/* * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2004 Infinicon Corporation. All rights reserved. * Copyright (c) 2004 Intel Corporation. All rights reserved. * Copyright (c) 2004 Topspin Corporation. All rights reserved. * Copyright (c) 2004 Voltaire Corporation. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "core_priv.h" static int ib_resolve_eth_dmac(struct ib_device *device, struct rdma_ah_attr *ah_attr); static const char * const ib_events[] = { [IB_EVENT_CQ_ERR] = "CQ error", [IB_EVENT_QP_FATAL] = "QP fatal error", [IB_EVENT_QP_REQ_ERR] = "QP request error", [IB_EVENT_QP_ACCESS_ERR] = "QP access error", [IB_EVENT_COMM_EST] = "communication established", [IB_EVENT_SQ_DRAINED] = "send queue drained", [IB_EVENT_PATH_MIG] = "path migration successful", [IB_EVENT_PATH_MIG_ERR] = "path migration error", [IB_EVENT_DEVICE_FATAL] = "device fatal error", [IB_EVENT_PORT_ACTIVE] = "port active", [IB_EVENT_PORT_ERR] = "port error", [IB_EVENT_LID_CHANGE] = "LID change", [IB_EVENT_PKEY_CHANGE] = "P_key change", [IB_EVENT_SM_CHANGE] = "SM change", [IB_EVENT_SRQ_ERR] = "SRQ error", [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", [IB_EVENT_CLIENT_REREGISTER] = "client reregister", [IB_EVENT_GID_CHANGE] = "GID changed", }; const char *__attribute_const__ ib_event_msg(enum ib_event_type event) { size_t index = event; return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? ib_events[index] : "unrecognized event"; } EXPORT_SYMBOL(ib_event_msg); static const char * const wc_statuses[] = { [IB_WC_SUCCESS] = "success", [IB_WC_LOC_LEN_ERR] = "local length error", [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", [IB_WC_LOC_PROT_ERR] = "local protection error", [IB_WC_WR_FLUSH_ERR] = "WR flushed", [IB_WC_MW_BIND_ERR] = "memory management operation error", [IB_WC_BAD_RESP_ERR] = "bad response error", [IB_WC_LOC_ACCESS_ERR] = "local access error", [IB_WC_REM_INV_REQ_ERR] = "invalid request error", [IB_WC_REM_ACCESS_ERR] = "remote access error", [IB_WC_REM_OP_ERR] = "remote operation error", [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", [IB_WC_REM_ABORT_ERR] = "operation aborted", [IB_WC_INV_EECN_ERR] = "invalid EE context number", [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", [IB_WC_FATAL_ERR] = "fatal error", [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", [IB_WC_GENERAL_ERR] = "general error", }; const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) { size_t index = status; return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? wc_statuses[index] : "unrecognized status"; } EXPORT_SYMBOL(ib_wc_status_msg); __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) { switch (rate) { case IB_RATE_2_5_GBPS: return 1; case IB_RATE_5_GBPS: return 2; case IB_RATE_10_GBPS: return 4; case IB_RATE_20_GBPS: return 8; case IB_RATE_30_GBPS: return 12; case IB_RATE_40_GBPS: return 16; case IB_RATE_60_GBPS: return 24; case IB_RATE_80_GBPS: return 32; case IB_RATE_120_GBPS: return 48; default: return -1; } } EXPORT_SYMBOL(ib_rate_to_mult); __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) { switch (mult) { case 1: return IB_RATE_2_5_GBPS; case 2: return IB_RATE_5_GBPS; case 4: return IB_RATE_10_GBPS; case 8: return IB_RATE_20_GBPS; case 12: return IB_RATE_30_GBPS; case 16: return IB_RATE_40_GBPS; case 24: return IB_RATE_60_GBPS; case 32: return IB_RATE_80_GBPS; case 48: return IB_RATE_120_GBPS; default: return IB_RATE_PORT_CURRENT; } } EXPORT_SYMBOL(mult_to_ib_rate); __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) { switch (rate) { case IB_RATE_2_5_GBPS: return 2500; case IB_RATE_5_GBPS: return 5000; case IB_RATE_10_GBPS: return 10000; case IB_RATE_20_GBPS: return 20000; case IB_RATE_30_GBPS: return 30000; case IB_RATE_40_GBPS: return 40000; case IB_RATE_60_GBPS: return 60000; case IB_RATE_80_GBPS: return 80000; case IB_RATE_120_GBPS: return 120000; case IB_RATE_14_GBPS: return 14062; case IB_RATE_56_GBPS: return 56250; case IB_RATE_112_GBPS: return 112500; case IB_RATE_168_GBPS: return 168750; case IB_RATE_25_GBPS: return 25781; case IB_RATE_100_GBPS: return 103125; case IB_RATE_200_GBPS: return 206250; case IB_RATE_300_GBPS: return 309375; default: return -1; } } EXPORT_SYMBOL(ib_rate_to_mbps); __attribute_const__ enum rdma_transport_type rdma_node_get_transport(enum rdma_node_type node_type) { if (node_type == RDMA_NODE_USNIC) return RDMA_TRANSPORT_USNIC; if (node_type == RDMA_NODE_USNIC_UDP) return RDMA_TRANSPORT_USNIC_UDP; if (node_type == RDMA_NODE_RNIC) return RDMA_TRANSPORT_IWARP; return RDMA_TRANSPORT_IB; } EXPORT_SYMBOL(rdma_node_get_transport); enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) { enum rdma_transport_type lt; if (device->get_link_layer) return device->get_link_layer(device, port_num); lt = rdma_node_get_transport(device->node_type); if (lt == RDMA_TRANSPORT_IB) return IB_LINK_LAYER_INFINIBAND; return IB_LINK_LAYER_ETHERNET; } EXPORT_SYMBOL(rdma_port_get_link_layer); /* Protection domains */ /** * ib_alloc_pd - Allocates an unused protection domain. * @device: The device on which to allocate the protection domain. * * A protection domain object provides an association between QPs, shared * receive queues, address handles, memory regions, and memory windows. * * Every PD has a local_dma_lkey which can be used as the lkey value for local * memory operations. */ struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, const char *caller) { struct ib_pd *pd; int mr_access_flags = 0; pd = device->alloc_pd(device, NULL, NULL); if (IS_ERR(pd)) return pd; pd->device = device; pd->uobject = NULL; pd->__internal_mr = NULL; atomic_set(&pd->usecnt, 0); pd->flags = flags; if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) pd->local_dma_lkey = device->local_dma_lkey; else mr_access_flags |= IB_ACCESS_LOCAL_WRITE; if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { pr_warn("%s: enabling unsafe global rkey\n", caller); mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; } if (mr_access_flags) { struct ib_mr *mr; mr = pd->device->get_dma_mr(pd, mr_access_flags); if (IS_ERR(mr)) { ib_dealloc_pd(pd); return ERR_CAST(mr); } mr->device = pd->device; mr->pd = pd; mr->uobject = NULL; mr->need_inval = false; pd->__internal_mr = mr; if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) pd->local_dma_lkey = pd->__internal_mr->lkey; if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) pd->unsafe_global_rkey = pd->__internal_mr->rkey; } return