/* * vivid-tpg.c - Test Pattern Generator * * Note: gen_twopix and tpg_gen_text are based on code from vivi.c. See the * vivi.c source for the copyright information of those functions. * * Copyright 2014 Cisco Systems, Inc. and/or its affiliates. All rights reserved. * * This program is free software; you may redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "vivid-tpg.h" /* Must remain in sync with enum tpg_pattern */ const char * const tpg_pattern_strings[] = { "75% Colorbar", "100% Colorbar", "CSC Colorbar", "Horizontal 100% Colorbar", "100% Color Squares", "100% Black", "100% White", "100% Red", "100% Green", "100% Blue", "16x16 Checkers", "1x1 Checkers", "Alternating Hor Lines", "Alternating Vert Lines", "One Pixel Wide Cross", "Two Pixels Wide Cross", "Ten Pixels Wide Cross", "Gray Ramp", "Noise", NULL }; /* Must remain in sync with enum tpg_aspect */ const char * const tpg_aspect_strings[] = { "Source Width x Height", "4x3", "14x9", "16x9", "16x9 Anamorphic", NULL }; /* * Sine table: sin[0] = 127 * sin(-180 degrees) * sin[128] = 127 * sin(0 degrees) * sin[256] = 127 * sin(180 degrees) */ static const s8 sin[257] = { 0, -4, -7, -11, -13, -18, -20, -22, -26, -29, -33, -35, -37, -41, -43, -48, -50, -52, -56, -58, -62, -63, -65, -69, -71, -75, -76, -78, -82, -83, -87, -88, -90, -93, -94, -97, -99, -101, -103, -104, -107, -108, -110, -111, -112, -114, -115, -117, -118, -119, -120, -121, -122, -123, -123, -124, -125, -125, -126, -126, -127, -127, -127, -127, -127, -127, -127, -127, -126, -126, -125, -125, -124, -124, -123, -122, -121, -120, -119, -118, -117, -116, -114, -113, -111, -110, -109, -107, -105, -103, -101, -100, -97, -96, -93, -91, -90, -87, -85, -82, -80, -76, -75, -73, -69, -67, -63, -62, -60, -56, -54, -50, -48, -46, -41, -39, -35, -33, -31, -26, -24, -20, -18, -15, -11, -9, -4, -2, 0, 2, 4, 9, 11, 15, 18, 20, 24, 26, 31, 33, 35, 39, 41, 46, 48, 50, 54, 56, 60, 62, 64, 67, 69, 73, 75, 76, 80, 82, 85, 87, 90, 91, 93, 96, 97, 100, 101, 103, 105, 107, 109, 110, 111, 113, 114, 116, 117, 118, 119, 120, 121, 122, 123, 124, 124, 125, 125, 126, 126, 127, 127, 127, 127, 127, 127, 127, 127, 126, 126, 125, 125, 124, 123, 123, 122, 121, 120, 119, 118, 117, 115, 114, 112, 111, 110, 108, 107, 104, 103, 101, 99, 97, 94, 93, 90, 88, 87, 83, 82, 78, 76, 75, 71, 69, 65, 64, 62, 58, 56, 52, 50, 48, 43, 41, 37, 35, 33, 29, 26, 22, 20, 18, 13, 11, 7, 4, 0, }; #define cos(idx) sin[((idx) + 64) % sizeof(sin)] /* Global font descriptor */ static const u8 *font8x16; void tpg_set_font(const u8 *f) { font8x16 = f; } void tpg_init(struct tpg_data *tpg, unsigned w, unsigned h) { memset(tpg, 0, sizeof(*tpg)); tpg->scaled_width = tpg->src_width = w; tpg->src_height = tpg->buf_height = h; tpg->crop.width = tpg->compose.width = w; tpg->crop.height = tpg->compose.height = h; tpg->recalc_colors = true; tpg->recalc_square_border = true; tpg->brightness = 128; tpg->contrast = 128; tpg->saturation = 128; tpg->hue = 0; tpg->mv_hor_mode = TPG_MOVE_NONE; tpg->mv_vert_mode = TPG_MOVE_NONE; tpg->field = V4L2_FIELD_NONE; tpg_s_fourcc(tpg, V4L2_PIX_FMT_RGB24); tpg->colorspace = V4L2_COLORSPACE_SRGB; tpg->perc_fill = 100; } int tpg_alloc(struct tpg_data *tpg, unsigned max_w) { unsigned pat; unsigned plane; tpg->max_line_width = max_w; for (pat = 0; pat < TPG_MAX_PAT_LINES; pat++) { for (plane = 0; plane < TPG_MAX_PLANES; plane++) { unsigned pixelsz = plane ? 1 : 4; tpg->lines[pat][plane] = vzalloc(max_w * 2 * pixelsz); if (!tpg->lines[pat][plane]) return -ENOMEM; } } for (plane = 0; plane < TPG_MAX_PLANES; plane++) { unsigned pixelsz = plane ? 1 : 4; tpg->contrast_line[plane] = vzalloc(max_w * pixelsz); if (!tpg->contrast_line[plane]) return -ENOMEM; tpg->black_line[plane] = vzalloc(max_w * pixelsz); if (!tpg->black_line[plane]) return -ENOMEM; tpg->random_line[plane] = vzalloc(max_w * 2 * pixelsz); if (!tpg->random_line[plane]) return -ENOMEM; } return 0; } void tpg_free(struct tpg_data *tpg) { unsigned pat; unsigned plane; for (pat = 0; pat < TPG_MAX_PAT_LINES; pat++) for (plane = 0; plane < TPG_MAX_PLANES; plane++) { vfree(tpg->lines[pat][plane]); tpg->lines[pat][plane] = NULL; } for (plane = 0; plane < TPG_MAX_PLANES; plane++) { vfree(tpg->contrast_line[plane]); vfree(tpg->black_line[plane]); vfree(tpg->random_line[plane]); tpg->contrast_line[plane] = NULL; tpg->black_line[plane] = NULL; tpg->random_line[plane] = NULL; } } bool tpg_s_fourcc(struct tpg_data *tpg, u32 fourcc) { tpg->fourcc = fourcc; tpg->planes = 1; tpg->recalc_colors = true; switch (fourcc) { case V4L2_PIX_FMT_RGB565: case V4L2_PIX_FMT_RGB565X: case V4L2_PIX_FMT_RGB555: case V4L2_PIX_FMT_XRGB555: case V4L2_PIX_FMT_ARGB555: case V4L2_PIX_FMT_RGB555X: case V4L2_PIX_FMT_RGB24: case V4L2_PIX_FMT_BGR24: case V4L2_PIX_FMT_RGB32: case V4L2_PIX_FMT_BGR32: case V4L2_PIX_FMT_XRGB32: case V4L2_PIX_FMT_XBGR32: case V4L2_PIX_FMT_ARGB32: case V4L2_PIX_FMT_ABGR32: tpg->is_yuv = false; break; case V4L2_PIX_FMT_NV16M: case V4L2_PIX_FMT_NV61M: tpg->planes = 2; /* fall-through */ case V4L2_PIX_FMT_YUYV: case V4L2_PIX_FMT_UYVY: case V4L2_PIX_FMT_YVYU: case V4L2_PIX_FMT_VYUY: tpg->is_yuv = true; break; default: return false; } switch (fourcc) { case V4L2_PIX_FMT_RGB565: case V4L2_PIX_FMT_RGB565X: case V4L2_PIX_FMT_RGB555: case V4L2_PIX_FMT_XRGB555: case V4L2_PIX_FMT_ARGB555: case V4L2_PIX_FMT_RGB555X: