_path->ucMuxState[enum_id]; break; case ATOM_ROUTER_DATA_CLOCK_PATH_SELECT_RECORD_TYPE: cd_path = (ATOM_ROUTER_DATA_CLOCK_PATH_SELECT_RECORD *) record; router.cd_valid = true; router.cd_mux_type = cd_path->ucMuxType; router.cd_mux_control_pin = cd_path->ucMuxControlPin; router.cd_mux_state = cd_path->ucMuxState[enum_id]; break; } record = (ATOM_COMMON_RECORD_HEADER *) ((char *)record + record->ucRecordSize); } } } } } /* look up gpio for ddc, hpd */ ddc_bus.valid = false; hpd.hpd = RADEON_HPD_NONE; if ((le16_to_cpu(path->usDeviceTag) & (ATOM_DEVICE_TV_SUPPORT | ATOM_DEVICE_CV_SUPPORT)) == 0) { for (j = 0; j < con_obj->ucNumberOfObjects; j++) { if (le16_to_cpu(path->usConnObjectId) == le16_to_cpu(con_obj->asObjects[j]. usObjectID)) { ATOM_COMMON_RECORD_HEADER *record = (ATOM_COMMON_RECORD_HEADER *) (ctx->bios + data_offset + le16_to_cpu(con_obj-> asObjects[j]. usRecordOffset)); ATOM_I2C_RECORD *i2c_record; ATOM_HPD_INT_RECORD *hpd_record; ATOM_I2C_ID_CONFIG_ACCESS *i2c_config; while (record->ucRecordType > 0 && record-> ucRecordType <= ATOM_MAX_OBJECT_RECORD_NUMBER) { switch (record->ucRecordType) { case ATOM_I2C_RECORD_TYPE: i2c_record = (ATOM_I2C_RECORD *) record; i2c_config = (ATOM_I2C_ID_CONFIG_ACCESS *) &i2c_record->sucI2cId; ddc_bus = radeon_lookup_i2c_gpio(rdev, i2c_config-> ucAccess); break; case ATOM_HPD_INT_RECORD_TYPE: hpd_record = (ATOM_HPD_INT_RECORD *) record; gpio = radeon_lookup_gpio(rdev, hpd_record->ucHPDIntGPIOID); hpd = radeon_atom_get_hpd_info_from_gpio(rdev, &gpio); hpd.plugged_state = hpd_record->ucPlugged_PinState; break; } record = (ATOM_COMMON_RECORD_HEADER *) ((char *)record + record-> ucRecordSize); } break; } } } /* needed for aux chan transactions */ ddc_bus.hpd = hpd.hpd; conn_id = le16_to_cpu(path->usConnObjectId); if (!radeon_atom_apply_quirks (dev, le16_to_cpu(path->usDeviceTag), &connector_type, &ddc_bus, &conn_id, &hpd)) continue; radeon_add_atom_connector(dev, conn_id, le16_to_cpu(path-> usDeviceTag), connector_type, &ddc_bus, igp_lane_info, connector_object_id, &hpd, &router); } } radeon_link_encoder_connector(dev); return true; } static uint16_t atombios_get_connector_object_id(struct drm_device *dev, int connector_type, uint16_t devices) { struct radeon_device *rdev = dev->dev_private; if (rdev->flags & RADEON_IS_IGP) { return supported_devices_connector_object_id_convert [connector_type]; } else if (((connector_type == DRM_MODE_CONNECTOR_DVII) || (connector_type == DRM_MODE_CONNECTOR_DVID)) && (devices & ATOM_DEVICE_DFP2_SUPPORT)) { struct radeon_mode_info *mode_info = &rdev->mode_info; struct atom_context *ctx = mode_info->atom_context; int index = GetIndexIntoMasterTable(DATA, XTMDS_Info); uint16_t size, data_offset; uint8_t frev, crev; ATOM_XTMDS_INFO *xtmds; if (atom_parse_data_header(ctx, index, &size, &frev, &crev, &data_offset)) { xtmds = (ATOM_XTMDS_INFO *)(ctx->bios + data_offset); if (xtmds->ucSupportedLink & ATOM_XTMDS_SUPPORTED_DUALLINK) { if (connector_type == DRM_MODE_CONNECTOR_DVII) return CONNECTOR_OBJECT_ID_DUAL_LINK_DVI_I; else return CONNECTOR_OBJECT_ID_DUAL_LINK_DVI_D; } else { if (connector_type == DRM_MODE_CONNECTOR_DVII) return CONNECTOR_OBJECT_ID_SINGLE_LINK_DVI_I; else return CONNECTOR_OBJECT_ID_SINGLE_LINK_DVI_D; } } else return supported_devices_connector_object_id_convert [connector_type]; } else { return supported_devices_connector_object_id_convert [connector_type]; } } struct bios_connector { bool valid; uint16_t line_mux; uint16_t devices; int connector_type; struct radeon_i2c_bus_rec ddc_bus; struct radeon_hpd hpd; }; bool radeon_get_atom_connector_info_from_supported_devices_table(struct drm_device *dev) { struct radeon_device *rdev = dev->dev_private; struct radeon_mode_info *mode_info = &rdev->mode_info; struct atom_context *ctx = mode_info->atom_context; int index = GetIndexIntoMasterTable(DATA, SupportedDevicesInfo); uint16_t size, data_offset; uint8_t frev, crev; uint16_t device_support; uint8_t dac; union atom_supported_devices *supported_devices; int i, j, max_device; struct bios_connector *bios_connectors; size_t bc_size = sizeof(*bios_connectors) * ATOM_MAX_SUPPORTED_DEVICE; struct radeon_router router; router.ddc_valid = false; router.cd_valid = false; bios_connectors = kzalloc(bc_size, GFP_KERNEL); if (!bios_connectors) return false; if (!atom_parse_data_header(ctx, index, &size, &frev, &crev, &data_offset)) { kfree(bios_connectors); return false; } supported_devices = (union atom_supported_devices *)(ctx->bios + data_offset); device_support = le16_to_cpu(supported_devices->info.usDeviceSupport); if (frev > 1) max_device = ATOM_MAX_SUPPORTED_DEVICE; else max_device = ATOM_MAX_SUPPORTED_DEVICE_INFO; for (i = 0; i < max_device; i++) { ATOM_CONNECTOR_INFO_I2C ci = supported_devices->info.asConnInfo[i]; bios_connectors[i].valid = false; if (!(device_support & (1 << i))) { continue; } if (i == ATOM_DEVICE_CV_INDEX) { DRM_DEBUG_KMS("Skipping Component Video\n"); continue; } bios_connectors[i].connector_type = supported_devices_connector_convert[ci.sucConnectorInfo. sbfAccess. bfConnectorType]; if (bios_connectors[i].connector_type == DRM_MODE_CONNECTOR_Unknown) continue; dac = ci.sucConnectorInfo.sbfAccess.bfAssociatedDAC; bios_connectors[i].line_mux = ci.sucI2cId.ucAccess; /* give tv unique connector ids */ if (i == ATOM_DEVICE_TV1_INDEX) { bios_connectors[i].ddc_bus.valid = false; bios_connectors[i].line_mux = 50; } else if (i == ATOM_DEVICE_TV2_INDEX) { bios_connectors[i].ddc_bus.valid = false; bios_connectors[i].line_mux = 51; } else if (i == ATOM_DEVICE_CV_INDEX) { bios_connectors[i].ddc_bus.valid = false; bios_connectors[i].line_mux = 52; } else bios_connectors[i].ddc_bus = radeon_lookup_i2c_gpio(rdev, bios_connectors[i].line_mux); if ((crev > 1) && (frev > 1)) { u8 isb = supported_devices->info_2d1.asIntSrcInfo[i].ucIntSrcBitmap; switch (isb) { case 0x4: bios_connectors[i].hpd.hpd = RADEON_HPD_1; break; case 0xa: bios_connectors[i].hpd.hpd = RADEON_HPD_2; break; default: bios_connectors[i].hpd.hpd = RADEON_HPD_NONE; break; } } else { if (i == ATOM_DEVICE_DFP1_INDEX) bios_connectors[i].hpd.hpd = RADEON_HPD_1; else if (i == ATOM_DEVICE_DFP2_INDEX) bios_connectors[i].hpd.hpd = RADEON_HPD_2; else bios_connectors[i].hpd.hpd = RADEON_HPD_NONE; } /* Always set the connector type to VGA for CRT1/CRT2. if they are * shared with a DVI port, we'll pick up the DVI connector when we * merge the outputs. Some bioses incorrectly list VGA ports as DVI. */ if (i == ATOM_DEVICE_CRT1_INDEX || i == ATOM_DEVICE_CRT2_INDEX) bios_connectors[i].connector_type = DRM_MODE_CONNECTOR_VGA; if (!radeon_atom_apply_quirks (dev, (1 << i), &bios_connectors[i].connector_type, &bios_connectors[i].ddc_bus, &bios_connectors[i].line_mux, &bios_connectors[i].hpd)) continue; bios_connectors[i].valid = true; bios_connectors[i].devices = (1 << i); if (ASIC_IS_AVIVO(rdev) || radeon_r4xx_atom) radeon_add_atom_encoder(dev, radeon_get_encoder_enum(dev, (1 << i), dac), (1 << i)); else radeon_add_legacy_encoder(dev, radeon_get_encoder_enum(dev, (1 << i), dac), (1 << i)); } /* combine shared connectors */ for (i = 0; i < max_device; i++) { if (bios_connectors[i].valid) { for (j = 0; j < max_device; j++) { if (bios_connectors[j].valid && (i != j)) { if (bios_connectors[i].line_mux == bios_connectors[j].line_mux) { /* make sure not to combine LVDS */ if (bios_connectors[i].devices & (ATOM_DEVICE_LCD_SUPPORT)) { bios_connectors[i].line_mux = 53; bios_connectors[i].ddc_bus.valid = false; continue; } if (bios_connectors[j].devices & (ATOM_DEVICE_LCD_SUPPORT)) { bios_connectors[j].line_mux = 53; bios_connectors[j].ddc_bus.valid = false; continue; } /* combine analog and digital for DVI-I */ if (((bios_connectors[i].devices & (ATOM_DEVICE_DFP_SUPPORT)) && (bios_connectors[j].devices & (ATOM_DEVICE_CRT_SUPPORT))) || ((bios_connectors[j].devices & (ATOM_DEVICE_DFP_SUPPORT)) && (bios_connectors[i].devices & (ATOM_DEVICE_CRT_SUPPORT)))) { bios_connectors[i].devices |= bios_connectors[j].devices; bios_connectors[i].connector_type = DRM_MODE_CONNECTOR_DVII; if (bios_connectors[j].devices & (ATOM_DEVICE_DFP_SUPPORT)) bios_connectors[i].hpd = bios_connectors[j].hpd; bios_connectors[j].valid = false; } } } } } } /* add the connectors */ for (i = 0; i < max_device; i++) { if (bios_connectors[i].valid) { uint16_t connector_object_id = atombios_get_connector_object_id(dev, bios_connectors[i].connector_type, bios_connectors[i].devices); radeon_add_atom_connector(dev, bios_connectors[i].line_mux, bios_connectors[i].devices, bios_connectors[i]. connector_type, &bios_connectors[i].ddc_bus, 0, connector_object_id, &bios_connectors[i].hpd, &router); } } radeon_link_encoder_connector(dev); kfree(bios_connectors); return true; } union firmware_info { ATOM_FIRMWARE_INFO info; ATOM_FIRMWARE_INFO_V1_2 info_12; ATOM_FIRMWARE_INFO_V1_3 info_13; ATOM_FIRMWARE_INFO_V1_4 info_14; ATOM_FIRMWARE_INFO_V2_1 info_21; }; bool radeon_atom_get_clock_info(struct drm_device *dev) { struct radeon_device *rdev = dev->dev_private; struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); union firmware_info *firmware_info; uint8_t frev, crev; struct radeon_pll *p1pll = &rdev->clock.p1pll; struct radeon_pll *p2pll = &rdev->clock.p2pll; struct radeon_pll *dcpll = &rdev->clock.dcpll; struct radeon_pll *spll = &rdev->clock.spll; struct radeon_pll *mpll = &rdev->clock.mpll; uint16_t data_offset; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { firmware_info = (union firmware_info *)(mode_info->atom_context->bios + data_offset); /* pixel clocks */ p1pll->reference_freq = le16_to_cpu(firmware_info->info.usReferenceClock); p1pll->reference_div = 0; if (crev < 2) p1pll->pll_out_min = le16_to_cpu(firmware_info->info.usMinPixelClockPLL_Output); else p1pll->pll_out_min = le32_to_cpu(firmware_info->info_12.ulMinPixelClockPLL_Output); p1pll->pll_out_max = le32_to_cpu(firmware_info->info.ulMaxPixelClockPLL_Output); if (crev >= 4) { p1pll->lcd_pll_out_min = le16_to_cpu(firmware_info->info_14.usLcdMinPixelClockPLL_Output) * 100; if (p1pll->lcd_pll_out_min == 0) p1pll->lcd_pll_out_min = p1pll->pll_out_min; p1pll->lcd_pll_out_max = le16_to_cpu(firmware_info->info_14.usLcdMaxPixelClockPLL_Output) * 100; if (p1pll->lcd_pll_out_max == 0) p1pll->lcd_pll_out_max = p1pll->pll_out_max; } else { p1pll->lcd_pll_out_min = p1pll->pll_out_min; p1pll->lcd_pll_out_max = p1pll->pll_out_max; } if (p1pll->pll_out_min == 0) { if (ASIC_IS_AVIVO(rdev)) p1pll->pll_out_min = 64800; else p1pll->pll_out_min = 20000; } else if (p1pll->pll_out_min > 64800) { /* Limiting the pll output range is a good thing generally as * it limits the number of possible pll combinations for a given * frequency presumably to the ones that work best on each card. * However, certain duallink DVI monitors seem to like * pll combinations that would be limited by this at least on * pre-DCE 3.0 r6xx hardware. This might need to be adjusted per * family. */ p1pll->pll_out_min = 64800; } p1pll->pll_in_min = le16_to_cpu(firmware_info->info.usMinPixelClockPLL_Input); p1pll->pll_in_max = le16_to_cpu(firmware_info->info.usMaxPixelClockPLL_Input); *p2pll = *p1pll; /* system clock */ spll->reference_freq = le16_to_cpu(firmware_info->info.usReferenceClock); spll->reference_div = 0; spll->pll_out_min = le16_to_cpu(firmware_info->info.usMinEngineClockPLL_Output); spll->pll_out_max = le32_to_cpu(firmware_info->info.ulMaxEngineClockPLL_Output); /* ??? */ if (spll->pll_out_min == 0) { if (ASIC_IS_AVIVO(rdev)) spll->pll_out_min = 64800; else spll->pll_out_min = 20000; } spll->pll_in_min = le16_to_cpu(firmware_info->info.usMinEngineClockPLL_Input); spll->pll_in_max = le16_to_cpu(firmware_info->info.usMaxEngineClockPLL_Input); /* memory clock */ mpll->reference_freq = le16_to_cpu(firmware_info->info.usReferenceClock); mpll->reference_div = 0; mpll->pll_out_min = le16_to_cpu(firmware_info->info.usMinMemoryClockPLL_Output); mpll->pll_out_max = le32_to_cpu(firmware_info->info.ulMaxMemoryClockPLL_Output); /* ??? */ if (mpll->pll_out_min == 0) { if (ASIC_IS_AVIVO(rdev)) mpll->pll_out_min = 64800; else mpll->pll_out_min = 20000; } mpll->pll_in_min = le16_to_cpu(firmware_info->info.usMinMemoryClockPLL_Input); mpll->pll_in_max = le16_to_cpu(firmware_info->info.usMaxMemoryClockPLL_Input); rdev->clock.default_sclk = le32_to_cpu(firmware_info->info.ulDefaultEngineClock); rdev->clock.default_mclk = le32_to_cpu(firmware_info->info.ulDefaultMemoryClock); if (ASIC_IS_DCE4(rdev)) { rdev->clock.default_dispclk = le32_to_cpu(firmware_info->info_21.ulDefaultDispEngineClkFreq); if (rdev->clock.default_dispclk == 0) rdev->clock.default_dispclk = 60000; /* 600 Mhz */ rdev->clock.dp_extclk = le16_to_cpu(firmware_info->info_21.usUniphyDPModeExtClkFreq); } *dcpll = *p1pll; return true; } return false; } union igp_info { struct _ATOM_INTEGRATED_SYSTEM_INFO info; struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2; }; bool radeon_atombios_sideport_present(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo); union igp_info *igp_info; u8 frev, crev; u16 data_offset; /* sideport is AMD only */ if (rdev->family == CHIP_RS600) return false; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { igp_info = (union igp_info *)(mode_info->atom_context->bios + data_offset); switch (crev) { case 1: if (igp_info->info.ulBootUpMemoryClock) return true; break; case 2: if (igp_info->info_2.ulBootUpSidePortClock) return true; break; default: DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev); break; } } return false; } bool radeon_atombios_get_tmds_info(struct radeon_encoder *encoder, struct radeon_encoder_int_tmds *tmds) { struct drm_device *dev = encoder->base.dev; struct radeon_device *rdev = dev->dev_private; struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, TMDS_Info); uint16_t data_offset; struct _ATOM_TMDS_INFO *tmds_info; uint8_t frev, crev; uint16_t maxfreq; int i; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { tmds_info = (struct _ATOM_TMDS_INFO *)(mode_info->atom_context->bios + data_offset); maxfreq = le16_to_cpu(tmds_info->usMaxFrequency); for (i = 0; i < 4; i++) { tmds->tmds_pll[i].freq = le16_to_cpu(tmds_info->asMiscInfo[i].usFrequency); tmds->tmds_pll[i].value = tmds_info->asMiscInfo[i].ucPLL_ChargePump & 0x3f; tmds->tmds_pll[i].value |= (tmds_info->asMiscInfo[i]. ucPLL_VCO_Gain & 0x3f) << 6; tmds->tmds_pll[i].value |= (tmds_info->asMiscInfo[i]. ucPLL_DutyCycle & 0xf) << 12; tmds->tmds_pll[i].value |= (tmds_info->asMiscInfo[i]. ucPLL_VoltageSwing & 0xf) << 16; DRM_DEBUG_KMS("TMDS PLL From ATOMBIOS %u %x\n", tmds->tmds_pll[i].freq, tmds->tmds_pll[i].value); if (maxfreq == tmds->tmds_pll[i].freq) { tmds->tmds_pll[i].freq = 0xffffffff; break; } } return true; } return false; } bool radeon_atombios_get_ppll_ss_info(struct radeon_device *rdev, struct radeon_atom_ss *ss, int id) { struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, PPLL_SS_Info); uint16_t data_offset, size; struct _ATOM_SPREAD_SPECTRUM_INFO *ss_info; uint8_t frev, crev; int i, num_indices; memset(ss, 0, sizeof(struct radeon_atom_ss)); if (atom_parse_data_header(mode_info->atom_context, index, &size, &frev, &crev, &data_offset)) { ss_info = (struct _ATOM_SPREAD_SPECTRUM_INFO *)(mode_info->atom_context->bios + data_offset); num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_SPREAD_SPECTRUM_ASSIGNMENT); for (i = 0; i < num_indices; i++) { if (ss_info->asSS_Info[i].ucSS_Id == id) { ss->percentage = le16_to_cpu(ss_info->asSS_Info[i].usSpreadSpectrumPercentage); ss->type = ss_info->asSS_Info[i].ucSpreadSpectrumType; ss->step = ss_info->asSS_Info[i].ucSS_Step; ss->delay = ss_info->asSS_Info[i].ucSS_Delay; ss->range = ss_info->asSS_Info[i].ucSS_Range; ss->refdiv = ss_info->asSS_Info[i].ucRecommendedRef_Div; return true; } } } return false; } static void radeon_atombios_get_igp_ss_overrides(struct radeon_device *rdev, struct radeon_atom_ss *ss, int id) { struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo); u16 data_offset, size; struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 *igp_info; u8 frev, crev; u16 percentage = 0, rate = 0; /* get any igp specific