pd; } EXPORT_SYMBOL(__ib_alloc_pd); /** * ib_dealloc_pd - Deallocates a protection domain. * @pd: The protection domain to deallocate. * * It is an error to call this function while any resources in the pd still * exist. The caller is responsible to synchronously destroy them and * guarantee no new allocations will happen. */ void ib_dealloc_pd(struct ib_pd *pd) { int ret; if (pd->__internal_mr) { ret = pd->device->dereg_mr(pd->__internal_mr); WARN_ON(ret); pd->__internal_mr = NULL; } /* uverbs manipulates usecnt with proper locking, while the kabi requires the caller to guarantee we can't race here. */ WARN_ON(atomic_read(&pd->usecnt)); /* Making delalloc_pd a void return is a WIP, no driver should return an error here. */ ret = pd->device->dealloc_pd(pd); WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd"); } EXPORT_SYMBOL(ib_dealloc_pd); /* Address handles */ static struct ib_ah *_rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, struct ib_udata *udata) { struct ib_ah *ah; ah = pd->device->create_ah(pd, ah_attr, udata); if (!IS_ERR(ah)) { ah->device = pd->device; ah->pd = pd; ah->uobject = NULL; ah->type = ah_attr->type; atomic_inc(&pd->usecnt); } return ah; } struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr) { return _rdma_create_ah(pd, ah_attr, NULL); } EXPORT_SYMBOL(rdma_create_ah); /** * rdma_create_user_ah - Creates an address handle for the * given address vector. * It resolves destination mac address for ah attribute of RoCE type. * @pd: The protection domain associated with the address handle. * @ah_attr: The attributes of the address vector. * @udata: pointer to user's input output buffer information need by * provider driver. * * It returns 0 on success and returns appropriate error code on error. * The address handle is used to reference a local or global destination * in all UD QP post sends. */ struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, struct ib_udata *udata) { int err; if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) { err = ib_resolve_eth_dmac(pd->device, ah_attr); if (err) return ERR_PTR(err); } return _rdma_create_ah(pd, ah_attr, udata); } EXPORT_SYMBOL(rdma_create_user_ah); int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) { const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; struct iphdr ip4h_checked; const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; /* If it's IPv6, the version must be 6, otherwise, the first * 20 bytes (before the IPv4 header) are garbled. */ if (ip6h->version != 6) return (ip4h->version == 4) ? 4 : 0; /* version may be 6 or 4 because the first 20 bytes could be garbled */ /* RoCE v2 requires no options, thus header length * must be 5 words */ if (ip4h->ihl != 5) return 6; /* Verify checksum. * We can't write on scattered buffers so we need to copy to * temp buffer. */ memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); ip4h_checked.check = 0; ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); /* if IPv4 header checksum is OK, believe it */ if (ip4h->check == ip4h_checked.check) return 4; return 6; } EXPORT_SYMBOL(ib_get_rdma_header_version); static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, u8 port_num, const struct ib_grh *grh) { int grh_version; if (rdma_protocol_ib(device, port_num)) return RDMA_NETWORK_IB; grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); if (grh_version == 4) return RDMA_NETWORK_IPV4; if (grh->next_hdr == IPPROTO_UDP) return RDMA_NETWORK_IPV6; return RDMA_NETWORK_ROCE_V1; } struct find_gid_index_context { u16 vlan_id; enum ib_gid_type gid_type; }; static bool find_gid_index(const union ib_gid *gid, const struct ib_gid_attr *gid_attr, void *context) { struct find_gid_index_context *ctx = context; if (ctx->gid_type != gid_attr->gid_type) return false; if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) || (is_vlan_dev(gid_attr->ndev) && vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)) return false; return true; } static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num, u16 vlan_id, const union ib_gid *sgid, enum ib_gid_type gid_type, u16 *gid_index) { struct find_gid_index_context context = {.vlan_id = vlan_id, .gid_type = gid_type}; return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index, &context, gid_index); } int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, enum rdma_network_type net_type, union ib_gid *sgid, union ib_gid *dgid) { struct sockaddr_in src_in; struct sockaddr_in dst_in; __be32 src_saddr, dst_saddr; if (!sgid || !dgid) return -EINVAL; if (net_type == RDMA_NETWORK_IPV4) { memcpy(&src_in.sin_addr.s_addr, &hdr->roce4grh.saddr, 4); memcpy(&dst_in.sin_addr.s_addr, &hdr->roce4grh.daddr, 4); src_saddr = src_in.sin_addr.s_addr; dst_saddr = dst_in.sin_addr.s_addr; ipv6_addr_set_v4mapped(src_saddr, (struct in6_addr *)sgid); ipv6_addr_set_v4mapped(dst_saddr, (struct in6_addr *)dgid); return 0; } else if (net_type == RDMA_NETWORK_IPV6 || net_type == RDMA_NETWORK_IB) { *dgid = hdr->ibgrh.dgid; *sgid = hdr->ibgrh.sgid; return 0; } else { return -EINVAL; } } EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); /* Resolve destination mac address and hop limit for unicast destination * GID entry, considering the source GID entry as well. * ah_attribute must have have valid port_num, sgid_index. */ static int ib_resolve_unicast_gid_dmac(struct ib_device *device, struct rdma_ah_attr *ah_attr) { struct ib_gid_attr sgid_attr; struct ib_global_route *grh; int hop_limit = 0xff; union ib_gid sgid; int ret; grh = rdma_ah_retrieve_grh(ah_attr); ret = ib_query_gid(device, rdma_ah_get_port_num(ah_attr), grh->sgid_index, &sgid, &sgid_attr); if (ret || !sgid_attr.ndev) { if (!ret) ret = -ENXIO; return ret; } /* If destination is link local and source GID is RoCEv1, * IP stack is not used. */ if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) && sgid_attr.gid_type == IB_GID_TYPE_ROCE) { rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, ah_attr->roce.dmac); goto done; } ret = rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid, ah_attr->roce.dmac, sgid_attr.ndev, &hop_limit); done: dev_put(sgid_attr.ndev); grh->hop_limit = hop_limit; return ret; } /* * This function creates ah from the incoming packet. * Incoming packet has dgid of the receiver node on which this code is * getting executed and, sgid contains the GID of the sender. * * When resolving mac address of destination, the arrived dgid is used * as sgid and, sgid is used as dgid because sgid contains