case V4L2_PIX_FMT_YUYV: case V4L2_PIX_FMT_UYVY: case V4L2_PIX_FMT_YVYU: case V4L2_PIX_FMT_VYUY: tpg->twopixelsize[0] = 2 * 2; break; case V4L2_PIX_FMT_RGB24: case V4L2_PIX_FMT_BGR24: tpg->twopixelsize[0] = 2 * 3; break; case V4L2_PIX_FMT_RGB32: case V4L2_PIX_FMT_BGR32: case V4L2_PIX_FMT_XRGB32: case V4L2_PIX_FMT_XBGR32: case V4L2_PIX_FMT_ARGB32: case V4L2_PIX_FMT_ABGR32: tpg->twopixelsize[0] = 2 * 4; break; case V4L2_PIX_FMT_NV16M: case V4L2_PIX_FMT_NV61M: tpg->twopixelsize[0] = 2; tpg->twopixelsize[1] = 2; break; } return true; } void tpg_s_crop_compose(struct tpg_data *tpg, const struct v4l2_rect *crop, const struct v4l2_rect *compose) { tpg->crop = *crop; tpg->compose = *compose; tpg->scaled_width = (tpg->src_width * tpg->compose.width + tpg->crop.width - 1) / tpg->crop.width; tpg->scaled_width &= ~1; if (tpg->scaled_width > tpg->max_line_width) tpg->scaled_width = tpg->max_line_width; if (tpg->scaled_width < 2) tpg->scaled_width = 2; tpg->recalc_lines = true; } void tpg_reset_source(struct tpg_data *tpg, unsigned width, unsigned height, u32 field) { unsigned p; tpg->src_width = width; tpg->src_height = height; tpg->field = field; tpg->buf_height = height; if (V4L2_FIELD_HAS_T_OR_B(field)) tpg->buf_height /= 2; tpg->scaled_width = width; tpg->crop.top = tpg->crop.left = 0; tpg->crop.width = width; tpg->crop.height = height; tpg->compose.top = tpg->compose.left = 0; tpg->compose.width = width; tpg->compose.height = tpg->buf_height; for (p = 0; p < tpg->planes; p++) tpg->bytesperline[p] = width * tpg->twopixelsize[p] / 2; tpg->recalc_square_border = true; } static enum tpg_color tpg_get_textbg_color(struct tpg_data *tpg) { switch (tpg->pattern) { case TPG_PAT_BLACK: return TPG_COLOR_100_WHITE; case TPG_PAT_CSC_COLORBAR: return TPG_COLOR_CSC_BLACK; default: return TPG_COLOR_100_BLACK; } } static enum tpg_color tpg_get_textfg_color(struct tpg_data *tpg) { switch (tpg->pattern) { case TPG_PAT_75_COLORBAR: case TPG_PAT_CSC_COLORBAR: return TPG_COLOR_CSC_WHITE; case TPG_PAT_BLACK: return TPG_COLOR_100_BLACK; default: return TPG_COLOR_100_WHITE; } } static inline int rec709_to_linear(int v) { v = clamp(v, 0, 0xff0); return tpg_rec709_to_linear[v]; } static inline int linear_to_rec709(int v) { v = clamp(v, 0, 0xff0); return tpg_linear_to_rec709[v]; } static void rgb2ycbcr(const int m[3][3], int r, int g, int b, int y_offset, int *y, int *cb, int *cr) { *y = ((m[0][0] * r + m[0][1] * g + m[0][2] * b) >> 16) + (y_offset << 4); *cb = ((m[1][0] * r + m[1][1] * g + m[1][2] * b) >> 16) + (128 << 4); *cr = ((m[2][0] * r + m[2][1] * g + m[2][2] * b) >> 16) + (128 << 4); } static void color_to_ycbcr(struct tpg_data *tpg, int r, int g, int b, int *y, int *cb, int *cr) { #define COEFF(v, r) ((int)(0.5 + (v) * (r) * 256.0)) static const int bt601[3][3] = { { COEFF(0.299, 219), COEFF(0.587, 219), COEFF(0.114, 219) }, { COEFF(-0.169, 224), COEFF(-0.331, 224), COEFF(0.5, 224) }, { COEFF(0.5, 224), COEFF(-0.419, 224), COEFF(-0.081, 224) }, }; static const int bt601_full[3][3] = { { COEFF(0.299, 255), COEFF(0.587, 255), COEFF(0.114, 255) }, { COEFF(-0.169, 255), COEFF(-0.331, 255), COEFF(0.5, 255) }, { COEFF(0.5, 255), COEFF(-0.419, 255), COEFF(-0.081, 255) }, }; static const int rec709[3][3] = { { COEFF(0.2126, 219), COEFF(0.7152, 219), COEFF(0.0722, 219) }, { COEFF(-0.1146, 224), COEFF(-0.3854, 224), COEFF(0.5, 224) }, { COEFF(0.5, 224), COEFF(-0.4542, 224), COEFF(-0.0458, 224) }, }; static const int rec709_full[3][3] = { { COEFF(0.2126, 255), COEFF(0.7152, 255), COEFF(0.0722, 255) }, { COEFF(-0.1146, 255), COEFF(-0.3854, 255), COEFF(0.5, 255) }, { COEFF(0.5, 255), COEFF(-0.4542, 255), COEFF(-0.0458, 255) }, }; static const int smpte240m[3][3] = { { COEFF(0.212, 219), COEFF(0.701, 219), COEFF(0.087, 219) }, { COEFF(-0.116, 224), COEFF(-0.384, 224), COEFF(0.5, 224) }, { COEFF(0.5, 224), COEFF(-0.445, 224), COEFF(-0.055, 224) }, }; static const int bt2020[3][3] = { { COEFF(0.2726, 219), COEFF(0.6780, 219), COEFF(0.0593, 219) }, { COEFF(-0.1396, 224), COEFF(-0.3604, 224), COEFF(0.5, 224) }, { COEFF(0.5, 224), COEFF(-0.4629, 224), COEFF(-0.0405, 224) }, }; bool full = tpg->real_quantization == V4L2_QUANTIZATION_FULL_RANGE; unsigned y_offset = full ? 0 : 16; int lin_y, yc; switch (tpg->real_ycbcr_enc) { case V4L2_YCBCR_ENC_601: case V4L2_YCBCR_ENC_XV601: case V4L2_YCBCR_ENC_SYCC: rgb2ycbcr(full ? bt601_full : bt601, r, g, b, y_offset, y, cb, cr); break; case V4L2_YCBCR_ENC_BT2020: rgb2ycbcr(bt2020, r, g, b, 16, y, cb, cr); break; case V4L2_YCBCR_ENC_BT2020_CONST_LUM: lin_y = (COEFF(0.2627, 255) * rec709_to_linear(r) + COEFF(0.6780, 255) * rec709_to_linear(g) + COEFF(0.0593, 255) * rec709_to_linear(b)) >> 16; yc = linear_to_rec709(lin_y); *y = (yc * 219) / 255 + (16 << 4); if (b <= yc) *cb = (((b - yc) * COEFF(1.0 / 1.9404, 224)) >> 16) + (128 << 4); else *cb = (((b - yc) * COEFF(1.0 / 1.5816, 224)) >> 16) + (128 << 4); if (r <= yc) *cr = (((r - yc) * COEFF(1.0 / 1.7184, 224)) >> 16) + (128 << 4); else *cr = (((r - yc) * COEFF(1.0 / 0.9936, 224)) >> 16) + (128 << 4); break; case V4L2_YCBCR_ENC_SMPTE240M: rgb2ycbcr(smpte240m, r, g, b, 16, y, cb, cr); break; case V4L2_YCBCR_ENC_709: case V4L2_YCBCR_ENC_XV709: default: rgb2ycbcr(full ? rec709_full : rec709, r, g, b, y_offset, y, cb, cr); break; } } static void ycbcr2rgb(const int m[3][3], int