overrides */ if (atom_parse_data_header(mode_info->atom_context, index, &size, &frev, &crev, &data_offset)) { igp_info = (struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 *) (mode_info->atom_context->bios + data_offset); switch (id) { case ASIC_INTERNAL_SS_ON_TMDS: percentage = le16_to_cpu(igp_info->usDVISSPercentage); rate = le16_to_cpu(igp_info->usDVISSpreadRateIn10Hz); break; case ASIC_INTERNAL_SS_ON_HDMI: percentage = le16_to_cpu(igp_info->usHDMISSPercentage); rate = le16_to_cpu(igp_info->usHDMISSpreadRateIn10Hz); break; case ASIC_INTERNAL_SS_ON_LVDS: percentage = le16_to_cpu(igp_info->usLvdsSSPercentage); rate = le16_to_cpu(igp_info->usLvdsSSpreadRateIn10Hz); break; } if (percentage) ss->percentage = percentage; if (rate) ss->rate = rate; } } union asic_ss_info { struct _ATOM_ASIC_INTERNAL_SS_INFO info; struct _ATOM_ASIC_INTERNAL_SS_INFO_V2 info_2; struct _ATOM_ASIC_INTERNAL_SS_INFO_V3 info_3; }; bool radeon_atombios_get_asic_ss_info(struct radeon_device *rdev, struct radeon_atom_ss *ss, int id, u32 clock) { struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info); uint16_t data_offset, size; union asic_ss_info *ss_info; uint8_t frev, crev; int i, num_indices; memset(ss, 0, sizeof(struct radeon_atom_ss)); if (atom_parse_data_header(mode_info->atom_context, index, &size, &frev, &crev, &data_offset)) { ss_info = (union asic_ss_info *)(mode_info->atom_context->bios + data_offset); switch (frev) { case 1: num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_ASIC_SS_ASSIGNMENT); for (i = 0; i < num_indices; i++) { if ((ss_info->info.asSpreadSpectrum[i].ucClockIndication == id) && (clock <= ss_info->info.asSpreadSpectrum[i].ulTargetClockRange)) { ss->percentage = le16_to_cpu(ss_info->info.asSpreadSpectrum[i].usSpreadSpectrumPercentage); ss->type = ss_info->info.asSpreadSpectrum[i].ucSpreadSpectrumMode; ss->rate = le16_to_cpu(ss_info->info.asSpreadSpectrum[i].usSpreadRateInKhz); return true; } } break; case 2: num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_ASIC_SS_ASSIGNMENT_V2); for (i = 0; i < num_indices; i++) { if ((ss_info->info_2.asSpreadSpectrum[i].ucClockIndication == id) && (clock <= ss_info->info_2.asSpreadSpectrum[i].ulTargetClockRange)) { ss->percentage = le16_to_cpu(ss_info->info_2.asSpreadSpectrum[i].usSpreadSpectrumPercentage); ss->type = ss_info->info_2.asSpreadSpectrum[i].ucSpreadSpectrumMode; ss->rate = le16_to_cpu(ss_info->info_2.asSpreadSpectrum[i].usSpreadRateIn10Hz); return true; } } break; case 3: num_indices = (size - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_ASIC_SS_ASSIGNMENT_V3); for (i = 0; i < num_indices; i++) { if ((ss_info->info_3.asSpreadSpectrum[i].ucClockIndication == id) && (clock <= ss_info->info_3.asSpreadSpectrum[i].ulTargetClockRange)) { ss->percentage = le16_to_cpu(ss_info->info_3.asSpreadSpectrum[i].usSpreadSpectrumPercentage); ss->type = ss_info->info_3.asSpreadSpectrum[i].ucSpreadSpectrumMode; ss->rate = le16_to_cpu(ss_info->info_3.asSpreadSpectrum[i].usSpreadRateIn10Hz); if (rdev->flags & RADEON_IS_IGP) radeon_atombios_get_igp_ss_overrides(rdev, ss, id); return true; } } break; default: DRM_ERROR("Unsupported ASIC_InternalSS_Info table: %d %d\n", frev, crev); break; } } return false; } union lvds_info { struct _ATOM_LVDS_INFO info; struct _ATOM_LVDS_INFO_V12 info_12; }; struct radeon_encoder_atom_dig *radeon_atombios_get_lvds_info(struct radeon_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct radeon_device *rdev = dev->dev_private; struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, LVDS_Info); uint16_t data_offset, misc; union lvds_info *lvds_info; uint8_t frev, crev; struct radeon_encoder_atom_dig *lvds = NULL; int encoder_enum = (encoder->encoder_enum & ENUM_ID_MASK) >> ENUM_ID_SHIFT; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { lvds_info = (union lvds_info *)(mode_info->atom_context->bios + data_offset); lvds = kzalloc(sizeof(struct radeon_encoder_atom_dig), GFP_KERNEL); if (!lvds) return NULL; lvds->native_mode.clock = le16_to_cpu(lvds_info->info.sLCDTiming.usPixClk) * 10; lvds->native_mode.hdisplay = le16_to_cpu(lvds_info->info.sLCDTiming.usHActive); lvds->native_mode.vdisplay = le16_to_cpu(lvds_info->info.sLCDTiming.usVActive); lvds->native_mode.htotal = lvds->native_mode.hdisplay + le16_to_cpu(lvds_info->info.sLCDTiming.usHBlanking_Time); lvds->native_mode.hsync_start = lvds->native_mode.hdisplay + le16_to_cpu(lvds_info->info.sLCDTiming.usHSyncOffset); lvds->native_mode.hsync_end = lvds->native_mode.hsync_start + le16_to_cpu(lvds_info->info.sLCDTiming.usHSyncWidth); lvds->native_mode.vtotal = lvds->native_mode.vdisplay + le16_to_cpu(lvds_info->info.sLCDTiming.usVBlanking_Time); lvds->native_mode.vsync_start = lvds->native_mode.vdisplay + le16_to_cpu(lvds_info->info.sLCDTiming.usVSyncOffset); lvds->native_mode.vsync_end = lvds->native_mode.vsync_start + le16_to_cpu(lvds_info->info.sLCDTiming.usVSyncWidth); lvds->panel_pwr_delay = le16_to_cpu(lvds_info->info.usOffDelayInMs); lvds->lcd_misc = lvds_info->info.ucLVDS_Misc; misc = le16_to_cpu(lvds_info->info.sLCDTiming.susModeMiscInfo.usAccess); if (misc & ATOM_VSYNC_POLARITY) lvds->native_mode.flags |= DRM_MODE_FLAG_NVSYNC; if (misc & ATOM_HSYNC_POLARITY) lvds->native_mode.flags |= DRM_MODE_FLAG_NHSYNC; if (misc & ATOM_COMPOSITESYNC) lvds->native_mode.flags |= DRM_MODE_FLAG_CSYNC; if (misc & ATOM_INTERLACE) lvds->native_mode.flags |= DRM_MODE_FLAG_INTERLACE; if (misc & ATOM_DOUBLE_CLOCK_MODE) lvds->native_mode.flags |= DRM_MODE_FLAG_DBLSCAN; /* set crtc values */ drm_mode_set_crtcinfo(&lvds->native_mode, CRTC_INTERLACE_HALVE_V); lvds->lcd_ss_id = lvds_info->info.ucSS_Id; encoder->native_mode = lvds->native_mode; if (encoder_enum == 2) lvds->linkb = true; else lvds->linkb = false; } return lvds; } struct radeon_encoder_primary_dac * radeon_atombios_get_primary_dac_info(struct radeon_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct radeon_device *rdev = dev->dev_private; struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, CompassionateData); uint16_t data_offset; struct _COMPASSIONATE_DATA *dac_info; uint8_t frev, crev; uint8_t bg, dac; struct radeon_encoder_primary_dac *p_dac = NULL; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { dac_info = (struct _COMPASSIONATE_DATA *) (mode_info->atom_context->bios + data_offset); p_dac = kzalloc(sizeof(struct radeon_encoder_primary_dac), GFP_KERNEL); if (!p_dac) return NULL; bg = dac_info->ucDAC1_BG_Adjustment; dac = dac_info->ucDAC1_DAC_Adjustment; p_dac->ps2_pdac_adj = (bg << 8) | (dac); } return p_dac; } bool radeon_atom_get_tv_timings(struct radeon_device *rdev, int index, struct drm_display_mode *mode) { struct radeon_mode_info *mode_info = &rdev->mode_info; ATOM_ANALOG_TV_INFO *tv_info; ATOM_ANALOG_TV_INFO_V1_2 *tv_info_v1_2; ATOM_DTD_FORMAT *dtd_timings; int data_index = GetIndexIntoMasterTable(DATA, AnalogTV_Info); u8 frev, crev; u16 data_offset, misc; if (!atom_parse_data_header(mode_info->atom_context, data_index, NULL, &frev, &crev, &data_offset)) return false; switch (crev) { case 1: tv_info = (ATOM_ANALOG_TV_INFO *)(mode_info->atom_context->bios + data_offset); if (index >= MAX_SUPPORTED_TV_TIMING) return false; mode->crtc_htotal = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_Total); mode->crtc_hdisplay = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_Disp); mode->crtc_hsync_start = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_SyncStart); mode->crtc_hsync_end = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_SyncStart) + le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_SyncWidth); mode->crtc_vtotal = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_Total); mode->crtc_vdisplay = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_Disp); mode->crtc_vsync_start = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_SyncStart); mode->crtc_vsync_end = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_SyncStart) + le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_SyncWidth); mode->flags = 0; misc = le16_to_cpu(tv_info->aModeTimings[index].susModeMiscInfo.usAccess); if (misc & ATOM_VSYNC_POLARITY) mode->flags |= DRM_MODE_FLAG_NVSYNC; if (misc & ATOM_HSYNC_POLARITY) mode->flags |= DRM_MODE_FLAG_NHSYNC; if (misc & ATOM_COMPOSITESYNC) mode->flags |= DRM_MODE_FLAG_CSYNC; if (misc & ATOM_INTERLACE) mode->flags |= DRM_MODE_FLAG_INTERLACE; if (misc & ATOM_DOUBLE_CLOCK_MODE) mode->flags |= DRM_MODE_FLAG_DBLSCAN; mode->clock = le16_to_cpu(tv_info->aModeTimings[index].usPixelClock) * 10; if (index == 1) { /* PAL timings appear to have wrong values for totals */ mode->crtc_htotal -= 1; mode->crtc_vtotal -= 1; } break; case 2: tv_info_v1_2 = (ATOM_ANALOG_TV_INFO_V1_2 *)(mode_info->atom_context->bios + data_offset); if (index >= MAX_SUPPORTED_TV_TIMING_V1_2) return false; dtd_timings = &tv_info_v1_2->aModeTimings[index]; mode->crtc_htotal = le16_to_cpu(dtd_timings->usHActive) + le16_to_cpu(dtd_timings->usHBlanking_Time); mode->crtc_hdisplay = le16_to_cpu(dtd_timings->usHActive); mode->crtc_hsync_start = le16_to_cpu(dtd_timings->usHActive) + le16_to_cpu(dtd_timings->usHSyncOffset); mode->crtc_hsync_end = mode->crtc_hsync_start + le16_to_cpu(dtd_timings->usHSyncWidth); mode->crtc_vtotal = le16_to_cpu(dtd_timings->usVActive) + le16_to_cpu(dtd_timings->usVBlanking_Time); mode->crtc_vdisplay = le16_to_cpu(dtd_timings->usVActive); mode->crtc_vsync_start = le16_to_cpu(dtd_timings->usVActive) + le16_to_cpu(dtd_timings->usVSyncOffset); mode->crtc_vsync_end = mode->crtc_vsync_start + le16_to_cpu(dtd_timings->usVSyncWidth); mode->flags = 0; misc = le16_to_cpu(dtd_timings->susModeMiscInfo.usAccess); if (misc & ATOM_VSYNC_POLARITY) mode->flags |= DRM_MODE_FLAG_NVSYNC; if (misc & ATOM_HSYNC_POLARITY) mode->flags |= DRM_MODE_FLAG_NHSYNC; if (misc & ATOM_COMPOSITESYNC) mode->flags |= DRM_MODE_FLAG_CSYNC; if (misc & ATOM_INTERLACE) mode->flags |= DRM_MODE_FLAG_INTERLACE; if (misc & ATOM_DOUBLE_CLOCK_MODE) mode->flags |= DRM_MODE_FLAG_DBLSCAN; mode->clock = le16_to_cpu(dtd_timings->usPixClk) * 10; break; } return true; } enum radeon_tv_std radeon_atombios_get_tv_info(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, AnalogTV_Info); uint16_t data_offset; uint8_t frev, crev; struct _ATOM_ANALOG_TV_INFO *tv_info; enum radeon_tv_std tv_std = TV_STD_NTSC; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { tv_info = (struct _ATOM_ANALOG_TV_INFO *) (mode_info->atom_context->bios + data_offset); switch (tv_info->ucTV_BootUpDefaultStandard) { case ATOM_TV_NTSC: tv_std = TV_STD_NTSC; DRM_DEBUG_KMS("Default TV standard: NTSC\n"); break; case ATOM_TV_NTSCJ: tv_std = TV_STD_NTSC_J; DRM_DEBUG_KMS("Default TV standard: NTSC-J\n"); break; case ATOM_TV_PAL: tv_std = TV_STD_PAL; DRM_DEBUG_KMS("Default TV standard: PAL\n"); break; case ATOM_TV_PALM: tv_std = TV_STD_PAL_M; DRM_DEBUG_KMS("Default TV standard: PAL-M\n"); break; case ATOM_TV_PALN: tv_std = TV_STD_PAL_N; DRM_DEBUG_KMS("Default TV standard: PAL-N\n"); break; case ATOM_TV_PALCN: tv_std = TV_STD_PAL_CN; DRM_DEBUG_KMS("Default TV standard: PAL-CN\n"); break; case ATOM_TV_PAL60: tv_std = TV_STD_PAL_60; DRM_DEBUG_KMS("Default TV standard: PAL-60\n"); break; case ATOM_TV_SECAM: tv_std = TV_STD_SECAM; DRM_DEBUG_KMS("Default TV standard: SECAM\n"); break; default: tv_std = TV_STD_NTSC; DRM_DEBUG_KMS("Unknown TV standard; defaulting to NTSC\n"); break; } } return tv_std; } struct radeon_encoder_tv_dac * radeon_atombios_get_tv_dac_info(struct radeon_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct radeon_device *rdev = dev->dev_private; struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, CompassionateData); uint16_t data_offset; struct _COMPASSIONATE_DATA *dac_info; uint8_t frev, crev; uint8_t bg, dac; struct radeon_encoder_tv_dac *tv_dac = NULL; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { dac_info = (struct _COMPASSIONATE_DATA *) (mode_info->atom_context->bios + data_offset); tv_dac = kzalloc(sizeof(struct radeon_encoder_tv_dac), GFP_KERNEL); if (!tv_dac) return NULL; bg = dac_info->ucDAC2_CRT2_BG_Adjustment; dac = dac_info->ucDAC2_CRT2_DAC_Adjustment; tv_dac->ps2_tvdac_adj = (bg << 16) | (dac << 20); bg = dac_info->ucDAC2_PAL_BG_Adjustment; dac = dac_info->ucDAC2_PAL_DAC_Adjustment; tv_dac->pal_tvdac_adj = (bg << 16) | (dac << 20); bg = dac_info->ucDAC2_NTSC_BG_Adjustment; dac = dac_info->ucDAC2_NTSC_DAC_Adjustment; tv_dac->ntsc_tvdac_adj = (bg << 16) | (dac << 20); tv_dac->tv_std = radeon_atombios_get_tv_info(rdev); } return tv_dac; } static const char *thermal_controller_names[] = { "NONE", "lm63", "adm1032", "adm1030", "max6649", "lm64", "f75375", "asc7xxx", }; static const char *pp_lib_thermal_controller_names[] = { "NONE", "lm63", "adm1032", "adm1030", "max6649", "lm64", "f75375", "RV6xx", "RV770", "adt7473", "NONE", "External GPIO", "Evergreen", "emc2103", "Sumo", }; union power_info { struct _ATOM_POWERPLAY_INFO info; struct _ATOM_POWERPLAY_INFO_V2 info_2; struct _ATOM_POWERPLAY_INFO_V3 info_3; struct _ATOM_PPLIB_POWERPLAYTABLE pplib; struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2; struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3; }; union pplib_clock_info { struct _ATOM_PPLIB_R600_CLOCK_INFO r600; struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780; struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen; struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo; }; union pplib_power_state { struct _ATOM_PPLIB_STATE v1; struct _ATOM_PPLIB_STATE_V2 v2; }; static void radeon_atombios_parse_misc_flags_1_3(struct radeon_device *rdev, int state_index, u32 misc, u32 misc2) { rdev->pm.power_state[state_index].misc = misc; rdev->pm.power_state[state_index].misc2 = misc2; /* order matters! */ if (misc & ATOM_PM_MISCINFO_POWER_SAVING_MODE) rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_POWERSAVE; if (misc & ATOM_PM_MISCINFO_DEFAULT_DC_STATE_ENTRY_TRUE) rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_BATTERY; if (misc & ATOM_PM_MISCINFO_DEFAULT_LOW_DC_STATE_ENTRY_TRUE) rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_BATTERY; if (misc & ATOM_PM_MISCINFO_LOAD_BALANCE_EN) rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_BALANCED; if (misc & ATOM_PM_MISCINFO_3D_ACCELERATION_EN) { rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_PERFORMANCE; rdev->pm.power_state[state_index].flags &= ~RADEON_PM_STATE_SINGLE_DISPLAY_ONLY; } if (misc2 & ATOM_PM_MISCINFO2_SYSTEM_AC_LITE_MODE) rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_BALANCED; if (misc & ATOM_PM_MISCINFO_DRIVER_DEFAULT_MODE) { rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_DEFAULT; rdev->pm.default_power_state_index = state_index; rdev->pm.power_state[state_index].default_clock_mode = &rdev->pm.power_state[state_index].clock_info[0]; } else if (state_index == 0) { rdev->pm.power_state[state_index].clock_info[0].flags |= RADEON_PM_MODE_NO_DISPLAY; } } static int radeon_atombios_parse_power_table_1_3(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; u32 misc, misc2 = 0; int num_modes = 0, i; int state_index = 0; struct radeon_i2c_bus_rec i2c_bus; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; if (!atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return state_index; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); /* add the i2c bus for thermal/fan chip */ if (power_info->info.ucOverdriveThermalController > 0) { DRM_INFO("Possible %s thermal controller at 0x%02x\n", thermal_controller_names[power_info->info.ucOverdriveThermalController], power_info->info.ucOverdriveControllerAddress >> 1); i2c_bus = radeon_lookup_i2c_gpio(rdev, power_info->info.ucOverdriveI2cLine); rdev->pm.i2c_bus = radeon_i2c_lookup(rdev, &i2c_bus); if (rdev->pm.i2c_bus) { struct i2c_board_info info = { }; const char *name = thermal_controller_names[power_info->info. ucOverdriveThermalController]; info.addr = power_info->info.ucOverdriveControllerAddress >> 1; strlcpy(info.type, name, sizeof(info.type)); i2c_new_device(&rdev->pm.i2c_bus->adapter, &info); } } num_modes = power_info->info.ucNumOfPowerModeEntries; if (num_modes > ATOM_MAX_NUMBEROF_POWER_BLOCK) num_modes = ATOM_MAX_NUMBEROF_POWER_BLOCK; /* last mode is usually default, array is low to high */ for (i = 0; i < num_modes; i++) { rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_NONE; switch (frev) { case 1: rdev->pm.power_state[state_index].num_clock_modes = 1; rdev->pm.power_state[state_index].clock_info[0].mclk = le16_to_cpu(power_info->info.asPowerPlayInfo[i].usMemoryClock); rdev->pm.power_state[state_index].clock_info[0].sclk = le16_to_cpu(power_info->info.asPowerPlayInfo[i].usEngineClock); /* skip invalid modes */ if ((rdev->pm.power_state[state_index].clock_info[0].mclk == 0) || (rdev->pm.power_state[state_index].clock_info[0].sclk == 0)) continue; rdev->pm.power_state[state_index].pcie_lanes = power_info->info.asPowerPlayInfo[i].ucNumPciELanes; misc = le32_to_cpu(power_info->info.asPowerPlayInfo[i].ulMiscInfo); if ((misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_SUPPORT) || (misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH)) { rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_GPIO; rdev->pm.power_state[state_index].clock_info[0].voltage.gpio = radeon_lookup_gpio(rdev, power_info->info.asPowerPlayInfo[i].ucVoltageDropIndex); if (misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH) rdev->pm.power_state[state_index].clock_info[0].voltage.active_high = true; else rdev->pm.power_state[state_index].clock_info[0].voltage.active_high = false; } else if (misc & ATOM_PM_MISCINFO_PROGRAM_VOLTAGE) { rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_VDDC; rdev->pm.power_state[state_index].clock_info[0].voltage.vddc_id = power_info->info.asPowerPlayInfo[i].ucVoltageDropIndex; } rdev->pm.power_state[state_index].flags = RADEON_PM_STATE_SINGLE_DISPLAY_ONLY; radeon_atombios_parse_misc_flags_1_3(rdev, state_index, misc, 0); state_index++; break; case 2: rdev->pm.power_state[state_index].num_clock_modes = 1; rdev->pm.power_state[state_index].clock_info[0].mclk = le32_to_cpu(power_info->info_2.asPowerPlayInfo[i].ulMemoryClock); rdev->pm.power_state[state_index].clock_info[0].sclk = le32_to_cpu(power_info->info_2.asPowerPlayInfo[i].ulEngineClock); /* skip invalid modes */ if ((rdev->pm.power_state[state_index].clock_info[0].mclk == 0) || (rdev->pm.power_state[state_index].clock_info[0].sclk == 0)) continue; rdev->pm.power_state[state_index].pcie_lanes = power_info->info_2.asPowerPlayInfo[i].ucNumPciELanes; misc = le32_to_cpu(power_info->info_2.asPowerPlayInfo[i].ulMiscInfo); misc2 = le32_to_cpu(power_info->info_2.asPowerPlayInfo[i].ulMiscInfo2); if ((misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_SUPPORT) || (misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH)) { rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_GPIO; rdev->pm.power_state[state_index].clock_info[0].voltage.gpio = radeon_lookup_gpio(rdev, power_info->info_2.asPowerPlayInfo[i].ucVoltageDropIndex); if (misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH) rdev->pm.power_state[state_index].clock_info[0].voltage.active_high = true; else rdev->pm.power_state[state_index].clock_info[0].voltage.active_high = false; } else if (misc & ATOM_PM_MISCINFO_PROGRAM_VOLTAGE) { rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_VDDC; rdev->pm.power_state[state_index].clock_info[0].voltage.vddc_id = power_info->info_2.asPowerPlayInfo[i].ucVoltageDropIndex; } rdev->pm.power_state[state_index].flags = RADEON_PM_STATE_SINGLE_DISPLAY_ONLY; radeon_atombios_parse_misc_flags_1_3(rdev, state_index, misc, misc2); state_index++; break; case 3: rdev->pm.power_state[state_index].num_clock_modes = 1; rdev->pm.power_state[state_index].clock_info[0].mclk = le32_to_cpu(power_info->info_3.asPowerPlayInfo[i].ulMemoryClock); rdev->pm.power_state[state_index].clock_info[0].sclk = le32_to_cpu(power_info->info_3.asPowerPlayInfo[i].ulEngineClock); /* skip invalid modes */ if ((rdev->pm.power_state[state_index].clock_info[0].mclk == 0) || (rdev->pm.power_state[state_index].clock_info[0].sclk == 0)) continue; rdev->pm.power_state[state_index].pcie_lanes = power_info->info_3.asPowerPlayInfo[i].ucNumPciELanes; misc = le32_to_cpu(power_info->info_3.asPowerPlayInfo[i].ulMiscInfo); misc2 = le32_to_cpu(power_info->info_3.asPowerPlayInfo[i].ulMiscInfo2); if ((misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_SUPPORT) || (misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH)) { rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_GPIO; rdev->pm.power_state[state_index].clock_info[0].voltage.gpio = radeon_lookup_gpio(rdev, power_info->info_3.asPowerPlayInfo[i].ucVoltageDropIndex); if (misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_ACTIVE_HIGH) rdev->pm.power_state[state_index].clock_info[0].voltage.active_high = true; else rdev->pm.power_state[state_index].clock_info[0].voltage.active_high = false; } else if (misc & ATOM_PM_MISCINFO_PROGRAM_VOLTAGE) { rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_VDDC; rdev->pm.power_state[state_index].clock_info[0].voltage.vddc_id = power_info->info_3.asPowerPlayInfo[i].ucVoltageDropIndex; if (misc2 & ATOM_PM_MISCINFO2_VDDCI_DYNAMIC_VOLTAGE_EN) { rdev->pm.power_state[state_index].clock_info[0].voltage.vddci_enabled = true; rdev->pm.power_state[state_index].clock_info[0].voltage.vddci_id = power_info->info_3.asPowerPlayInfo[i].ucVDDCI_VoltageDropIndex; } } rdev->pm.power_state[state_index].flags = RADEON_PM_STATE_SINGLE_DISPLAY_ONLY; radeon_atombios_parse_misc_flags_1_3(rdev, state_index, misc, misc2); state_index++; break; } } /* last mode is usually default */ if (rdev->pm.default_power_state_index == -1) { rdev->pm.power_state[state_index - 1].type = POWER_STATE_TYPE_DEFAULT; rdev->pm.default_power_state_index = state_index - 1; rdev->pm.power_state[state_index - 1].default_clock_mode = &rdev->pm.power_state[state_index - 1].clock_info[0]; rdev->pm.power_state[state_index].flags &= ~RADEON_PM_STATE_SINGLE_DISPLAY_ONLY; rdev->pm.power_state[state_index].misc = 0; rdev->pm.power_state[state_index].misc2 = 0; } return state_index; } static void radeon_atombios_add_pplib_thermal_controller(struct radeon_device *rdev, ATOM_PPLIB_THERMALCONTROLLER *controller) { struct radeon_i2c_bus_rec i2c_bus; /* add the i2c bus for thermal/fan chip */ if (controller->ucType > 0) { if (controller->ucType == ATOM_PP_THERMALCONTROLLER_RV6xx) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); rdev->pm.int_thermal_type = THERMAL_TYPE_RV6XX; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_RV770) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); rdev->pm.int_thermal_type = THERMAL_TYPE_RV770; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_EVERGREEN) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); rdev->pm.int_thermal_type = THERMAL_TYPE_EVERGREEN; } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_SUMO) { DRM_INFO("Internal thermal controller %s fan control\n", (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); rdev->pm.int_thermal_type = THERMAL_TYPE_SUMO; } else if ((controller->ucType == ATOM_PP_THERMALCONTROLLER_EXTERNAL_GPIO) || (controller->ucType == ATOM_PP_THERMALCONTROLLER_ADT7473_WITH_INTERNAL) || (controller->ucType == ATOM_PP_THERMALCONTROLLER_EMC2103_WITH_INTERNAL)) { DRM_INFO("Special thermal controller config\n"); } else { DRM_INFO("Possible %s thermal controller at 0x%02x %s fan control\n", pp_lib_thermal_controller_names[controller->ucType], controller->ucI2cAddress >> 1, (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with"); i2c_bus = radeon_lookup_i2c_gpio(rdev, controller->ucI2cLine); rdev->pm.i2c_bus = radeon_i2c_lookup(rdev, &i2c_bus); if (rdev->pm.i2c_bus) { struct i2c_board_info info = { }; const char *name = pp_lib_thermal_controller_names[controller->ucType]; info.addr = controller->ucI2cAddress >> 1; strlcpy(info.type, name, sizeof(info.type)); i2c_new_device(&rdev->pm.i2c_bus->adapter, &info); } } } } static u16 radeon_atombios_get_default_vddc(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); u8 frev, crev; u16 data_offset; union firmware_info *firmware_info; u16 