destinations * GID whom to respond to. * */ int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, const struct ib_wc *wc, const struct ib_grh *grh, struct rdma_ah_attr *ah_attr) { u32 flow_class; u16 gid_index; int ret; enum rdma_network_type net_type = RDMA_NETWORK_IB; enum ib_gid_type gid_type = IB_GID_TYPE_IB; int hoplimit = 0xff; union ib_gid dgid; union ib_gid sgid; might_sleep(); memset(ah_attr, 0, sizeof *ah_attr); ah_attr->type = rdma_ah_find_type(device, port_num); if (rdma_cap_eth_ah(device, port_num)) { if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) net_type = wc->network_hdr_type; else net_type = ib_get_net_type_by_grh(device, port_num, grh); gid_type = ib_network_to_gid_type(net_type); } ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, &sgid, &dgid); if (ret) return ret; rdma_ah_set_sl(ah_attr, wc->sl); rdma_ah_set_port_num(ah_attr, port_num); if (rdma_protocol_roce(device, port_num)) { u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? wc->vlan_id : 0xffff; if (!(wc->wc_flags & IB_WC_GRH)) return -EPROTOTYPE; ret = get_sgid_index_from_eth(device, port_num, vlan_id, &dgid, gid_type, &gid_index); if (ret) return ret; flow_class = be32_to_cpu(grh->version_tclass_flow); rdma_ah_set_grh(ah_attr, &sgid, flow_class & 0xFFFFF, (u8)gid_index, hoplimit, (flow_class >> 20) & 0xFF); return ib_resolve_unicast_gid_dmac(device, ah_attr); } else { rdma_ah_set_dlid(ah_attr, wc->slid); rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); if (wc->wc_flags & IB_WC_GRH) { if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { ret = ib_find_cached_gid_by_port(device, &dgid, IB_GID_TYPE_IB, port_num, NULL, &gid_index); if (ret) return ret; } else { gid_index = 0; } flow_class = be32_to_cpu(grh->version_tclass_flow); rdma_ah_set_grh(ah_attr, &sgid, flow_class & 0xFFFFF, (u8)gid_index, hoplimit, (flow_class >> 20) & 0xFF); } return 0; } } EXPORT_SYMBOL(ib_init_ah_from_wc); struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, const struct ib_grh *grh, u8 port_num) { struct rdma_ah_attr ah_attr; int ret; ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr); if (ret) return ERR_PTR(ret); return rdma_create_ah(pd, &ah_attr); } EXPORT_SYMBOL(ib_create_ah_from_wc); int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) { if (ah->type != ah_attr->type) return -EINVAL; return ah->device->modify_ah ? ah->device->modify_ah(ah, ah_attr) : -ENOSYS; } EXPORT_SYMBOL(rdma_modify_ah); int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) { return ah->device->query_ah ? ah->device->query_ah(ah, ah_attr) : -ENOSYS; } EXPORT_SYMBOL(rdma_query_ah); int rdma_destroy_ah(struct ib_ah *ah) { struct ib_pd *pd; int ret; pd = ah->pd; ret = ah->device->destroy_ah(ah); if (!ret) atomic_dec(&pd->usecnt); return ret; } EXPORT_SYMBOL(rdma_destroy_ah); /* Shared receive queues */ struct ib_srq *ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) { struct ib_srq *srq; if (!pd->device->create_srq) return ERR_PTR(-ENOSYS); srq = pd->device->create_srq(pd, srq_init_attr, NULL); if (!IS_ERR(srq)) { srq->device = pd->device; srq->pd = pd; srq->uobject = NULL; srq->event_handler = srq_init_attr->event_handler; srq->srq_context = srq_init_attr->srq_context; srq->srq_type = srq_init_attr->srq_type; if (ib_srq_has_cq(srq->srq_type)) { srq->ext.cq = srq_init_attr->ext.cq; atomic_inc(&srq->ext.cq->usecnt); } if (srq->srq_type == IB_SRQT_XRC) { srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; atomic_inc(&srq->ext.xrc.xrcd->usecnt); } atomic_inc(&pd->usecnt); atomic_set(&srq->usecnt, 0); } return srq; } EXPORT_SYMBOL(ib_create_srq); int ib_modify_srq(struct ib_srq *srq, struct ib_srq_attr *srq_attr, enum ib_srq_attr_mask srq_attr_mask) { return srq->device->modify_srq ? srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) : -ENOSYS; } EXPORT_SYMBOL(ib_modify_srq); int ib_query_srq(struct ib_srq *srq, struct ib_srq_attr *srq_attr) { return srq->device->query_srq ? srq->device->query_srq(srq, srq_attr) : -ENOSYS; } EXPORT_SYMBOL(ib_query_srq); int ib_destroy_srq(struct ib_srq *srq) { struct ib_pd *pd; enum ib_srq_type srq_type; struct ib_xrcd *uninitialized_var(xrcd); struct ib_cq *uninitialized_var(cq); int ret; if (atomic_read(&srq->usecnt)) return -EBUSY; pd = srq->pd; srq_type = srq->srq_type; if (ib_srq_has_cq(srq_type)) cq = srq->ext.cq; if (srq_type == IB_SRQT_XRC) xrcd = srq->ext.xrc.xrcd; ret = srq->device->destroy_srq(srq); if (!ret) { atomic_dec(&pd->usecnt); if (srq_type == IB_SRQT_XRC) atomic_dec(&xrcd->usecnt); if (ib_srq_has_cq(srq_type)) atomic_dec(&cq->usecnt); } return ret; } EXPORT_SYMBOL(ib_destroy_srq); /* Queue pairs */ static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) { struct ib_qp *qp = context; unsigned long flags; spin_lock_irqsave(&qp->device->event_handler_lock, flags); list_for_each_entry(event->element.qp, &qp->open_list, open_list) if (event->element.qp->event_handler) event->element.qp->event_handler(event, event->element.qp->qp_context); spin_unlock_irqrestore(&qp->device->event_handler_lock, flags); } static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) { mutex_lock(&xrcd->tgt_qp_mutex); list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); mutex_unlock(&xrcd->tgt_qp_mutex); } static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, void (*event_handler)(struct ib_event *, void *), void *qp_context) { struct ib_qp *qp; unsigned long flags; int err; qp = kzalloc(sizeof *qp, GFP_KERNEL); if (!qp) return ERR_PTR(-ENOMEM); qp->real_qp = real_qp; err = ib_open_shared_qp_security(qp, real_qp->device); if (err) { kfree(qp); return ERR_PTR(err); } qp->real_qp = real_qp; atomic_inc(&real_qp->usecnt); qp->device = real_qp->device; qp->event_handler = event_handler; qp->qp_context = qp_context; qp->qp_num = real_qp->qp_num; qp->qp_type = real_qp->qp_type; spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); list_add(&qp->open_list, &real_qp->open_list); spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); return qp; } struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, struct ib_qp_open_attr *qp_open_attr) { struct ib_qp *qp, *real_qp; if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) return ERR_PTR(-EINVAL); qp = ERR_PTR(-EINVAL); mutex_lock(&xrcd->tgt_qp_mutex); list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { if (real_qp->qp_num == qp_open_attr->qp_num) { qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, qp_open_attr->qp_context); break; } } mutex_unlock(&xrcd->tgt_qp_mutex); return