y, int cb, int cr, int y_offset, int *r, int *g, int *b) { y -= y_offset << 4; cb -= 128 << 4; cr -= 128 << 4; *r = m[0][0] * y + m[0][1] * cb + m[0][2] * cr; *g = m[1][0] * y + m[1][1] * cb + m[1][2] * cr; *b = m[2][0] * y + m[2][1] * cb + m[2][2] * cr; *r = clamp(*r >> 12, 0, 0xff0); *g = clamp(*g >> 12, 0, 0xff0); *b = clamp(*b >> 12, 0, 0xff0); } static void ycbcr_to_color(struct tpg_data *tpg, int y, int cb, int cr, int *r, int *g, int *b) { #undef COEFF #define COEFF(v, r) ((int)(0.5 + (v) * ((255.0 * 255.0 * 16.0) / (r)))) static const int bt601[3][3] = { { COEFF(1, 219), COEFF(0, 224), COEFF(1.4020, 224) }, { COEFF(1, 219), COEFF(-0.3441, 224), COEFF(-0.7141, 224) }, { COEFF(1, 219), COEFF(1.7720, 224), COEFF(0, 224) }, }; static const int bt601_full[3][3] = { { COEFF(1, 255), COEFF(0, 255), COEFF(1.4020, 255) }, { COEFF(1, 255), COEFF(-0.3441, 255), COEFF(-0.7141, 255) }, { COEFF(1, 255), COEFF(1.7720, 255), COEFF(0, 255) }, }; static const int rec709[3][3] = { { COEFF(1, 219), COEFF(0, 224), COEFF(1.5748, 224) }, { COEFF(1, 219), COEFF(-0.1873, 224), COEFF(-0.4681, 224) }, { COEFF(1, 219), COEFF(1.8556, 224), COEFF(0, 224) }, }; static const int rec709_full[3][3] = { { COEFF(1, 255), COEFF(0, 255), COEFF(1.5748, 255) }, { COEFF(1, 255), COEFF(-0.1873, 255), COEFF(-0.4681, 255) }, { COEFF(1, 255), COEFF(1.8556, 255), COEFF(0, 255) }, }; static const int smpte240m[3][3] = { { COEFF(1, 219), COEFF(0, 224), COEFF(1.5756, 224) }, { COEFF(1, 219), COEFF(-0.2253, 224), COEFF(-0.4767, 224) }, { COEFF(1, 219), COEFF(1.8270, 224), COEFF(0, 224) }, }; static const int bt2020[3][3] = { { COEFF(1, 219), COEFF(0, 224), COEFF(1.4746, 224) }, { COEFF(1, 219), COEFF(-0.1646, 224), COEFF(-0.5714, 224) }, { COEFF(1, 219), COEFF(1.8814, 224), COEFF(0, 224) }, }; bool full = tpg->real_quantization == V4L2_QUANTIZATION_FULL_RANGE; unsigned y_offset = full ? 0 : 16; int lin_r, lin_g, lin_b, lin_y; switch (tpg->real_ycbcr_enc) { case V4L2_YCBCR_ENC_601: case V4L2_YCBCR_ENC_XV601: case V4L2_YCBCR_ENC_SYCC: ycbcr2rgb(full ? bt601_full : bt601, y, cb, cr, y_offset, r, g, b); break; case V4L2_YCBCR_ENC_BT2020: ycbcr2rgb(bt2020, y, cb, cr, 16, r, g, b); break; case V4L2_YCBCR_ENC_BT2020_CONST_LUM: y -= 16 << 4; cb -= 128 << 4; cr -= 128 << 4; if (cb <= 0) *b = COEFF(1.0, 219) * y + COEFF(1.9404, 224) * cb; else *b = COEFF(1.0, 219) * y + COEFF(1.5816, 224) * cb; *b = *b >> 12; if (cr <= 0) *r = COEFF(1.0, 219) * y + COEFF(1.7184, 224) * cr; else *r = COEFF(1.0, 219) * y + COEFF(0.9936, 224) * cr; *r = *r >> 12; lin_r = rec709_to_linear(*r); lin_b = rec709_to_linear(*b); lin_y = rec709_to_linear((y * 255) / 219); lin_g = COEFF(1.0 / 0.6780, 255) * lin_y - COEFF(0.2627 / 0.6780, 255) * lin_r - COEFF(0.0593 / 0.6780, 255) * lin_b; *g = linear_to_rec709(lin_g >> 12); break; case V4L2_YCBCR_ENC_SMPTE240M: ycbcr2rgb(smpte240m, y, cb, cr, 16, r, g, b); break; case V4L2_YCBCR_ENC_709: case V4L2_YCBCR_ENC_XV709: default: ycbcr2rgb(full ? rec709_full : rec709, y, cb, cr, y_offset, r, g, b); break; } } /* precalculate color bar values to speed up rendering */ static void precalculate_color(struct tpg_data *tpg, int k) { int col = k; int r = tpg_colors[col].r; int g = tpg_colors[col].g; int b = tpg_colors[col].b; if (k == TPG_COLOR_TEXTBG) { col = tpg_get_textbg_color(tpg); r = tpg_colors[col].r; g = tpg_colors[col].g; b = tpg_colors[col].b; } else if (k == TPG_COLOR_TEXTFG) { col = tpg_get_textfg_color(tpg); r = tpg_colors[col].r; g = tpg_colors[col].g; b = tpg_colors[col].b; } else if (tpg->pattern == TPG_PAT_NOISE) { r = g = b = prandom_u32_max(256); } else if (k == TPG_COLOR_RANDOM) { r = g = b = tpg->qual_offset + prandom_u32_max(196); } else if (k >= TPG_COLOR_RAMP) { r = g = b = k - TPG_COLOR_RAMP; } if (tpg->pattern == TPG_PAT_CSC_COLORBAR && col <= TPG_COLOR_CSC_BLACK) { r = tpg_csc_colors[tpg->colorspace][col].r; g = tpg_csc_colors[tpg->colorspace][col].g; b = tpg_csc_colors[tpg->colorspace][col].b; } else { r <<= 4; g <<= 4; b <<= 4; } if (tpg->qual == TPG_QUAL_GRAY) { /* Rec. 709 Luma function */ /* (0.2126, 0.7152, 0.0722) * (255 * 256) */ r = g = b = ((13879 * r + 46688 * g + 4713 * b) >> 16) + (16 << 4); } /* * The assumption is that the RGB output is always full range, * so only if the rgb_range overrides the 'real' rgb range do * we need to convert the RGB values. * * Remember that r, g and b are still in the 0 - 0xff0 range. */ if (tpg->real_rgb_range == V4L2_DV_RGB_RANGE_LIMITED && tpg->rgb_range == V4L2_DV_RGB_RANGE_FULL) { /* * Convert from full range (which is what r, g and b are) * to limited range (which is the 'real' RGB range), which * is then interpreted as full range. */ r = (r * 219) / 255 + (16 << 4); g = (g * 219) / 255 + (16 << 4); b = (b * 219) / 255 + (16 << 4); } else if (tpg->real_rgb_range != V4L2_DV_RGB_RANGE_LIMITED && tpg->rgb_range == V4L2_DV_RGB_RANGE_LIMITED) { /* * Clamp r, g and b to the limited range and convert to full * range since that's what we deliver. */ r = clamp(r, 16 << 4, 235 << 4); g = clamp(g, 16 << 4, 235 << 4); b = clamp(b, 16 << 4, 235 << 4); r = (r - (16 << 4)) * 255 / 219; g = (g - (16 << 4)) * 255 / 219; b = (b - (16 << 4)) * 255 / 219; } if (tpg->brightness != 128 || tpg->contrast != 128 || tpg->saturation != 128 || tpg->hue) { /* Implement these operations */ int y, cb, cr; int