#ifndef _ASM_X86_TLBFLUSH_H #define _ASM_X86_TLBFLUSH_H #include #include #include #include #include static inline void __invpcid(unsigned long pcid, unsigned long addr, unsigned long type) { struct { u64 d[2]; } desc = { { pcid, addr } }; /* * The memory clobber is because the whole point is to invalidate * stale TLB entries and, especially if we're flushing global * mappings, we don't want the compiler to reorder any subsequent * memory accesses before the TLB flush. * * The hex opcode is invpcid (%ecx), %eax in 32-bit mode and * invpcid (%rcx), %rax in long mode. */ asm volatile (".byte 0x66, 0x0f, 0x38, 0x82, 0x01" : : "m" (desc), "a" (type), "c" (&desc) : "memory"); } #define INVPCID_TYPE_INDIV_ADDR 0 #define INVPCID_TYPE_SINGLE_CTXT 1 #define INVPCID_TYPE_ALL_INCL_GLOBAL 2 #define INVPCID_TYPE_ALL_NON_GLOBAL 3 /* Flush all mappings for a given pcid and addr, not including globals. */ static inline void invpcid_flush_one(unsigned long pcid, unsigned long addr) { __invpcid(pcid, addr, INVPCID_TYPE_INDIV_ADDR); } /* Flush all mappings for a given PCID, not including globals. */ static inline void invpcid_flush_single_context(unsigned long pcid) { __invpcid(pcid, 0, INVPCID_TYPE_SINGLE_CTXT); } /* Flush all mappings, including globals, for all PCIDs. */ static inline void invpcid_flush_all(void) { __invpcid(0, 0, INVPCID_TYPE_ALL_INCL_GLOBAL); } /* Flush all mappings for all PCIDs except globals. */ static inline void invpcid_flush_all_nonglobals(void) { __invpcid(0, 0, INVPCID_TYPE_ALL_NON_GLOBAL); } #ifdef CONFIG_PARAVIRT #include #else #define __flush_tlb() __native_flush_tlb() #define __flush_tlb_global() __native_flush_tlb_global() #define __flush_tlb_single(addr) __native_flush_tlb_single(addr) #endif struct tlb_state { #ifdef CONFIG_SMP struct mm_struct *active_mm; int state; #endif /* * Access to this CR4 shadow and to H/W CR4 is protected by * disabling interrupts when modifying either one. */ unsigned long cr4; }; DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate); /* Initialize cr4 shadow for this CPU. */ static inline void cr4_init_shadow(void) { this_cpu_write(cpu_tlbstate.cr4, __read_cr4()); } /* Set in this cpu's CR4. */ static inline void cr4_set_bits(unsigned long mask) { unsigned long cr4; cr4 = this_cpu_read(cpu_tlbstate.cr4); if ((cr4 | mask) != cr4) { cr4 |= mask; this_cpu_write(cpu_tlbstate.cr4, cr4); __write_cr4(cr4); } } /* Clear in this cpu's CR4. */ static inline void cr4_clear_bits(unsigned long mask) { unsigned long cr4; cr4 = this_cpu_read(cpu_tlbstate.cr4); if ((cr4 & ~mask) != cr4) { cr4 &= ~mask; this_cpu_write(cpu_tlbstate.cr4, cr4); __write_cr4(cr4); } } static inline void cr4_toggle_bits(unsigned long mask) { unsigned long cr4; cr4 = this_cpu_read(cpu_tlbstate.cr4); cr4 ^= mask; this_cpu_write(cpu_tlbstate.cr4, cr4); __write_cr4(cr4); } /* Read the CR4 shadow. */ static inline unsigned long cr4_read_shadow(void) { return this_cpu_read(cpu_tlbstate.cr4); } /* * Save some of cr4 feature set we're using (e.g. Pentium 4MB * enable and PPro Global page enable), so that any CPU's that boot * up after us can get the correct flags. This should only be used * during boot on the boot cpu. */ extern unsigned long mmu_cr4_features; extern u32 *trampoline_cr4_features; static inline void cr4_set_bits_and_update_boot(unsigned long mask) { mmu_cr4_features |= mask; if (trampoline_cr4_features) *trampoline_cr4_features = mmu_cr4_features; cr4_set_bits(mask); } static inline void __native_flush_tlb(void) { /* * If current->mm == NULL then we borrow a mm which may change during a * task switch and therefore we must not be preempted while we write CR3 * back: */ preempt_disable(); native_write_cr3(native_read_cr3()); preempt_enable(); } static inline void __native_flush_tlb_global_irq_disabled(void) { unsigned long cr4; cr4 = this_cpu_read(cpu_tlbstate.cr4); /* clear PGE */ native_write_cr4(cr4 & ~X86_CR4_PGE); /* write old PGE again and flush TLBs */ native_write_cr4(cr4); } static inline void __native_flush_tlb_global(void) { unsigned long flags; if (static_cpu_has(X86_FEATURE_INVPCID)) { /* * Using INVPCID is considerably faster than a pair of writes * to CR4 sandwiched inside an IRQ flag save/restore. */ invpcid_flush_all(); return; } /* * Read-modify-write to CR4 - protect it from preemption and * from interrupts. (Use the raw variant because this code can * be called from deep inside debugging code.) */ raw_local_irq_save(flags); __native_flush_tlb_global_irq_disabled(); raw_local_irq_restore(flags); } static inline void __native_flush_tlb_single(unsigned long addr) { asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); } static inline void __flush_tlb_all(void) { if (boot_cpu_has(X86_FEATURE_PGE)) __flush_tlb_global(); else __flush_tlb(); } static inline void __flush_tlb_one(unsigned long addr) { count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE); __flush_tlb_single(addr); } #define TLB_FLUSH_ALL -1UL /* * TLB flushing: * * - flush_tlb() flushes the current mm struct TLBs * - flush_tlb_all() flushes all processes TLBs * - flush_tlb_mm(mm) flushes the specified mm context TLB's * - flush_tlb_page(vma, vmaddr) flushes one page * - flush_tlb_range(vma, start, end) flushes a range of pages * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages * - flush_tlb_others(cpumask, mm, start, end) flushes TLBs on other cpus * * ..but the i386 has somewhat limited tlb flushing capabilities, * and page-granular flushes are available only on i486 and up. */ #ifndef CONFIG_SMP /* "_up" is for UniProcessor. * * This is a helper for other header functions. *Not* intended to be called * directly. All global TLB flushes need to either call this, or to bump the * vm statistics themselves. */ static inline void __flush_tlb_up(void) { count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); __flush_tlb(); } static inline void flush_tlb_all(void) { count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL); __flush_tlb_all(); } static inline void flush_tlb(void) { __flush_tlb_up(); } static inline void local_flush_tlb(void) { __flush_tlb_up(); } static inline void flush_tlb_mm(struct mm_struct *mm) { if (mm == current->active_mm) __flush_tlb_up(); } static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr) { if (vma->vm_mm == current->active_mm) __flush_tlb_one(addr); } static inline void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { if (vma->vm_mm == current->active_mm) __flush_tlb_up(); } static inline void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, unsigned long end, unsigned long vmflag) { if (mm == current->active_mm) __flush_tlb_up(); } static inline void native_flush_tlb_others(const struct cpumask *cpumask, struct mm_struct *mm, unsigned long start, unsigned long end) { } static inline void reset_lazy_tlbstate(void) { } static inline void flush_tlb_kernel_range(unsigned long start, unsigned long end) { flush_tlb_all(); } #else /* SMP */ #include #define local_flush_tlb() __flush_tlb() #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL) #define flush_tlb_range(vma, start, end) \ flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags) extern void flush_tlb_all(void); extern void flush_tlb_current_task(void); extern void flush_tlb_page(struct vm_area_struct *, unsigned long); extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, unsigned long end, unsigned long vmflag); extern void flush_tlb_kernel_range(unsigned long start, unsigned long end); #define flush_tlb() flush_tlb_current_task() void native_flush_tlb_others(const struct cpumask *cpumask, struct mm_struct *mm, unsigned long start, unsigned long end); #define TLBSTATE_OK 1 #define TLBSTATE_LAZY 2 static inline void reset_lazy_tlbstate(void) { this_cpu_write(cpu_tlbstate.state, 0); this_cpu_write(cpu_tlbstate.active_mm, &init_mm); } #endif /* SMP */ #ifndef CONFIG_PARAVIRT #define flush_tlb_others(mask, mm, start, end) \ native_flush_tlb_others(mask, mm, start, end) #endif #endif /* _ASM_X86_TLBFLUSH_H */