qp; } EXPORT_SYMBOL(ib_open_qp); static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr) { struct ib_qp *real_qp = qp; qp->event_handler = __ib_shared_qp_event_handler; qp->qp_context = qp; qp->pd = NULL; qp->send_cq = qp->recv_cq = NULL; qp->srq = NULL; qp->xrcd = qp_init_attr->xrcd; atomic_inc(&qp_init_attr->xrcd->usecnt); INIT_LIST_HEAD(&qp->open_list); qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, qp_init_attr->qp_context); if (!IS_ERR(qp)) __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); else real_qp->device->destroy_qp(real_qp); return qp; } struct ib_qp *ib_create_qp(struct ib_pd *pd, struct ib_qp_init_attr *qp_init_attr) { struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; struct ib_qp *qp; int ret; if (qp_init_attr->rwq_ind_tbl && (qp_init_attr->recv_cq || qp_init_attr->srq || qp_init_attr->cap.max_recv_wr || qp_init_attr->cap.max_recv_sge)) return ERR_PTR(-EINVAL); /* * If the callers is using the RDMA API calculate the resources * needed for the RDMA READ/WRITE operations. * * Note that these callers need to pass in a port number. */ if (qp_init_attr->cap.max_rdma_ctxs) rdma_rw_init_qp(device, qp_init_attr); qp = device->create_qp(pd, qp_init_attr, NULL); if (IS_ERR(qp)) return qp; ret = ib_create_qp_security(qp, device); if (ret) { ib_destroy_qp(qp); return ERR_PTR(ret); } qp->device = device; qp->real_qp = qp; qp->uobject = NULL; qp->qp_type = qp_init_attr->qp_type; qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl; atomic_set(&qp->usecnt, 0); qp->mrs_used = 0; spin_lock_init(&qp->mr_lock); INIT_LIST_HEAD(&qp->rdma_mrs); INIT_LIST_HEAD(&qp->sig_mrs); qp->port = 0; if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) return ib_create_xrc_qp(qp, qp_init_attr); qp->event_handler = qp_init_attr->event_handler; qp->qp_context = qp_init_attr->qp_context; if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { qp->recv_cq = NULL; qp->srq = NULL; } else { qp->recv_cq = qp_init_attr->recv_cq; if (qp_init_attr->recv_cq) atomic_inc(&qp_init_attr->recv_cq->usecnt); qp->srq = qp_init_attr->srq; if (qp->srq) atomic_inc(&qp_init_attr->srq->usecnt); } qp->pd = pd; qp->send_cq = qp_init_attr->send_cq; qp->xrcd = NULL; atomic_inc(&pd->usecnt); if (qp_init_attr->send_cq) atomic_inc(&qp_init_attr->send_cq->usecnt); if (qp_init_attr->rwq_ind_tbl) atomic_inc(&qp->rwq_ind_tbl->usecnt); if (qp_init_attr->cap.max_rdma_ctxs) { ret = rdma_rw_init_mrs(qp, qp_init_attr); if (ret) { pr_err("failed to init MR pool ret= %d\n", ret); ib_destroy_qp(qp); return ERR_PTR(ret); } } /* * Note: all hw drivers guarantee that max_send_sge is lower than * the device RDMA WRITE SGE limit but not all hw drivers ensure that * max_send_sge <= max_sge_rd. */ qp->max_write_sge = qp_init_attr->cap.max_send_sge; qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, device->attrs.max_sge_rd); return qp; } EXPORT_SYMBOL(ib_create_qp); static const struct { int valid; enum ib_qp_attr_mask req_param[IB_QPT_MAX]; enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { [IB_QPS_RESET] = { [IB_QPS_RESET] = { .valid = 1 }, [IB_QPS_INIT] = { .valid = 1, .req_param = { [IB_QPT_UD] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_QKEY), [IB_QPT_RAW_PACKET] = IB_QP_PORT, [IB_QPT_UC] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS), [IB_QPT_RC] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS), [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS), [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS), [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), } }, }, [IB_QPS_INIT] = { [IB_QPS_RESET] = { .valid = 1 }, [IB_QPS_ERR] = { .valid = 1 }, [IB_QPS_INIT] = { .valid = 1, .opt_param = { [IB_QPT_UD] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_QKEY), [IB_QPT_UC] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS), [IB_QPT_RC] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS), [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS), [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS), [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), } }, [IB_QPS_RTR] = { .valid = 1, .req_param = { [IB_QPT_UC] = (IB_QP_AV | IB_QP_PATH_MTU | IB_QP_DEST_QPN | IB_QP_RQ_PSN), [IB_QPT_RC] = (IB_QP_AV | IB_QP_PATH_MTU | IB_QP_DEST_QPN | IB_QP_RQ_PSN | IB_QP_MAX_DEST_RD_ATOMIC | IB_QP_MIN_RNR_TIMER), [IB_QPT_XRC_INI] = (IB_QP_AV | IB_QP_PATH_MTU | IB_QP_DEST_QPN | IB_QP_RQ_PSN), [IB_QPT_XRC_TGT] = (IB_QP_AV | IB_QP_PATH_MTU | IB_QP_DEST_QPN | IB_QP_RQ_PSN | IB_QP_MAX_DEST_RD_ATOMIC | IB_QP_MIN_RNR_TIMER), }, .opt_param = { [IB_QPT_UD] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), [IB_QPT_UC] = (IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX), [IB_QPT_RC] = (IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX), [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX), [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX), [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), }, }, }, [IB_QPS_RTR] = { [IB_QPS_RESET] = { .valid = 1 }, [IB_QPS_ERR] = { .valid = 1 }, [IB_QPS_RTS] = { .valid = 1, .req_param = { [IB_QPT_UD] = IB_QP_SQ_PSN, [IB_QPT_UC] = IB_QP_SQ_PSN, [IB_QPT_RC] = (IB_QP_TIMEOUT | IB_QP_RETRY_CNT | IB_QP_RNR_RETRY | IB_QP_SQ_PSN | IB_QP_MAX_QP_RD_ATOMIC), [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | IB_QP_RETRY_CNT | IB_QP_RNR_RETRY | IB_QP_SQ_PSN | IB_QP_MAX_QP_RD_ATOMIC), [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | IB_QP_SQ_PSN), [IB_QPT_SMI] = IB_QP_SQ_PSN, [IB_QPT_GSI] = IB_QP_SQ_PSN, }, .opt_param = { [IB_QPT_UD] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_UC] = (IB_QP_CUR_STATE | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PATH_MIG_STATE), [IB_QPT_RC] = (IB_QP_CUR_STATE | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_MIN_RNR_TIMER | IB_QP_PATH_MIG_STATE), [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PATH_MIG_STATE), [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_MIN_RNR_TIMER | IB_QP_PATH_MIG_STATE), [IB_QPT_SMI] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_GSI] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, } } }, [IB_QPS_RTS] = { [IB_QPS_RESET] = { .valid = 1 }, [IB_QPS_ERR] = { .valid = 1 }, [IB_QPS_RTS] = { .valid = 1, .opt_param = { [IB_QPT_UD] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_UC] = (IB_QP_CUR_STATE | IB_QP_ACCESS_FLAGS | IB_QP_ALT_PATH | IB_QP_PATH_MIG_STATE), [IB_QPT_RC] = (IB_QP_CUR_STATE | IB_QP_ACCESS_FLAGS | IB_QP_ALT_PATH | IB_QP_PATH_MIG_STATE | IB_QP_MIN_RNR_TIMER), [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | IB_QP_ACCESS_FLAGS | IB_QP_ALT_PATH | IB_QP_PATH_MIG_STATE), [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | IB_QP_ACCESS_FLAGS | IB_QP_ALT_PATH | IB_QP_PATH_MIG_STATE | IB_QP_MIN_RNR_TIMER), [IB_QPT_SMI] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_GSI] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, } }, [IB_QPS_SQD] = { .valid = 1, .opt_param = { [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY } }, }, [IB_QPS_SQD] = { [IB_QPS_RESET] = { .valid = 1 }, [IB_QPS_ERR] = { .valid = 1 }, [IB_QPS_RTS] = { .valid = 1, .opt_param = { [IB_QPT_UD] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_UC] = (IB_QP_CUR_STATE | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PATH_MIG_STATE), [IB_QPT_RC] = (IB_QP_CUR_STATE | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_MIN_RNR_TIMER | IB_QP_PATH_MIG_STATE), [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PATH_MIG_STATE), [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_MIN_RNR_TIMER | IB_QP_PATH_MIG_STATE), [IB_QPT_SMI] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_GSI] = (IB_QP_CUR_STATE | IB_QP_QKEY), } }, [IB_QPS_SQD] = { .valid = 1, .opt_param = { [IB_QPT_UD] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), [IB_QPT_UC] = (IB_QP_AV | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX | IB_QP_PATH_MIG_STATE), [IB_QPT_RC] = (IB_QP_PORT | IB_QP_AV | IB_QP_TIMEOUT | IB_QP_RETRY_CNT | IB_QP_RNR_RETRY | IB_QP_MAX_QP_RD_ATOMIC | IB_QP_MAX_DEST_RD_ATOMIC | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX | IB_QP_MIN_RNR_TIMER | IB_QP_PATH_MIG_STATE), [IB_QPT_XRC_INI] = (IB_QP_PORT | IB_QP_AV | IB_QP_TIMEOUT | IB_QP_RETRY_CNT | IB_QP_RNR_RETRY | IB_QP_MAX_QP_RD_ATOMIC | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX | IB_QP_PATH_MIG_STATE), [IB_QPT_XRC_TGT] = (IB_QP_PORT | IB_QP_AV | IB_QP_TIMEOUT | IB_QP_MAX_DEST_RD_ATOMIC | IB_QP_ALT_PATH | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX | IB_QP_MIN_RNR_TIMER | IB_QP_PATH_MIG_STATE), [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | IB_QP_QKEY), } } }, [IB_QPS_SQE] = { [IB_QPS_RESET] = { .valid = 1 }, [IB_QPS_ERR] = { .valid = 1 }, [IB_QPS_RTS] = { .valid = 1, .opt_param = { [IB_QPT_UD] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_UC] = (IB_QP_CUR_STATE | IB_QP_ACCESS_FLAGS), [IB_QPT_SMI] = (IB_QP_CUR_STATE | IB_QP_QKEY), [IB_QPT_GSI] = (IB_QP_CUR_STATE | IB_QP_QKEY), } } }, [IB_QPS_ERR] = { [IB_QPS_RESET] = { .valid = 1 }, [IB_QPS_ERR] = { .valid = 1 } } }; int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, enum ib_qp_type type, enum ib_qp_attr_mask mask, enum rdma_link_layer ll) { enum ib_qp_attr_mask req_param, opt_param; if (cur_state < 0 || cur_state > IB_QPS_ERR || next_state < 0 || next_state > IB_QPS_ERR) return 0; if (mask & IB_QP_CUR_STATE && cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) return 0; if (!qp_state_table[cur_state][next_state].valid) return 0; req_param = qp_state_table[cur_state][next_state].req_param[type]; opt_param = qp_state_table[cur_state][next_state].opt_param[type]; if ((mask & req_param) != req_param) return 0; if (mask & ~(req_param | opt_param | IB_QP_STATE)) return 0; return 1; } EXPORT_SYMBOL(ib_modify_qp_is_ok); static int ib_resolve_eth_dmac(struct ib_device *device, struct rdma_ah_attr *ah_attr) { int ret = 0; struct ib_global_route *grh; if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr))) return -EINVAL; if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE) return 0; grh = rdma_ah_retrieve_grh(ah_attr); if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { __be32 addr = 0; memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); } else { ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, (char *)ah_attr->roce.dmac); } } else { ret = ib_resolve_unicast_gid_dmac(device, ah_attr); } return ret; } /** * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. * @qp: The QP to modify. * @attr: On input, specifies the QP attributes to modify. On output, * the current values of selected QP attributes are returned. * @attr_mask: A bit-mask used to specify which attributes of the QP * are being modified. * @udata: pointer to user's input output buffer information * are being modified. * It returns 0 on success and returns appropriate error code on error. */ int ib_modify_qp_with_udata(struct ib_qp *qp, struct ib_qp_attr *attr, int attr_mask, struct ib_udata *udata) { int ret; if (attr_mask & IB_QP_AV) { ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr); if (ret) return ret; } ret = ib_security_modify_qp(qp, attr, attr_mask, udata); if (!ret && (attr_mask & IB_QP_PORT)) qp->port = attr->port_num; return ret; } EXPORT_SYMBOL(ib_modify_qp_with_udata); int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width) { int rc; u32 netdev_speed; struct net_device *netdev; struct ethtool_link_ksettings lksettings; if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) return -EINVAL; if (!dev->get_netdev) return -EOPNOTSUPP; netdev = dev->get_netdev(dev, port_num); if (!netdev) return -ENODEV; rtnl_lock(); rc = __ethtool_get_link_ksettings(netdev, &lksettings); rtnl_unlock(); dev_put(netdev); if (!rc) { netdev_speed = lksettings.base.speed; } else { netdev_speed = SPEED_1000; pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name, netdev_speed); } if (netdev_speed <= SPEED_1000) { *width = IB_WIDTH_1X; *speed = IB_SPEED_SDR; } else if (netdev_speed <= SPEED_10000) { *width = IB_WIDTH_1X; *speed = IB_SPEED_FDR10; } else if (netdev_speed <= SPEED_20000) { *width = IB_WIDTH_4X; *speed = IB_SPEED_DDR; } else if (netdev_speed <= SPEED_25000) { *width = IB_WIDTH_1X; *speed = IB_SPEED_EDR; } else if (netdev_speed <= SPEED_40000) { *width = IB_WIDTH_4X; *speed = IB_SPEED_FDR10; } else { *width = IB_WIDTH_4X; *speed = IB_SPEED_EDR; } return 0; } EXPORT_SYMBOL(ib_get_eth_speed); int ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask) { return ib_modify_qp_with_udata(qp, qp_attr, qp_attr_mask, NULL); } EXPORT_SYMBOL(ib_modify_qp); int ib_query_qp(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr) { return qp->device->query_qp ? qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) : -ENOSYS; } EXPORT_SYMBOL(ib_query_qp); int ib_close_qp(struct ib_qp *qp) { struct ib_qp *real_qp; unsigned long flags; real_qp = qp->real_qp; if (real_qp == qp) return -EINVAL; spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); list_del(&qp->open_list); spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); atomic_dec(&real_qp->usecnt); ib_close_shared_qp_security(qp->qp_sec); kfree(qp); return 0; } EXPORT_SYMBOL(ib_close_qp); static int __ib_destroy_shared_qp(struct ib_qp *qp) { struct ib_xrcd *xrcd; struct ib_qp *real_qp; int ret; real_qp = qp->real_qp; xrcd = real_qp->xrcd; mutex_lock(&xrcd->tgt_qp_mutex); ib_close_qp(qp); if (atomic_read(&real_qp->usecnt) == 0) list_del(&real_qp->xrcd_list); else real_qp = NULL; mutex_unlock(&xrcd->tgt_qp_mutex); if (real_qp) { ret = ib_destroy_qp(real_qp); if (!ret) atomic_dec(&xrcd->usecnt); else __ib_insert_xrcd_qp(xrcd, real_qp); } return 0; } int ib_destroy_qp(struct ib_qp *qp) { struct ib_pd *pd; struct ib_cq *scq, *rcq; struct ib_srq *srq; struct ib_rwq_ind_table *ind_tbl; struct ib_qp_security *sec; int ret; WARN_ON_ONCE(qp->mrs_used > 0); if (atomic_read(&qp->usecnt)) return -EBUSY; if (qp->real_qp != qp) return __ib_destroy_shared_qp(qp); pd = qp->pd; scq = qp->send_cq; rcq = qp->recv_cq; srq = qp->srq; ind_tbl = qp->rwq_ind_tbl; sec = qp->qp_sec; if (sec) ib_destroy_qp_security_begin(sec); if (!qp->uobject) rdma_rw_cleanup_mrs(qp); ret = qp->device->destroy_qp(qp); if (!ret) { if (pd) atomic_dec(&pd->usecnt); if (scq) atomic_dec(&scq->usecnt); if (rcq) atomic_dec(&rcq->usecnt); if (srq) atomic_dec(&srq->usecnt); if (ind_tbl) atomic_dec(&ind_tbl->usecnt); if (sec) ib_destroy_qp_security_end(sec); } else { if (sec) ib_destroy_qp_security_abort(sec); } return ret; } EXPORT_SYMBOL(ib_destroy_qp); /* Completion queues */ struct ib_cq *ib_create_cq(struct ib_device *device, ib_comp_handler comp_handler, void (*event_handler)(struct ib_event *, void *), void *cq_context, const struct ib_cq_init_attr *cq_attr) { struct ib_cq *cq; cq = device->create_cq(device, cq_attr, NULL, NULL); if (!IS_ERR(cq)) { cq->device = device; cq->uobject = NULL; cq->comp_handler = comp_handler; cq->event_handler = event_handler; cq->cq_context = cq_context; atomic_set(&cq->usecnt, 0); } return cq; } EXPORT_SYMBOL(ib_create_cq); int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period) { return cq->device->modify_cq ? cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS; } EXPORT_SYMBOL(rdma_set_cq_moderation); int ib_destroy_cq(struct ib_cq *cq) { if (atomic_read(&cq->usecnt)) return -EBUSY; return cq->device->destroy_cq(cq); } EXPORT_SYMBOL(ib_destroy_cq); int ib_resize_cq(struct ib_cq *cq, int cqe) { return cq->device->resize_cq ? cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS; } EXPORT_SYMBOL(ib_resize_cq); /* Memory regions */ int ib_dereg_mr(struct ib_mr *mr) { struct ib_pd *pd = mr->pd; int ret; ret = mr->device->dereg_mr(mr); if (!ret) atomic_dec(&pd->usecnt); return ret; } EXPORT_SYMBOL(ib_dereg_mr); /** * ib_alloc_mr() - Allocates a memory region * @pd: protection domain associated with the region * @mr_type: memory region type * @max_num_sg: maximum sg entries available for registration. * * Notes: * Memory registeration page/sg lists must not exceed max_num_sg. * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed * max_num_sg * used_page_size. * */ struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg) { struct ib_mr *mr; if (!pd->device->alloc_mr) return ERR_PTR(-ENOSYS); mr = pd->device->alloc_mr(pd, mr_type, max_num_sg); if (!IS_ERR(mr)) { mr->device = pd->device; mr->pd = pd; mr->uobject = NULL; atomic_inc(&pd->usecnt); mr->need_inval = false; } return mr; } EXPORT_SYMBOL(ib_alloc_mr); /* "Fast" memory regions */ struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, int mr_access_flags, struct ib_fmr_attr *fmr_attr) { struct ib_fmr *fmr; if (!pd->device->alloc_fmr) return ERR_PTR(-ENOSYS); fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr); if (!IS_ERR(fmr)) { fmr->device = pd->device; fmr->pd = pd; atomic_inc(&pd->usecnt); } return fmr; } EXPORT_SYMBOL(ib_alloc_fmr); int ib_unmap_fmr(struct list_head *fmr_list) { struct ib_fmr *fmr; if (list_empty(fmr_list)) return 0; fmr = list_entry(fmr_list->next, struct ib_fmr, list); return fmr->device->unmap_fmr(fmr_list); } EXPORT_SYMBOL(ib_unmap_fmr); int ib_dealloc_fmr(struct ib_fmr *fmr) { struct ib_pd *pd; int ret; pd = fmr->pd; ret = fmr->device->dealloc_fmr(fmr); if (!ret) atomic_dec(&pd->usecnt); return ret; } EXPORT_SYMBOL(ib_dealloc_fmr); /* Multicast groups */ static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) { struct ib_qp_init_attr init_attr = {}; struct ib_qp_attr attr = {}; int num_eth_ports = 0; int port; /* If QP state >= init, it is assigned to a port and we can check this * port only. */ if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { if (attr.qp_state >= IB_QPS_INIT) { if (rdma_port_get_link_layer(qp->device, attr.port_num) != IB_LINK_LAYER_INFINIBAND) return true; goto lid_check; } } /* Can't get a quick answer, iterate over all ports */ for (port = 0; port < qp->device->phys_port_cnt; port++) if (rdma_port_get_link_layer(qp->device, port) != IB_LINK_LAYER_INFINIBAND) num_eth_ports++; /* If we have at lease one Ethernet port, RoCE annex declares that * multicast LID should be ignored. We can't tell at this step if the * QP belongs to an IB or Ethernet port. */ if (num_eth_ports) return true; /* If all the ports are IB, we can check according to IB spec. */ lid_check: return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || lid == be16_to_cpu(IB_LID_PERMISSIVE)); } int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) { int ret; if (!qp->device->attach_mcast) return -ENOSYS; if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) return -EINVAL; ret = qp->device->attach_mcast(qp, gid, lid); if (!ret) atomic_inc(&qp->usecnt); return ret; } EXPORT_SYMBOL(ib_attach_mcast); int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) { int ret; if (!qp->device->detach_mcast) return -ENOSYS; if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) return -EINVAL; ret = qp->device->detach_mcast(qp, gid, lid); if (!ret) atomic_dec(&qp->usecnt); return ret; } EXPORT_SYMBOL(ib_detach_mcast); struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device) { struct ib_xrcd *xrcd; if (!device->alloc_xrcd) return ERR_PTR(-ENOSYS); xrcd = device->alloc_xrcd(device, NULL, NULL); if (!IS_ERR(xrcd)) { xrcd->device = device; xrcd->inode = NULL; atomic_set(&xrcd->usecnt, 0); mutex_init(&xrcd->tgt_qp_mutex); INIT_LIST_HEAD(&xrcd->tgt_qp_list); } return xrcd; } EXPORT_SYMBOL(ib_alloc_xrcd); int ib_dealloc_xrcd(struct