tmp_cb, tmp_cr; /* First convert to YCbCr */ color_to_ycbcr(tpg, r, g, b, &y, &cb, &cr); y = (16 << 4) + ((y - (16 << 4)) * tpg->contrast) / 128; y += (tpg->brightness << 4) - (128 << 4); cb -= 128 << 4; cr -= 128 << 4; tmp_cb = (cb * cos(128 + tpg->hue)) / 127 + (cr * sin[128 + tpg->hue]) / 127; tmp_cr = (cr * cos(128 + tpg->hue)) / 127 - (cb * sin[128 + tpg->hue]) / 127; cb = (128 << 4) + (tmp_cb * tpg->contrast * tpg->saturation) / (128 * 128); cr = (128 << 4) + (tmp_cr * tpg->contrast * tpg->saturation) / (128 * 128); if (tpg->is_yuv) { tpg->colors[k][0] = clamp(y >> 4, 1, 254); tpg->colors[k][1] = clamp(cb >> 4, 1, 254); tpg->colors[k][2] = clamp(cr >> 4, 1, 254); return; } ycbcr_to_color(tpg, y, cb, cr, &r, &g, &b); } if (tpg->is_yuv) { /* Convert to YCbCr */ int y, cb, cr; color_to_ycbcr(tpg, r, g, b, &y, &cb, &cr); if (tpg->real_quantization == V4L2_QUANTIZATION_LIM_RANGE) { y = clamp(y, 16 << 4, 235 << 4); cb = clamp(cb, 16 << 4, 240 << 4); cr = clamp(cr, 16 << 4, 240 << 4); } tpg->colors[k][0] = clamp(y >> 4, 1, 254); tpg->colors[k][1] = clamp(cb >> 4, 1, 254); tpg->colors[k][2] = clamp(cr >> 4, 1, 254); } else { if (tpg->real_quantization == V4L2_QUANTIZATION_LIM_RANGE) { r = (r * 219) / 255 + (16 << 4); g = (g * 219) / 255 + (16 << 4); b = (b * 219) / 255 + (16 << 4); } switch (tpg->fourcc) { case V4L2_PIX_FMT_RGB565: case V4L2_PIX_FMT_RGB565X: r >>= 7; g >>= 6; b >>= 7; break; case V4L2_PIX_FMT_RGB555: case V4L2_PIX_FMT_XRGB555: case V4L2_PIX_FMT_ARGB555: case V4L2_PIX_FMT_RGB555X: r >>= 7; g >>= 7; b >>= 7; break; default: r >>= 4; g >>= 4; b >>= 4; break; } tpg->colors[k][0] = r; tpg->colors[k][1] = g; tpg->colors[k][2] = b; } } static void tpg_precalculate_colors(struct tpg_data *tpg) { int k; for (k = 0; k < TPG_COLOR_MAX; k++) precalculate_color(tpg, k); } /* 'odd' is true for pixels 1, 3, 5, etc. and false for pixels 0, 2, 4, etc. */ static void gen_twopix(struct tpg_data *tpg, u8 buf[TPG_MAX_PLANES][8], int color, bool odd) { unsigned offset = odd * tpg->twopixelsize[0] / 2; u8 alpha = tpg->alpha_component; u8 r_y, g_u, b_v; if (tpg->alpha_red_only && color != TPG_COLOR_CSC_RED && color != TPG_COLOR_100_RED && color != TPG_COLOR_75_RED) alpha = 0; if (color == TPG_COLOR_RANDOM) precalculate_color(tpg, color); r_y = tpg->colors[color][0]; /* R or precalculated Y */ g_u = tpg->colors[color][1]; /* G or precalculated U */ b_v = tpg->colors[color][2]; /* B or precalculated V */ switch (tpg->fourcc) { case V4L2_PIX_FMT_NV16M: buf[0][offset] = r_y; buf[1][offset] = odd ? b_v : g_u; break; case V4L2_PIX_FMT_NV61M: buf[0][offset] = r_y; buf[1][offset] = odd ? g_u : b_v; break; case V4L2_PIX_FMT_YUYV: buf[0][offset] = r_y; buf[0][offset + 1] = odd ? b_v : g_u; break; case V4L2_PIX_FMT_UYVY: buf[0][offset] = odd ? b_v : g_u; buf[0][offset + 1] = r_y; break; case V4L2_PIX_FMT_YVYU: buf[0][offset] = r_y; buf[0][offset + 1] = odd ? g_u : b_v; break; case V4L2_PIX_FMT_VYUY: buf[0][offset] = odd ? g_u : b_v; buf[0][offset + 1] = r_y; break; case V4L2_PIX_FMT_RGB565: buf[0][offset] = (g_u << 5) | b_v; buf[0][offset + 1] = (r_y << 3) | (g_u >> 3); break; case V4L2_PIX_FMT_RGB565X: buf[0][offset] = (r_y << 3) | (g_u >> 3); buf[0][offset + 1] = (g_u << 5) | b_v; break; case V4L2_PIX_FMT_RGB555: case V4L2_PIX_FMT_XRGB555: alpha = 0; /* fall through */ case V4L2_PIX_FMT_ARGB555: buf[0][offset] = (g_u << 5) | b_v; buf[0][offset + 1] = (alpha & 0x80) | (r_y << 2) | (g_u >> 3); break; case V4L2_PIX_FMT_RGB555X: buf[0][offset] = (alpha & 0x80) | (r_y << 2) | (g_u >> 3); buf[0][offset + 1] = (g_u << 5) | b_v; break; case V4L2_PIX_FMT_RGB24: buf[0][offset] = r_y; buf[0][offset + 1] = g_u; buf[0][offset + 2] = b_v; break; case V4L2_PIX_FMT_BGR24: buf[0][offset] = b_v; buf[0][offset + 1] = g_u; buf[0][offset + 2] = r_y; break; case V4L2_PIX_FMT_RGB32: case V4L2_PIX_FMT_XRGB32: alpha = 0; /* fall through */ case V4L2_PIX_FMT_ARGB32: buf[0][offset] = alpha; buf[0][offset + 1] = r_y; buf[0][offset + 2] = g_u; buf[0][offset + 3] = b_v; break; case V4L2_PIX_FMT_BGR32: case V4L2_PIX_FMT_XBGR32: alpha = 0; /* fall through */ case V4L2_PIX_FMT_ABGR32: buf[0][offset] = b_v; buf[0][offset + 1] = g_u; buf[0][offset + 2] = r_y; buf[0][offset + 3] = alpha; break; } } /* Return how many pattern lines are used by the current pattern. */ static unsigned tpg_get_pat_lines(struct tpg_data *tpg) { switch (tpg->pattern) { case TPG_PAT_CHECKERS_16X16: case TPG_PAT_CHECKERS_1X1: case TPG_PAT_ALTERNATING_HLINES: case TPG_PAT_CROSS_1_PIXEL: case TPG_PAT_CROSS_2_PIXELS: case TPG_PAT_CROSS_10_PIXELS: return 2; case TPG_PAT_100_COLORSQUARES: case TPG_PAT_100_HCOLORBAR: return 8; default: return 1; } } /* Which pattern line should be used for the given frame line. */ static unsigned tpg_get_pat_line(struct tpg_data *tpg, unsigned line) { switch (tpg->pattern) { case TPG_PAT_CHECKERS_16X16: return (line >> 4) & 1; case TPG_PAT_CHECKERS_1X1: case TPG_PAT_ALTERNATING_HLINES: return line & 1; case TPG_PAT_100_COLORSQUARES: case TPG_PAT_100_HCOLORBAR: return (line * 8) / tpg->src_height; case TPG_PAT_CROSS_1_PIXEL: return line == tpg->src_height / 2; case TPG_PAT_CROSS_2_PIXELS: return (line + 1) / 2 == tpg->src_height / 4; case TPG_PAT_CROSS_10_PIXELS: return (line + 10) / 20 == tpg->src_height / 40; default: return 0; } } /* * Which color should be used for the given