vddc = 0; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { firmware_info = (union firmware_info *)(mode_info->atom_context->bios + data_offset); vddc = firmware_info->info_14.usBootUpVDDCVoltage; } return vddc; } static void radeon_atombios_parse_pplib_non_clock_info(struct radeon_device *rdev, int state_index, int mode_index, struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info) { int j; u32 misc = le32_to_cpu(non_clock_info->ulCapsAndSettings); u32 misc2 = le16_to_cpu(non_clock_info->usClassification); u16 vddc = radeon_atombios_get_default_vddc(rdev); rdev->pm.power_state[state_index].misc = misc; rdev->pm.power_state[state_index].misc2 = misc2; rdev->pm.power_state[state_index].pcie_lanes = ((misc & ATOM_PPLIB_PCIE_LINK_WIDTH_MASK) >> ATOM_PPLIB_PCIE_LINK_WIDTH_SHIFT) + 1; switch (misc2 & ATOM_PPLIB_CLASSIFICATION_UI_MASK) { case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY: rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_BATTERY; break; case ATOM_PPLIB_CLASSIFICATION_UI_BALANCED: rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_BALANCED; break; case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE: rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_PERFORMANCE; break; case ATOM_PPLIB_CLASSIFICATION_UI_NONE: if (misc2 & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE) rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_PERFORMANCE; break; } rdev->pm.power_state[state_index].flags = 0; if (misc & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) rdev->pm.power_state[state_index].flags |= RADEON_PM_STATE_SINGLE_DISPLAY_ONLY; if (misc2 & ATOM_PPLIB_CLASSIFICATION_BOOT) { rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_DEFAULT; rdev->pm.default_power_state_index = state_index; rdev->pm.power_state[state_index].default_clock_mode = &rdev->pm.power_state[state_index].clock_info[mode_index - 1]; /* patch the table values with the default slck/mclk from firmware info */ for (j = 0; j < mode_index; j++) { rdev->pm.power_state[state_index].clock_info[j].mclk = rdev->clock.default_mclk; rdev->pm.power_state[state_index].clock_info[j].sclk = rdev->clock.default_sclk; if (vddc) rdev->pm.power_state[state_index].clock_info[j].voltage.voltage = vddc; } } } static bool radeon_atombios_parse_pplib_clock_info(struct radeon_device *rdev, int state_index, int mode_index, union pplib_clock_info *clock_info) { u32 sclk, mclk; if (rdev->flags & RADEON_IS_IGP) { if (rdev->family >= CHIP_PALM) { sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow); sclk |= clock_info->sumo.ucEngineClockHigh << 16; rdev->pm.power_state[state_index].clock_info[mode_index].sclk = sclk; } else { sclk = le16_to_cpu(clock_info->rs780.usLowEngineClockLow); sclk |= clock_info->rs780.ucLowEngineClockHigh << 16; rdev->pm.power_state[state_index].clock_info[mode_index].sclk = sclk; } } else if (ASIC_IS_DCE4(rdev)) { sclk = le16_to_cpu(clock_info->evergreen.usEngineClockLow); sclk |= clock_info->evergreen.ucEngineClockHigh << 16; mclk = le16_to_cpu(clock_info->evergreen.usMemoryClockLow); mclk |= clock_info->evergreen.ucMemoryClockHigh << 16; rdev->pm.power_state[state_index].clock_info[mode_index].mclk = mclk; rdev->pm.power_state[state_index].clock_info[mode_index].sclk = sclk; rdev->pm.power_state[state_index].clock_info[mode_index].voltage.type = VOLTAGE_SW; rdev->pm.power_state[state_index].clock_info[mode_index].voltage.voltage = clock_info->evergreen.usVDDC; } else { sclk = le16_to_cpu(clock_info->r600.usEngineClockLow); sclk |= clock_info->r600.ucEngineClockHigh << 16; mclk = le16_to_cpu(clock_info->r600.usMemoryClockLow); mclk |= clock_info->r600.ucMemoryClockHigh << 16; rdev->pm.power_state[state_index].clock_info[mode_index].mclk = mclk; rdev->pm.power_state[state_index].clock_info[mode_index].sclk = sclk; rdev->pm.power_state[state_index].clock_info[mode_index].voltage.type = VOLTAGE_SW; rdev->pm.power_state[state_index].clock_info[mode_index].voltage.voltage = clock_info->r600.usVDDC; } if (rdev->flags & RADEON_IS_IGP) { /* skip invalid modes */ if (rdev->pm.power_state[state_index].clock_info[mode_index].sclk == 0) return false; } else { /* skip invalid modes */ if ((rdev->pm.power_state[state_index].clock_info[mode_index].mclk == 0) || (rdev->pm.power_state[state_index].clock_info[mode_index].sclk == 0)) return false; } return true; } static int radeon_atombios_parse_power_table_4_5(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info; union pplib_power_state *power_state; int i, j; int state_index = 0, mode_index = 0; union pplib_clock_info *clock_info; bool valid; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; if (!atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return state_index; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); radeon_atombios_add_pplib_thermal_controller(rdev, &power_info->pplib.sThermalController); /* first mode is usually default, followed by low to high */ for (i = 0; i < power_info->pplib.ucNumStates; i++) { mode_index = 0; power_state = (union pplib_power_state *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usStateArrayOffset) + i * power_info->pplib.ucStateEntrySize); non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset) + (power_state->v1.ucNonClockStateIndex * power_info->pplib.ucNonClockSize)); for (j = 0; j < (power_info->pplib.ucStateEntrySize - 1); j++) { clock_info = (union pplib_clock_info *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usClockInfoArrayOffset) + (power_state->v1.ucClockStateIndices[j] * power_info->pplib.ucClockInfoSize)); valid = radeon_atombios_parse_pplib_clock_info(rdev, state_index, mode_index, clock_info); if (valid) mode_index++; } rdev->pm.power_state[state_index].num_clock_modes = mode_index; if (mode_index) { radeon_atombios_parse_pplib_non_clock_info(rdev, state_index, mode_index, non_clock_info); state_index++; } } /* if multiple clock modes, mark the lowest as no display */ for (i = 0; i < state_index; i++) { if (rdev->pm.power_state[i].num_clock_modes > 1) rdev->pm.power_state[i].clock_info[0].flags |= RADEON_PM_MODE_NO_DISPLAY; } /* first mode is usually default */ if (rdev->pm.default_power_state_index == -1) { rdev->pm.power_state[0].type = POWER_STATE_TYPE_DEFAULT; rdev->pm.default_power_state_index = 0; rdev->pm.power_state[0].default_clock_mode = &rdev->pm.power_state[0].clock_info[0]; } return state_index; } static int radeon_atombios_parse_power_table_6(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info; union pplib_power_state *power_state; int i, j, non_clock_array_index, clock_array_index; int state_index = 0, mode_index = 0; union pplib_clock_info *clock_info; struct StateArray *state_array; struct ClockInfoArray *clock_info_array; struct NonClockInfoArray *non_clock_info_array; bool valid; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; if (!atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return state_index; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); radeon_atombios_add_pplib_thermal_controller(rdev, &power_info->pplib.sThermalController); state_array = (struct StateArray *) (mode_info->atom_context->bios + data_offset + power_info->pplib.usStateArrayOffset); clock_info_array = (struct ClockInfoArray *) (mode_info->atom_context->bios + data_offset + power_info->pplib.usClockInfoArrayOffset); non_clock_info_array = (struct NonClockInfoArray *) (mode_info->atom_context->bios + data_offset + power_info->pplib.usNonClockInfoArrayOffset); for (i = 0; i < state_array->ucNumEntries; i++) { mode_index = 0; power_state = (union pplib_power_state *)&state_array->states[i]; /* XXX this might be an inagua bug... */ non_clock_array_index = i; /* power_state->v2.nonClockInfoIndex */ non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *) &non_clock_info_array->nonClockInfo[non_clock_array_index]; for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) { clock_array_index = power_state->v2.clockInfoIndex[j]; /* XXX this might be an inagua bug... */ if (clock_array_index >= clock_info_array->ucNumEntries) continue; clock_info = (union pplib_clock_info *) &clock_info_array->clockInfo[clock_array_index]; valid = radeon_atombios_parse_pplib_clock_info(rdev, state_index, mode_index, clock_info); if (valid) mode_index++; } rdev->pm.power_state[state_index].num_clock_modes = mode_index; if (mode_index) { radeon_atombios_parse_pplib_non_clock_info(rdev, state_index, mode_index, non_clock_info); state_index++; } } /* if multiple clock modes, mark the lowest as no display */ for (i = 0; i < state_index; i++) { if (rdev->pm.power_state[i].num_clock_modes > 1) rdev->pm.power_state[i].clock_info[0].flags |= RADEON_PM_MODE_NO_DISPLAY; } /* first mode is usually default */ if (rdev->pm.default_power_state_index == -1) { rdev->pm.power_state[0].type = POWER_STATE_TYPE_DEFAULT; rdev->pm.default_power_state_index = 0; rdev->pm.power_state[0].default_clock_mode = &rdev->pm.power_state[0].clock_info[0]; } return state_index; } void radeon_atombios_get_power_modes(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; int state_index = 0; rdev->pm.default_power_state_index = -1; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { switch (frev) { case 1: case 2: case 3: state_index = radeon_atombios_parse_power_table_1_3(rdev); break; case 4: case 5: state_index = radeon_atombios_parse_power_table_4_5(rdev); break; case 6: state_index = radeon_atombios_parse_power_table_6(rdev); break; default: break; } } else { /* add the default mode */ rdev->pm.power_state[state_index].type = POWER_STATE_TYPE_DEFAULT; rdev->pm.power_state[state_index].num_clock_modes = 1; rdev->pm.power_state[state_index].clock_info[0].mclk = rdev->clock.default_mclk; rdev->pm.power_state[state_index].clock_info[0].sclk = rdev->clock.default_sclk; rdev->pm.power_state[state_index].default_clock_mode = &rdev->pm.power_state[state_index].clock_info[0]; rdev->pm.power_state[state_index].clock_info[0].voltage.type = VOLTAGE_NONE; rdev->pm.power_state[state_index].pcie_lanes = 16; rdev->pm.default_power_state_index = state_index; rdev->pm.power_state[state_index].flags = 0; state_index++; } rdev->pm.num_power_states = state_index; rdev->pm.current_power_state_index = rdev->pm.default_power_state_index; rdev->pm.current_clock_mode_index = 0; rdev->pm.current_vddc = rdev->pm.power_state[rdev->pm.default_power_state_index].clock_info[0].voltage.voltage; } void radeon_atom_set_clock_gating(struct radeon_device *rdev, int enable) { DYNAMIC_CLOCK_GATING_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, DynamicClockGating); args.ucEnable = enable; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } uint32_t radeon_atom_get_engine_clock(struct radeon_device *rdev) { GET_ENGINE_CLOCK_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, GetEngineClock); atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); return args.ulReturnEngineClock; } uint32_t radeon_atom_get_memory_clock(struct radeon_device *rdev) { GET_MEMORY_CLOCK_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, GetMemoryClock); atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); return args.ulReturnMemoryClock; } void radeon_atom_set_engine_clock(struct radeon_device *rdev, uint32_t eng_clock) { SET_ENGINE_CLOCK_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, SetEngineClock); args.ulTargetEngineClock = eng_clock; /* 10 khz */ atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } void radeon_atom_set_memory_clock(struct radeon_device *rdev, uint32_t mem_clock) { SET_MEMORY_CLOCK_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, SetMemoryClock); if (rdev->flags & RADEON_IS_IGP) return; args.ulTargetMemoryClock = mem_clock; /* 10 khz */ atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } union set_voltage { struct _SET_VOLTAGE_PS_ALLOCATION alloc; struct _SET_VOLTAGE_PARAMETERS v1; struct _SET_VOLTAGE_PARAMETERS_V2 v2; }; void radeon_atom_set_voltage(struct radeon_device *rdev, u16 level) { union set_voltage args; int index = GetIndexIntoMasterTable(COMMAND, SetVoltage); u8 frev, crev, volt_index = level; if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev)) return; switch (crev) { case 1: args.v1.ucVoltageType = SET_VOLTAGE_TYPE_ASIC_VDDC; args.v1.ucVoltageMode = SET_ASIC_VOLTAGE_MODE_ALL_SOURCE; args.v1.ucVoltageIndex = volt_index; break; case 2: args.v2.ucVoltageType = SET_VOLTAGE_TYPE_ASIC_VDDC; args.v2.ucVoltageMode = SET_ASIC_VOLTAGE_MODE_SET_VOLTAGE; args.v2.usVoltageLevel = cpu_to_le16(level); break; default: DRM_ERROR("Unknown table version %d, %d\n", frev, crev); return; } atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } void radeon_atom_initialize_bios_scratch_regs(struct drm_device *dev) { struct radeon_device *rdev = dev->dev_private; uint32_t bios_2_scratch, bios_6_scratch; if (rdev->family >= CHIP_R600) { bios_2_scratch = RREG32(R600_BIOS_2_SCRATCH); bios_6_scratch = RREG32(R600_BIOS_6_SCRATCH); } else { bios_2_scratch = RREG32(RADEON_BIOS_2_SCRATCH); bios_6_scratch = RREG32(RADEON_BIOS_6_SCRATCH); } /* let the bios control the backlight */ bios_2_scratch &= ~ATOM_S2_VRI_BRIGHT_ENABLE; /* tell the bios not to handle mode switching */ bios_6_scratch |= (ATOM_S6_ACC_BLOCK_DISPLAY_SWITCH | ATOM_S6_ACC_MODE); if (rdev->family >= CHIP_R600) { WREG32(R600_BIOS_2_SCRATCH, bios_2_scratch); WREG32(R600_BIOS_6_SCRATCH, bios_6_scratch); } else { WREG32(RADEON_BIOS_2_SCRATCH, bios_2_scratch); WREG32(RADEON_BIOS_6_SCRATCH, bios_6_scratch); } } void radeon_save_bios_scratch_regs(struct radeon_device *rdev) { uint32_t scratch_reg; int i; if (rdev->family >= CHIP_R600) scratch_reg = R600_BIOS_0_SCRATCH; else scratch_reg = RADEON_BIOS_0_SCRATCH; for (i = 0; i < RADEON_BIOS_NUM_SCRATCH; i++) rdev->bios_scratch[i] = RREG32(scratch_reg + (i * 4)); } void radeon_restore_bios_scratch_regs(struct radeon_device *rdev) { uint32_t scratch_reg; int i; if (rdev->family >= CHIP_R600) scratch_reg = R600_BIOS_0_SCRATCH; else scratch_reg = RADEON_BIOS_0_SCRATCH; for (i = 0; i < RADEON_BIOS_NUM_SCRATCH; i++) WREG32(scratch_reg + (i * 4), rdev->bios_scratch[i]); } void radeon_atom_output_lock(struct drm_encoder *encoder, bool lock) { struct drm_device *dev = encoder->dev; struct radeon_device *rdev = dev->dev_private; uint32_t bios_6_scratch; if (rdev->family >= CHIP_R600) bios_6_scratch = RREG32(R600_BIOS_6_SCRATCH); else bios_6_scratch = RREG32(RADEON_BIOS_6_SCRATCH); if (lock) bios_6_scratch |= ATOM_S6_CRITICAL_STATE; else bios_6_scratch &= ~ATOM_S6_CRITICAL_STATE; if (rdev->family >= CHIP_R600) WREG32(R600_BIOS_6_SCRATCH, bios_6_scratch); else WREG32(RADEON_BIOS_6_SCRATCH, bios_6_scratch); } /* at some point we may want to break this out into individual functions */ void radeon_atombios_connected_scratch_regs(struct drm_connector *connector, struct drm_encoder *encoder, bool connected) { struct drm_device *dev = connector->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_connector *radeon_connector = to_radeon_connector(connector); struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); uint32_t bios_0_scratch, bios_3_scratch, bios_6_scratch; if (rdev->family >= CHIP_R600) { bios_0_scratch = RREG32(R600_BIOS_0_SCRATCH); bios_3_scratch = RREG32(R600_BIOS_3_SCRATCH); bios_6_scratch = RREG32(R600_BIOS_6_SCRATCH); } else { bios_0_scratch = RREG32(RADEON_BIOS_0_SCRATCH); bios_3_scratch = RREG32(RADEON_BIOS_3_SCRATCH); bios_6_scratch = RREG32(RADEON_BIOS_6_SCRATCH); } if ((radeon_encoder->devices & ATOM_DEVICE_TV1_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_TV1_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("TV1 connected\n"); bios_3_scratch |= ATOM_S3_TV1_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_TV1; } else { DRM_DEBUG_KMS("TV1 disconnected\n"); bios_0_scratch &= ~ATOM_S0_TV1_MASK; bios_3_scratch &= ~ATOM_S3_TV1_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_TV1; } } if ((radeon_encoder->devices & ATOM_DEVICE_CV_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_CV_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("CV connected\n"); bios_3_scratch |= ATOM_S3_CV_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_CV; } else { DRM_DEBUG_KMS("CV disconnected\n"); bios_0_scratch &= ~ATOM_S0_CV_MASK; bios_3_scratch &= ~ATOM_S3_CV_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_CV; } } if ((radeon_encoder->devices & ATOM_DEVICE_LCD1_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_LCD1_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("LCD1 connected\n"); bios_0_scratch |= ATOM_S0_LCD1; bios_3_scratch |= ATOM_S3_LCD1_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_LCD1; } else { DRM_DEBUG_KMS("LCD1 disconnected\n"); bios_0_scratch &= ~ATOM_S0_LCD1; bios_3_scratch &= ~ATOM_S3_LCD1_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_LCD1; } } if ((radeon_encoder->devices & ATOM_DEVICE_CRT1_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_CRT1_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("CRT1 connected\n"); bios_0_scratch |= ATOM_S0_CRT1_COLOR; bios_3_scratch |= ATOM_S3_CRT1_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_CRT1; } else { DRM_DEBUG_KMS("CRT1 disconnected\n"); bios_0_scratch &= ~ATOM_S0_CRT1_MASK; bios_3_scratch &= ~ATOM_S3_CRT1_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_CRT1; } } if ((radeon_encoder->devices & ATOM_DEVICE_CRT2_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_CRT2_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("CRT2 connected\n"); bios_0_scratch |= ATOM_S0_CRT2_COLOR; bios_3_scratch |= ATOM_S3_CRT2_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_CRT2; } else { DRM_DEBUG_KMS("CRT2 disconnected\n"); bios_0_scratch &= ~ATOM_S0_CRT2_MASK; bios_3_scratch &= ~ATOM_S3_CRT2_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_CRT2; } } if ((radeon_encoder->devices & ATOM_DEVICE_DFP1_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_DFP1_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("DFP1 connected\n"); bios_0_scratch |= ATOM_S0_DFP1; bios_3_scratch |= ATOM_S3_DFP1_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_DFP1; } else { DRM_DEBUG_KMS("DFP1 disconnected\n"); bios_0_scratch &= ~ATOM_S0_DFP1; bios_3_scratch &= ~ATOM_S3_DFP1_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP1; } } if ((radeon_encoder->devices & ATOM_DEVICE_DFP2_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_DFP2_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("DFP2 connected\n"); bios_0_scratch |= ATOM_S0_DFP2; bios_3_scratch |= ATOM_S3_DFP2_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_DFP2; } else { DRM_DEBUG_KMS("DFP2 disconnected\n"); bios_0_scratch &= ~ATOM_S0_DFP2; bios_3_scratch &= ~ATOM_S3_DFP2_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP2; } } if ((radeon_encoder->devices & ATOM_DEVICE_DFP3_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_DFP3_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("DFP3 connected\n"); bios_0_scratch |= ATOM_S0_DFP3; bios_3_scratch |= ATOM_S3_DFP3_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_DFP3; } else { DRM_DEBUG_KMS("DFP3 disconnected\n"); bios_0_scratch &= ~ATOM_S0_DFP3; bios_3_scratch &= ~ATOM_S3_DFP3_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP3; } } if ((radeon_encoder->devices & ATOM_DEVICE_DFP4_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_DFP4_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("DFP4 connected\n"); bios_0_scratch |= ATOM_S0_DFP4; bios_3_scratch |= ATOM_S3_DFP4_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_DFP4; } else { DRM_DEBUG_KMS("DFP4 disconnected\n"); bios_0_scratch &= ~ATOM_S0_DFP4; bios_3_scratch &= ~ATOM_S3_DFP4_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP4; } } if ((radeon_encoder->devices & ATOM_DEVICE_DFP5_SUPPORT) && (radeon_connector->devices & ATOM_DEVICE_DFP5_SUPPORT)) { if (connected) { DRM_DEBUG_KMS("DFP5 connected\n"); bios_0_scratch |= ATOM_S0_DFP5; bios_3_scratch |= ATOM_S3_DFP5_ACTIVE; bios_6_scratch |= ATOM_S6_ACC_REQ_DFP5; } else { DRM_DEBUG_KMS("DFP5 disconnected\n"); bios_0_scratch &= ~ATOM_S0_DFP5; bios_3_scratch &= ~ATOM_S3_DFP5_ACTIVE; bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP5; } } if (rdev->family >= CHIP_R600) { WREG32(R600_BIOS_0_SCRATCH, bios_0_scratch); WREG32(R600_BIOS_3_SCRATCH, bios_3_scratch); WREG32(R600_BIOS_6_SCRATCH, bios_6_scratch); } else { WREG32(RADEON_BIOS_0_SCRATCH, bios_0_scratch); WREG32(RADEON_BIOS_3_SCRATCH, bios_3_scratch); WREG32(RADEON_BIOS_6_SCRATCH, bios_6_scratch); } } void radeon_atombios_encoder_crtc_scratch_regs(struct drm_encoder *encoder, int crtc) { struct drm_device *dev = encoder->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); uint32_t bios_3_scratch; if (rdev->family >= CHIP_R600) bios_3_scratch = RREG32(R600_BIOS_3_SCRATCH); else bios_3_scratch = RREG32(RADEON_BIOS_3_SCRATCH); if (radeon_encoder->devices & ATOM_DEVICE_TV1_SUPPORT) { bios_3_scratch &= ~ATOM_S3_TV1_CRTC_ACTIVE; bios_3_scratch |= (crtc << 18); } if (radeon_encoder->devices & ATOM_DEVICE_CV_SUPPORT) { bios_3_scratch &= ~ATOM_S3_CV_CRTC_ACTIVE; bios_3_scratch |= (crtc << 24); } if (radeon_encoder->devices & ATOM_DEVICE_CRT1_SUPPORT) { bios_3_scratch &= ~ATOM_S3_CRT1_CRTC_ACTIVE; bios_3_scratch |= (crtc << 16); } if (radeon_encoder->devices & ATOM_DEVICE_CRT2_SUPPORT) { bios_3_scratch &= ~ATOM_S3_CRT2_CRTC_ACTIVE; bios_3_scratch |= (crtc << 20); } if (radeon_encoder->devices & ATOM_DEVICE_LCD1_SUPPORT) { bios_3_scratch &= ~ATOM_S3_LCD1_CRTC_ACTIVE; bios_3_scratch |= (crtc << 17); } if (radeon_encoder->devices & ATOM_DEVICE_DFP1_SUPPORT) { bios_3_scratch &= ~ATOM_S3_DFP1_CRTC_ACTIVE; bios_3_scratch |= (crtc << 19); } if (radeon_encoder->devices & ATOM_DEVICE_DFP2_SUPPORT) { bios_3_scratch &= ~ATOM_S3_DFP2_CRTC_ACTIVE; bios_3_scratch |= (crtc << 23); } if (radeon_encoder->devices & ATOM_DEVICE_DFP3_SUPPORT) { bios_3_scratch &= ~ATOM_S3_DFP3_CRTC_ACTIVE; bios_3_scratch |= (crtc << 25); } if (rdev->family >= CHIP_R600) WREG32(R600_BIOS_3_SCRATCH, bios_3_scratch); else WREG32(RADEON_BIOS_3_SCRATCH, bios_3_scratch); } void radeon_atombios_encoder_dpms_scratch_regs(struct drm_encoder *encoder, bool on) { struct drm_device *dev = encoder->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); uint32_t bios_2_scratch; if (rdev->family >= CHIP_R600) bios_2_scratch = RREG32(R600_BIOS_2_SCRATCH); else bios_2_scratch = RREG32(RADEON_BIOS_2_SCRATCH); if (radeon_encoder->devices & ATOM_DEVICE_TV1_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_TV1_DPMS_STATE; else bios_2_scratch |= ATOM_S2_TV1_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_CV_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_CV_DPMS_STATE; else bios_2_scratch |= ATOM_S2_CV_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_CRT1_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_CRT1_DPMS_STATE; else bios_2_scratch |= ATOM_S2_CRT1_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_CRT2_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_CRT2_DPMS_STATE; else bios_2_scratch |= ATOM_S2_CRT2_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_LCD1_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_LCD1_DPMS_STATE; else bios_2_scratch |= ATOM_S2_LCD1_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_DFP1_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_DFP1_DPMS_STATE; else bios_2_scratch |= ATOM_S2_DFP1_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_DFP2_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_DFP2_DPMS_STATE; else bios_2_scratch |= ATOM_S2_DFP2_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_DFP3_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_DFP3_DPMS_STATE; else bios_2_scratch |= ATOM_S2_DFP3_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_DFP4_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_DFP4_DPMS_STATE; else bios_2_scratch |= ATOM_S2_DFP4_DPMS_STATE; } if (radeon_encoder->devices & ATOM_DEVICE_DFP5_SUPPORT) { if (on) bios_2_scratch &= ~ATOM_S2_DFP5_DPMS_STATE; else bios_2_scratch |= ATOM_S2_DFP5_DPMS_STATE; } if (rdev->family >= CHIP_R600) WREG32(R600_BIOS_2_SCRATCH, bios_2_scratch); else WREG32(RADEON_BIOS_2_SCRATCH, bios_2_scratch); }