ib_xrcd *xrcd) { struct ib_qp *qp; int ret; if (atomic_read(&xrcd->usecnt)) return -EBUSY; while (!list_empty(&xrcd->tgt_qp_list)) { qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); ret = ib_destroy_qp(qp); if (ret) return ret; } return xrcd->device->dealloc_xrcd(xrcd); } EXPORT_SYMBOL(ib_dealloc_xrcd); /** * ib_create_wq - Creates a WQ associated with the specified protection * domain. * @pd: The protection domain associated with the WQ. * @wq_init_attr: A list of initial attributes required to create the * WQ. If WQ creation succeeds, then the attributes are updated to * the actual capabilities of the created WQ. * * wq_init_attr->max_wr and wq_init_attr->max_sge determine * the requested size of the WQ, and set to the actual values allocated * on return. * If ib_create_wq() succeeds, then max_wr and max_sge will always be * at least as large as the requested values. */ struct ib_wq *ib_create_wq(struct ib_pd *pd, struct ib_wq_init_attr *wq_attr) { struct ib_wq *wq; if (!pd->device->create_wq) return ERR_PTR(-ENOSYS); wq = pd->device->create_wq(pd, wq_attr, NULL); if (!IS_ERR(wq)) { wq->event_handler = wq_attr->event_handler; wq->wq_context = wq_attr->wq_context; wq->wq_type = wq_attr->wq_type; wq->cq = wq_attr->cq; wq->device = pd->device; wq->pd = pd; wq->uobject = NULL; atomic_inc(&pd->usecnt); atomic_inc(&wq_attr->cq->usecnt); atomic_set(&wq->usecnt, 0); } return wq; } EXPORT_SYMBOL(ib_create_wq); /** * ib_destroy_wq - Destroys the specified WQ. * @wq: The WQ to destroy. */ int ib_destroy_wq(struct ib_wq *wq) { int err; struct ib_cq *cq = wq->cq; struct ib_pd *pd = wq->pd; if (atomic_read(&wq->usecnt)) return -EBUSY; err = wq->device->destroy_wq(wq); if (!err) { atomic_dec(&pd->usecnt); atomic_dec(&cq->usecnt); } return err; } EXPORT_SYMBOL(ib_destroy_wq); /** * ib_modify_wq - Modifies the specified WQ. * @wq: The WQ to modify. * @wq_attr: On input, specifies the WQ attributes to modify. * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ * are being modified. * On output, the current values of selected WQ attributes are returned. */ int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr, u32 wq_attr_mask) { int err; if (!wq->device->modify_wq) return -ENOSYS; err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL); return err; } EXPORT_SYMBOL(ib_modify_wq); /* * ib_create_rwq_ind_table - Creates a RQ Indirection Table. * @device: The device on which to create the rwq indirection table. * @ib_rwq_ind_table_init_attr: A list of initial attributes required to * create the Indirection Table. * * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less * than the created ib_rwq_ind_table object and the caller is responsible * for its memory allocation/free. */ struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, struct ib_rwq_ind_table_init_attr *init_attr) { struct ib_rwq_ind_table *rwq_ind_table; int i; u32 table_size; if (!device->create_rwq_ind_table) return ERR_PTR(-ENOSYS); table_size = (1 << init_attr->log_ind_tbl_size); rwq_ind_table = device->create_rwq_ind_table(device, init_attr, NULL); if (IS_ERR(rwq_ind_table)) return rwq_ind_table; rwq_ind_table->ind_tbl = init_attr->ind_tbl; rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size; rwq_ind_table->device = device; rwq_ind_table->uobject = NULL; atomic_set(&rwq_ind_table->usecnt, 0); for (i = 0; i < table_size; i++) atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt); return rwq_ind_table; } EXPORT_SYMBOL(ib_create_rwq_ind_table); /* * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table. * @wq_ind_table: The Indirection Table to destroy. */ int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table) { int err, i; u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size); struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl; if (atomic_read(&rwq_ind_table->usecnt)) return -EBUSY; err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table); if (!err) { for (i = 0; i < table_size; i++) atomic_dec(&ind_tbl[i]->usecnt); } return err; } EXPORT_SYMBOL(ib_destroy_rwq_ind_table); struct ib_flow *ib_create_flow(struct ib_qp *qp, struct ib_flow_attr *flow_attr, int domain) { struct ib_flow *flow_id; if (!qp->device->create_flow) return ERR_PTR(-ENOSYS); flow_id = qp->device->create_flow(qp, flow_attr, domain); if (!IS_ERR(flow_id)) { atomic_inc(&qp->usecnt); flow_id->qp = qp; } return flow_id; } EXPORT_SYMBOL(ib_create_flow); int ib_destroy_flow(struct ib_flow *flow_id) { int err; struct ib_qp *qp = flow_id->qp; err = qp->device->destroy_flow(flow_id); if (!err) atomic_dec(&qp->usecnt); return err; } EXPORT_SYMBOL(ib_destroy_flow); int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, struct ib_mr_status *mr_status) { return mr->device->check_mr_status ? mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS; } EXPORT_SYMBOL(ib_check_mr_status); int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, int state) { if (!device->set_vf_link_state) return -ENOSYS; return device->set_vf_link_state(device, vf, port, state); } EXPORT_SYMBOL(ib_set_vf_link_state); int ib_get_vf_config(struct ib_device *device, int vf, u8 port, struct ifla_vf_info *info) { if (!device->get_vf_config) return -ENOSYS; return device->get_vf_config(device, vf, port, info); } EXPORT_SYMBOL(ib_get_vf_config); int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, struct ifla_vf_stats *stats) { if (!device->get_vf_stats) return -ENOSYS; return device->get_vf_stats(device, vf, port, stats); } EXPORT_SYMBOL(ib_get_vf_stats); int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, int type) { if (!device->set_vf_guid) return -ENOSYS; return device->set_vf_guid(device, vf, port, guid, type); } EXPORT_SYMBOL(ib_set_vf_guid); /** * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list * and set it the memory region. * @mr: memory region * @sg: dma mapped scatterlist * @sg_nents: number of entries in sg * @sg_offset: offset in bytes into sg * @page_size: page vector desired page size * * Constraints: * - The first sg element is allowed to have an offset. * - Each sg element must either be aligned to page_size or virtually * contiguous to the previous element. In case an sg element has a * non-contiguous offset, the mapping prefix will not include it. * - The last sg element is allowed to have length less than page_size. * - If sg_nents total byte length exceeds the mr max_num_sge * page_size * then only max_num_sg entries will be mapped. * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these * constraints holds and the page_size argument is ignored. * * Returns the number of sg elements that were mapped to the memory region. * * After this completes successfully, the memory region * is ready for registration. */ int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, unsigned int *sg_offset, unsigned int page_size) { if (unlikely(!mr->device->map_mr_sg)) return -ENOSYS; mr->page_size = page_size; return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset); } EXPORT_SYMBOL(ib_map_mr_sg); /** * ib_sg_to_pages() - Convert the largest prefix of a sg list * to a page vector * @mr: memory region * @sgl: dma mapped scatterlist * @sg_nents: number of entries in sg * @sg_offset_p: IN: start offset in bytes into sg * OUT: offset in bytes for element n of the sg of the first * byte that has not been processed where n is the return * value of this function. * @set_page: driver page assignment function pointer * * Core service helper for drivers to convert the largest * prefix of given sg list to a page vector. The sg list * prefix converted is the prefix that meet the requirements * of ib_map_mr_sg. * * Returns the number of sg elements that were assigned to * a page vector. */ int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) { struct scatterlist *sg; u64 last_end_dma_addr = 0; unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; unsigned int last_page_off = 0; u64 page_mask = ~((u64)mr->page_size - 1); int i, ret; if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) return -EINVAL; mr->iova = sg_dma_address(&sgl[0]) + sg_offset; mr->length = 0; for_each_sg(sgl, sg, sg_nents, i) { u64 dma_addr = sg_dma_address(sg) + sg_offset; u64 prev_addr = dma_addr; unsigned int dma_len = sg_dma_len(sg) - sg_offset; u64 end_dma_addr = dma_addr + dma_len; u64 page_addr = dma_addr & page_mask; /* * For the second and later elements, check whether either the * end of element i-1 or the start of element i is not aligned * on a page boundary. */ if (i && (last_page_off != 0 || page_addr != dma_addr)) { /* Stop mapping if there is a gap. */ if (last_end_dma_addr != dma_addr) break; /* * Coalesce this element with the last. If it is small * enough just update mr->length. Otherwise start * mapping from the next page. */ goto next_page; } do { ret = set_page(mr, page_addr); if (unlikely(ret < 0)) { sg_offset = prev_addr - sg_dma_address(sg); mr->length += prev_addr - dma_addr; if (sg_offset_p) *sg_offset_p = sg_offset; return i || sg_offset ? i : ret; } prev_addr = page_addr; next_page: page_addr += mr->page_size; } while (page_addr < end_dma_addr); mr->length += dma_len; last_end_dma_addr = end_dma_addr; last_page_off = end_dma_addr & ~page_mask; sg_offset = 0; } if (sg_offset_p) *sg_offset_p = 0; return i; } EXPORT_SYMBOL(ib_sg_to_pages); struct ib_drain_cqe { struct ib_cqe cqe; struct completion done; }; static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) { struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, cqe); complete(&cqe->done); } /* * Post a WR and block until its completion is reaped for the SQ. */ static void __ib_drain_sq(struct ib_qp *qp) { struct ib_cq *cq = qp->send_cq; struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; struct ib_drain_cqe sdrain; struct ib_send_wr swr = {}, *bad_swr; int ret; swr.wr_cqe = &sdrain.cqe; sdrain.cqe.done = ib_drain_qp_done; init_completion(&sdrain.done); ret = ib_modify_qp(qp, &attr, IB_QP_STATE); if (ret) { WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); return; } ret = ib_post_send(qp, &swr, &bad_swr); if (ret) { WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); return; } if (cq->poll_ctx == IB_POLL_DIRECT) while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) ib_process_cq_direct(cq, -1); else wait_for_completion(&sdrain.done); } /* * Post a WR and block until its completion is reaped for the RQ. */ static void __ib_drain_rq(struct ib_qp *qp) { struct ib_cq *cq = qp->recv_cq; struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; struct ib_drain_cqe rdrain; struct ib_recv_wr rwr = {}, *bad_rwr; int ret; rwr.wr_cqe = &rdrain.cqe; rdrain.cqe.done = ib_drain_qp_done; init_completion(&rdrain.done); ret = ib_modify_qp(qp, &attr, IB_QP_STATE); if (ret) { WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); return; } ret = ib_post_recv(qp, &rwr, &bad_rwr); if (ret) { WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); return; } if (cq->poll_ctx == IB_POLL_DIRECT) while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) ib_process_cq_direct(cq, -1); else wait_for_completion(&rdrain.done); } /** * ib_drain_sq() - Block until all SQ CQEs have been consumed by the * application. * @qp: queue pair to drain * * If the device has a provider-specific drain function, then * call that. Otherwise call the generic drain function * __ib_drain_sq(). * * The caller must: * * ensure there is room in the CQ and SQ for the drain work request and * completion. * * allocate the CQ using ib_alloc_cq(). * * ensure that there are no other contexts that are posting WRs concurrently. * Otherwise the drain is not guaranteed. */ void ib_drain_sq(struct ib_qp *qp) { if (qp->device->drain_sq) qp->device->drain_sq(qp); else __ib_drain_sq(qp); } EXPORT_SYMBOL(ib_drain_sq); /** * ib_drain_rq() - Block until all RQ CQEs have been consumed by the * application. * @qp: queue pair to drain * * If the device has a provider-specific drain function, then * call that. Otherwise call the generic drain function * __ib_drain_rq(). * * The caller must: * * ensure there is room in the CQ and RQ for the drain work request and * completion. * * allocate the CQ using ib_alloc_cq(). * * ensure that there are no other contexts that are posting WRs concurrently. * Otherwise the drain is not guaranteed. */ void ib_drain_rq(struct ib_qp *qp) { if (qp->device->drain_rq) qp->device->drain_rq(qp); else __ib_drain_rq(qp); } EXPORT_SYMBOL(ib_drain_rq); /** * ib_drain_qp() - Block until all CQEs have been consumed by the * application on both the RQ and SQ. * @qp: queue pair to drain * * The caller must: * * ensure there is room in the CQ(s), SQ, and RQ for drain work requests * and completions. * * allocate the CQs using ib_alloc_cq(). * * ensure that there are no other contexts that are posting WRs concurrently. * Otherwise the drain is not guaranteed. */ void ib_drain_qp(struct ib_qp *qp) { ib_drain_sq(qp); if (!qp->srq) ib_drain_rq(qp); } EXPORT_SYMBOL(ib_drain_qp);