pattern line and X coordinate. * Note: x is in the range 0 to 2 * tpg->src_width. */ static enum tpg_color tpg_get_color(struct tpg_data *tpg, unsigned pat_line, unsigned x) { /* Maximum number of bars are TPG_COLOR_MAX - otherwise, the input print code should be modified */ static const enum tpg_color bars[3][8] = { /* Standard ITU-R 75% color bar sequence */ { TPG_COLOR_CSC_WHITE, TPG_COLOR_75_YELLOW, TPG_COLOR_75_CYAN, TPG_COLOR_75_GREEN, TPG_COLOR_75_MAGENTA, TPG_COLOR_75_RED, TPG_COLOR_75_BLUE, TPG_COLOR_100_BLACK, }, /* Standard ITU-R 100% color bar sequence */ { TPG_COLOR_100_WHITE, TPG_COLOR_100_YELLOW, TPG_COLOR_100_CYAN, TPG_COLOR_100_GREEN, TPG_COLOR_100_MAGENTA, TPG_COLOR_100_RED, TPG_COLOR_100_BLUE, TPG_COLOR_100_BLACK, }, /* Color bar sequence suitable to test CSC */ { TPG_COLOR_CSC_WHITE, TPG_COLOR_CSC_YELLOW, TPG_COLOR_CSC_CYAN, TPG_COLOR_CSC_GREEN, TPG_COLOR_CSC_MAGENTA, TPG_COLOR_CSC_RED, TPG_COLOR_CSC_BLUE, TPG_COLOR_CSC_BLACK, }, }; switch (tpg->pattern) { case TPG_PAT_75_COLORBAR: case TPG_PAT_100_COLORBAR: case TPG_PAT_CSC_COLORBAR: return bars[tpg->pattern][((x * 8) / tpg->src_width) % 8]; case TPG_PAT_100_COLORSQUARES: return bars[1][(pat_line + (x * 8) / tpg->src_width) % 8]; case TPG_PAT_100_HCOLORBAR: return bars[1][pat_line]; case TPG_PAT_BLACK: return TPG_COLOR_100_BLACK; case TPG_PAT_WHITE: return TPG_COLOR_100_WHITE; case TPG_PAT_RED: return TPG_COLOR_100_RED; case TPG_PAT_GREEN: return TPG_COLOR_100_GREEN; case TPG_PAT_BLUE: return TPG_COLOR_100_BLUE; case TPG_PAT_CHECKERS_16X16: return (((x >> 4) & 1) ^ (pat_line & 1)) ? TPG_COLOR_100_BLACK : TPG_COLOR_100_WHITE; case TPG_PAT_CHECKERS_1X1: return ((x & 1) ^ (pat_line & 1)) ? TPG_COLOR_100_WHITE : TPG_COLOR_100_BLACK; case TPG_PAT_ALTERNATING_HLINES: return pat_line ? TPG_COLOR_100_WHITE : TPG_COLOR_100_BLACK; case TPG_PAT_ALTERNATING_VLINES: return (x & 1) ? TPG_COLOR_100_WHITE : TPG_COLOR_100_BLACK; case TPG_PAT_CROSS_1_PIXEL: if (pat_line || (x % tpg->src_width) == tpg->src_width / 2) return TPG_COLOR_100_BLACK; return TPG_COLOR_100_WHITE; case TPG_PAT_CROSS_2_PIXELS: if (pat_line || ((x % tpg->src_width) + 1) / 2 == tpg->src_width / 4) return TPG_COLOR_100_BLACK; return TPG_COLOR_100_WHITE; case TPG_PAT_CROSS_10_PIXELS: if (pat_line || ((x % tpg->src_width) + 10) / 20 == tpg->src_width / 40) return TPG_COLOR_100_BLACK; return TPG_COLOR_100_WHITE; case TPG_PAT_GRAY_RAMP: return TPG_COLOR_RAMP + ((x % tpg->src_width) * 256) / tpg->src_width; default: return TPG_COLOR_100_RED; } } /* * Given the pixel aspect ratio and video aspect ratio calculate the * coordinates of a centered square and the coordinates of the border of * the active video area. The coordinates are relative to the source * frame rectangle. */ static void tpg_calculate_square_border(struct tpg_data *tpg) { unsigned w = tpg->src_width; unsigned h = tpg->src_height; unsigned sq_w, sq_h; sq_w = (w * 2 / 5) & ~1; if (((w - sq_w) / 2) & 1) sq_w += 2; sq_h = sq_w; tpg->square.width = sq_w; if (tpg->vid_aspect == TPG_VIDEO_ASPECT_16X9_ANAMORPHIC) { unsigned ana_sq_w = (sq_w / 4) * 3; if (((w - ana_sq_w) / 2) & 1) ana_sq_w += 2; tpg->square.width = ana_sq_w; } tpg->square.left = (w - tpg->square.width) / 2; if (tpg->pix_aspect == TPG_PIXEL_ASPECT_NTSC) sq_h = sq_w * 10 / 11; else if (tpg->pix_aspect == TPG_PIXEL_ASPECT_PAL) sq_h = sq_w * 59 / 54; tpg->square.height = sq_h; tpg->square.top = (h - sq_h) / 2; tpg->border.left = 0; tpg->border.width = w; tpg->border.top = 0; tpg->border.height = h; switch (tpg->vid_aspect) { case TPG_VIDEO_ASPECT_4X3: if (tpg->pix_aspect) return; if (3 * w >= 4 * h) { tpg->border.width = ((4 * h) / 3) & ~1; if (((w - tpg->border.width) / 2) & ~1) tpg->border.width -= 2; tpg->border.left = (w - tpg->border.width) / 2; break; } tpg->border.height = ((3 * w) / 4) & ~1; tpg->border.top = (h - tpg->border.height) / 2; break; case TPG_VIDEO_ASPECT_14X9_CENTRE: if (tpg->pix_aspect) { tpg->border.height = tpg->pix_aspect == TPG_PIXEL_ASPECT_NTSC ? 420 : 506; tpg->border.top = (h - tpg->border.height) / 2; break; } if (9 * w >= 14 * h) { tpg->border.width = ((14 * h) / 9) & ~1; if (((w - tpg->border.width) / 2) & ~1) tpg->border.width -= 2; tpg->border.left = (w - tpg->border.width) / 2; break; } tpg->border.height = ((9 * w) / 14) & ~1; tpg->border.top = (h - tpg->border.height) / 2; break; case TPG_VIDEO_ASPECT_16X9_CENTRE: if (tpg->pix_aspect) { tpg->border.height = tpg->pix_aspect == TPG_PIXEL_ASPECT_NTSC ? 368 : 442; tpg->border.top = (h - tpg->border.height) / 2; break; } if (9 * w >= 16 * h) { tpg->border.width = ((16 * h) / 9) & ~1; if (((w - tpg->border.width) / 2) & ~1) tpg->border.width -= 2; tpg->border.left = (w - tpg->border.width) / 2; break; } tpg->border.height = ((9 * w) / 16) & ~1; tpg->border.top = (h - tpg->border.height) / 2; break; default: break; } } static void tpg_precalculate_line(struct tpg_data *tpg) { enum tpg_color contrast; unsigned pat; unsigned p; unsigned x; switch (tpg->pattern) { case TPG_PAT_GREEN: contrast = TPG_COLOR_100_RED; break; case TPG_PAT_CSC_COLORBAR: contrast = TPG_COLOR_CSC_GREEN; break; default: contrast = TPG_COLOR_100_GREEN; break; } for (pat = 0; pat < tpg_get_pat_lines(tpg); pat++) { /* Coarse scaling with Bresenham */ unsigned int_part = tpg->src_width / tpg->scaled_width; unsigned fract_part = tpg->src_width % tpg->scaled_width; unsigned src_x = 0; unsigned error = 0; for (x = 0; x < tpg->scaled_width * 2; x += 2) { unsigned real_x = src_x; enum tpg_color color1, color2; u8 pix[TPG_MAX_PLANES][8]; real_x = tpg->hflip ? tpg->src_width * 2 - real_x - 2 : real_x; color1 = tpg_get_color(tpg, pat, real_x); src_x += int_part; error += fract_part; if (error >= tpg->scaled_width) { error -= tpg->scaled_width; src_x++; } real_x = src_x; real_x = tpg->hflip ? tpg->src_width * 2 - real_x - 2 : real_x; color2 = tpg_get_color(tpg, pat, real_x); src_x += int_part; error += fract_part; if (error >= tpg->scaled_width) { error -= tpg->scaled_width; src_x++; } gen_twopix(tpg, pix, tpg->hflip ? color2 : color1, 0); gen_twopix(tpg, pix, tpg->hflip ? color1 : color2, 1); for (p = 0; p < tpg->planes; p++) { unsigned twopixsize = tpg->twopixelsize[p]; u8 *pos = tpg->lines[pat][p] + x * twopixsize / 2; memcpy(pos, pix[p], twopixsize); } } } for (x = 0; x < tpg->scaled_width; x += 2) { u8 pix[TPG_MAX_PLANES][8]; gen_twopix(tpg, pix, contrast, 0); gen_twopix(tpg, pix, contrast, 1); for (p = 0; p < tpg->planes; p++) { unsigned twopixsize = tpg->twopixelsize[p]; u8 *pos = tpg->contrast_line[p] + x * twopixsize / 2; memcpy(pos, pix[p], twopixsize); } } for (x = 0; x < tpg->scaled_width; x += 2) { u8 pix[TPG_MAX_PLANES][8]; gen_twopix(tpg, pix, TPG_COLOR_100_BLACK, 0); gen_twopix(tpg, pix, TPG_COLOR_100_BLACK, 1); for (p = 0; p < tpg->planes; p++) { unsigned twopixsize = tpg->twopixelsize[p]; u8 *pos = tpg->black_line[p] + x * twopixsize / 2; memcpy(pos, pix[p], twopixsize); } } for (x = 0; x < tpg->scaled_width * 2; x += 2) { u8 pix[TPG_MAX_PLANES][8]; gen_twopix(tpg, pix, TPG_COLOR_RANDOM, 0); gen_twopix(tpg, pix, TPG_COLOR_RANDOM, 1); for (p = 0; p < tpg->planes; p++) { unsigned twopixsize = tpg->twopixelsize[p]; u8 *pos = tpg->random_line[p] + x * twopixsize / 2; memcpy(pos, pix[p], twopixsize); } } gen_twopix(tpg, tpg->textbg, TPG_COLOR_TEXTBG, 0); gen_twopix(tpg, tpg->textbg, TPG_COLOR_TEXTBG, 1); gen_twopix(tpg, tpg->textfg, TPG_COLOR_TEXTFG, 0); gen_twopix(tpg, tpg->textfg, TPG_COLOR_TEXTFG, 1); } /* need this to do rgb24 rendering */ typedef struct { u16 __; u8 _; } __packed x24; void tpg_gen_text(struct tpg_data *tpg, u8 *basep[TPG_MAX_PLANES][2], int y, int x, char *text) { int line; unsigned step = V4L2_FIELD_HAS_T_OR_B(tpg->field) ? 2 : 1; unsigned div = step; unsigned first = 0; unsigned len = strlen(text); unsigned p; if (font8x16 == NULL || basep == NULL) return; /* Checks if it is possible to show string */ if (y + 16 >= tpg->compose.height || x + 8 >= tpg->compose.width) return; if (len > (tpg->compose.width - x) / 8) len = (tpg->compose.width - x) / 8; if (tpg->vflip) y = tpg->compose.height - y - 16; if (tpg->hflip) x = tpg->compose.width - x - 8; y += tpg->compose.top; x += tpg->compose.left; if (tpg->field == V4L2_FIELD_BOTTOM) first = 1; else if (tpg->field == V4L2_FIELD_SEQ_TB || tpg->field == V4L2_FIELD_SEQ_BT) div = 2; for (p = 0; p < tpg->planes; p++) { /* Print stream time */ #define PRINTSTR(PIXTYPE) do { \ PIXTYPE fg; \ PIXTYPE bg; \ memcpy(&fg, tpg->textfg[p], sizeof(PIXTYPE)); \ memcpy(&bg, tpg->textbg[p], sizeof(PIXTYPE)); \ \ for (line = first; line < 16; line += step) { \ int l = tpg->vflip ? 15 - line : line; \ PIXTYPE *pos = (PIXTYPE *)(basep[p][line & 1] + \ ((y * step + l) / div) * tpg->bytesperline[p] + \ x * sizeof(PIXTYPE)); \ unsigned s; \ \ for (s = 0; s < len; s++) { \ u8 chr = font8x16[text[s] * 16 + line]; \ \ if (tpg->hflip) { \ pos[7] = (chr & (0x01 << 7) ? fg : bg); \ pos[6] = (chr & (0x01 << 6) ? fg : bg); \ pos[5] = (chr & (0x01 << 5) ? fg : bg); \ pos[4] = (chr & (0x01 << 4) ? fg : bg); \ pos[3] = (chr & (0x01 << 3) ? fg : bg); \ pos[2] = (chr & (0x01 << 2) ? fg : bg); \ pos[1] = (chr & (0x01 << 1) ? fg : bg); \ pos[0] = (chr & (0x01 << 0) ? fg : bg); \ } else { \ pos[0] = (chr & (0x01 << 7) ? fg : bg); \ pos[1] = (chr & (0x01 << 6) ? fg : bg); \ pos[2] = (chr & (0x01 << 5) ? fg : bg); \ pos[3] = (chr & (0x01 << 4) ? fg : bg); \ pos[4] = (chr & (0x01 << 3) ? fg : bg); \ pos[5] = (chr & (0x01 << 2) ? fg : bg); \ pos[6] = (chr & (0x01 << 1) ? fg : bg); \ pos[7] = (chr & (0x01 << 0) ? fg : bg); \ } \ \ pos += tpg->hflip ? -8 : 8; \ } \ } \ } while (0) switch (tpg->twopixelsize[p]) { case 2: PRINTSTR(u8); break; case 4: PRINTSTR(u16); break; case 6: PRINTSTR(x24); break; case 8: PRINTSTR(u32); break; } } } void tpg_update_mv_step(struct tpg_data *tpg) { int factor = tpg->mv_hor_mode > TPG_MOVE_NONE ? -1 : 1; if (tpg->hflip) factor = -factor; switch (tpg->mv_hor_mode) { case TPG_MOVE_NEG_FAST: case TPG_MOVE_POS_FAST: tpg->mv_hor_step = ((tpg->src_width + 319) / 320) * 4; break; case TPG_MOVE_NEG: case TPG_MOVE_POS: tpg->mv_hor_step = ((tpg->src_width + 639) / 640) * 4; break; case TPG_MOVE_NEG_SLOW: case TPG_MOVE_POS_SLOW: tpg->mv_hor_step = 2; break; case TPG_MOVE_NONE: tpg->mv_hor_step = 0; break; } if (factor < 0) tpg->mv_hor_step = tpg->src_width - tpg->mv_hor_step; factor = tpg->mv_vert_mode > TPG_MOVE_NONE ? -1 : 1; switch (tpg->mv_vert_mode) { case TPG_MOVE_NEG_FAST: case TPG_MOVE_POS_FAST: tpg->mv_vert_step = ((tpg->src_width + 319) / 320) * 4; break; case TPG_MOVE_NEG: case TPG_MOVE_POS: tpg->mv_vert_step = ((tpg->src_width + 639) / 640) * 4; break; case TPG_MOVE_NEG_SLOW: case TPG_MOVE_POS_SLOW: tpg->mv_vert_step = 1; break; case TPG_MOVE_NONE: tpg->mv_vert_step = 0; break; } if (factor < 0) tpg->mv_vert_step = tpg->src_height - tpg->mv_vert_step; } /* Map the line number relative to the crop rectangle to a frame line number */ static unsigned tpg_calc_frameline(struct tpg_data *tpg, unsigned src_y, unsigned field) { switch (field) { case V4L2_FIELD_TOP: return tpg->crop.top + src_y * 2; case V4L2_FIELD_BOTTOM: return tpg->crop.top + src_y * 2 + 1; default: return src_y + tpg->crop.top; } } /* * Map the line number relative to the compose rectangle to a destination * buffer line number. */ static unsigned tpg_calc_buffer_line(struct tpg_data *tpg, unsigned y, unsigned field) { y += tpg->compose.top; switch (field) { case V4L2_FIELD_SEQ_TB: if (y & 1) return tpg->buf_height / 2 + y / 2; return y / 2; case V4L2_FIELD_SEQ_BT: if (y & 1) return y / 2; return tpg->buf_height / 2 + y / 2; default: return y; } } static void tpg_recalc(struct tpg_data *tpg) { if (tpg->recalc_colors) { tpg->recalc_colors = false; tpg->recalc_lines = true; tpg->real_ycbcr_enc = tpg->ycbcr_enc; tpg->real_quantization = tpg->quantization; if (tpg->ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT) { switch (tpg->colorspace) { case V4L2_COLORSPACE_REC709: tpg->real_ycbcr_enc = V4L2_YCBCR_ENC_709; break; case V4L2_COLORSPACE_SRGB: tpg->real_ycbcr_enc = V4L2_YCBCR_ENC_SYCC; break; case V4L2_COLORSPACE_BT2020: tpg->real_ycbcr_enc = V4L2_YCBCR_ENC_BT2020; break; case V4L2_COLORSPACE_SMPTE240M: tpg->real_ycbcr_enc = V4L2_YCBCR_ENC_SMPTE240M; break; case V4L2_COLORSPACE_SMPTE170M: case V4L2_COLORSPACE_470_SYSTEM_M: case V4L2_COLORSPACE_470_SYSTEM_BG: case V4L2_COLORSPACE_ADOBERGB: default: tpg->real_ycbcr_enc = V4L2_YCBCR_ENC_601; break; } } if (tpg->quantization == V4L2_QUANTIZATION_DEFAULT) { tpg->real_quantization = V4L2_QUANTIZATION_FULL_RANGE; if (tpg->is_yuv) { switch (tpg->real_ycbcr_enc) { case V4L2_YCBCR_ENC_SYCC: case V4L2_YCBCR_ENC_XV601: case V4L2_YCBCR_ENC_XV709: break; default: tpg->real_quantization = V4L2_QUANTIZATION_LIM_RANGE; break; } } } tpg_precalculate_colors(tpg); } if (tpg->recalc_square_border) { tpg->recalc_square_border = false; tpg_calculate_square_border(tpg); } if (tpg->recalc_lines) { tpg->recalc_lines = false; tpg_precalculate_line(tpg); } } void tpg_calc_text_basep(struct tpg_data *tpg, u8 *basep[TPG_MAX_PLANES][2], unsigned p, u8 *vbuf) { unsigned stride = tpg->bytesperline[p]; tpg_recalc(tpg); basep[p][0] = vbuf; basep[p][1] = vbuf; if (tpg->field == V4L2_FIELD_SEQ_TB) basep[p][1] += tpg->buf_height * stride / 2; else if (tpg->field == V4L2_FIELD_SEQ_BT) basep[p][0] += tpg->buf_height * stride / 2; } void tpg_fillbuffer(struct tpg_data *tpg, v4l2_std_id std, unsigned p, u8 *vbuf) { bool is_tv = std; bool is_60hz = is_tv && (std & V4L2_STD_525_60); unsigned mv_hor_old = tpg->mv_hor_count % tpg->src_width; unsigned mv_hor_new = (tpg->mv_hor_count + tpg->mv_hor_step) % tpg->src_width; unsigned mv_vert_old = tpg->mv_vert_count % tpg->src_height; unsigned mv_vert_new = (tpg->mv_vert_count + tpg->mv_vert_step) % tpg->src_height; unsigned wss_width; unsigned f; int hmax = (tpg->compose.height * tpg->perc_fill) / 100; int h; unsigned twopixsize = tpg->twopixelsize[p]; unsigned img_width = tpg->compose.width * twopixsize / 2; unsigned line_offset; unsigned left_pillar_width = 0; unsigned right_pillar_start = img_width; unsigned stride = tpg->bytesperline[p]; unsigned factor = V4L2_FIELD_HAS_T_OR_B(tpg->field) ? 2 : 1; u8 *orig_vbuf = vbuf; /* Coarse scaling with Bresenham */ unsigned int_part = (tpg->crop.height / factor) / tpg->compose.height; unsigned fract_part = (tpg->crop.height / factor) % tpg->compose.height; unsigned src_y = 0; unsigned error = 0; tpg_recalc(tpg); mv_hor_old = (mv_hor_old * tpg->scaled_width / tpg->src_width) & ~1; mv_hor_new = (mv_hor_new * tpg->scaled_width / tpg->src_width) & ~1; wss_width = tpg->crop.left < tpg->src_width / 2 ? tpg->src_width / 2 - tpg->crop.left : 0; if (wss_width > tpg->crop.width) wss_width = tpg->crop.width; wss_width = wss_width * tpg->scaled_width / tpg->src_width; vbuf += tpg->compose.left * twopixsize / 2; line_offset = tpg->crop.left * tpg->scaled_width / tpg->src_width; line_offset = (line_offset & ~1) * twopixsize / 2; if (tpg->crop.left < tpg->border.left) { left_pillar_width = tpg->border.left - tpg->crop.left; if (left_pillar_width > tpg->crop.width) left_pillar_width = tpg->crop.width; left_pillar_width = (left_pillar_width * tpg->scaled_width) / tpg->src_width; left_pillar_width = (left_pillar_width & ~1) * twopixsize / 2; } if (tpg->crop.left + tpg->crop.width > tpg->border.left + tpg->border.width) { right_pillar_start = tpg->border.left + tpg->border.width - tpg->crop.left; right_pillar_start = (right_pillar_start * tpg->scaled_width) / tpg->src_width; right_pillar_start = (right_pillar_start & ~1) * twopixsize / 2; if (right_pillar_start > img_width) right_pillar_start = img_width; } f = tpg->field == (is_60hz ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM); for (h = 0; h < tpg->compose.height; h++) { bool even; bool fill_blank = false; unsigned frame_line; unsigned buf_line; unsigned pat_line_old; unsigned pat_line_new; u8 *linestart_older; u8 *linestart_newer; u8 *linestart_top; u8 *linestart_bottom; frame_line = tpg_calc_frameline(tpg, src_y, tpg->field); even = !(frame_line & 1); buf_line = tpg_calc_buffer_line(tpg, h, tpg->field); src_y += int_part; error += fract_part; if (error >= tpg->compose.height) { error -= tpg->compose.height; src_y++; } if (h >= hmax) { if (hmax == tpg->compose.height) continue; if (!tpg->perc_fill_blank) continue; fill_blank = true; } if (tpg->vflip) frame_line = tpg->src_height - frame_line - 1; if (fill_blank) { linestart_older = tpg->contrast_line[p]; linestart_newer = tpg->contrast_line[p]; } else if (tpg->qual != TPG_QUAL_NOISE && (frame_line < tpg->border.top || frame_line >= tpg->border.top + tpg->border.height)) { linestart_older = tpg->black_line[p]; linestart_newer = tpg->black_line[p]; } else if (tpg->pattern == TPG_PAT_NOISE || tpg->qual == TPG_QUAL_NOISE) { linestart_older = tpg->random_line[p] + twopixsize * prandom_u32_max(tpg->src_width / 2); linestart_newer = tpg->random_line[p] + twopixsize * prandom_u32_max(tpg->src_width / 2); } else { pat_line_old = tpg_get_pat_line(tpg, (frame_line + mv_vert_old) % tpg->src_height); pat_line_new = tpg_get_pat_line(tpg, (frame_line + mv_vert_new) % tpg->src_height); linestart_older = tpg->lines[pat_line_old][p] + mv_hor_old * twopixsize / 2; linestart_newer = tpg->lines[pat_line_new][p] + mv_hor_new * twopixsize / 2; linestart_older += line_offset; linestart_newer += line_offset; } if (is_60hz) { linestart_top = linestart_newer; linestart_bottom = linestart_older; } else { linestart_top = linestart_older; linestart_bottom = linestart_newer; } switch (tpg->field) { case V4L2_FIELD_INTERLACED: case V4L2_FIELD_INTERLACED_TB: case V4L2_FIELD_SEQ_TB: case V4L2_FIELD_SEQ_BT: if (even) memcpy(vbuf + buf_line * stride, linestart_top, img_width); else memcpy(vbuf + buf_line * stride, linestart_bottom, img_width); break; case V4L2_FIELD_INTERLACED_BT: if (even) memcpy(vbuf + buf_line * stride, linestart_bottom, img_width); else memcpy(vbuf + buf_line * stride, linestart_top, img_width); break; case V4L2_FIELD_TOP: memcpy(vbuf + buf_line * stride, linestart_top, img_width); break; case V4L2_FIELD_BOTTOM: memcpy(vbuf + buf_line * stride, linestart_bottom, img_width); break; case V4L2_FIELD_NONE: default: memcpy(vbuf + buf_line * stride, linestart_older, img_width); break; } if (is_tv && !is_60hz && frame_line == 0 && wss_width) { /* * Replace the first half of the top line of a 50 Hz frame * with random data to simulate a WSS signal. */ u8 *wss = tpg->random_line[p] + twopixsize * prandom_u32_max(tpg->src_width / 2); memcpy(vbuf + buf_line * stride, wss, wss_width * twopixsize / 2); } } vbuf = orig_vbuf; vbuf += tpg->compose.left * twopixsize / 2; src_y = 0; error = 0; for (h = 0; h < tpg->compose.height; h++) { unsigned frame_line = tpg_calc_frameline(tpg, src_y, tpg->field); unsigned buf_line = tpg_calc_buffer_line(tpg, h, tpg->field); const struct v4l2_rect *sq = &tpg->square; const struct v4l2_rect *b = &tpg->border; const struct v4l2_rect *c = &tpg->crop; src_y += int_part; error += fract_part; if (error >= tpg->compose.height) { error -= tpg->compose.height; src_y++; } if (tpg->show_border && frame_line >= b->top && frame_line < b->top + b->height) { unsigned bottom = b->top + b->height - 1; unsigned left = left_pillar_width; unsigned right = right_pillar_start; if (frame_line == b->top || frame_line == b->top + 1 || frame_line == bottom || frame_line == bottom - 1) { memcpy(vbuf + buf_line * stride + left, tpg->contrast_line[p], right - left); } else { if (b->left >= c->left && b->left < c->left + c->width) memcpy(vbuf + buf_line * stride + left, tpg->contrast_line[p], twopixsize); if (b->left + b->width > c->left && b->left + b->width <= c->left + c->width) memcpy(vbuf + buf_line * stride + right - twopixsize, tpg->contrast_line[p], twopixsize); } } if (tpg->qual != TPG_QUAL_NOISE && frame_line >= b->top && frame_line < b->top + b->height) { memcpy(vbuf + buf_line * stride, tpg->black_line[p], left_pillar_width); memcpy(vbuf + buf_line * stride + right_pillar_start, tpg->black_line[p], img_width - right_pillar_start); } if (tpg->show_square && frame_line >= sq->top && frame_line < sq->top + sq->height && sq->left < c->left + c->width && sq->left + sq->width >= c->left) { unsigned left = sq->left; unsigned width = sq->width; if (c->left > left) { width -= c->left - left; left = c->left; } if (c->left + c->width < left + width) width -= left + width - c->left - c->width; left -= c->left; left = (left * tpg->scaled_width) / tpg->src_width; left = (left & ~1) * twopixsize / 2; width = (width * tpg->scaled_width) / tpg->src_width; width = (width & ~1) * twopixsize / 2; memcpy(vbuf + buf_line * stride + left, tpg->contrast_line[p], width); } if (tpg->insert_sav) { unsigned offset = (tpg->compose.width / 6) * twopixsize; u8 *p = vbuf + buf_line * stride + offset; unsigned vact = 0, hact = 0; p[0] = 0xff; p[1] = 0; p[2] = 0; p[3] = 0x80 | (f << 6) | (vact << 5) | (hact << 4) | ((hact ^ vact) << 3) | ((hact ^ f) << 2) | ((f ^ vact) << 1) | (hact ^ vact ^ f); } if (tpg->insert_eav) { unsigned offset = (tpg->compose.width / 6) * 2 * twopixsize; u8 *p = vbuf + buf_line * stride + offset; unsigned vact = 0, hact = 1; p[0] = 0xff; p[1] = 0; p[2] = 0; p[3] = 0x80 | (f << 6) | (vact << 5) | (hact << 4) | ((hact ^ vact) << 3) | ((hact ^ f) << 2) | ((f ^ vact) << 1) | (hact ^ vact ^ f); } } }