/* * Copyright 2011 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nouveau_drv.h" #include "nouveau_dma.h" #include "nouveau_gem.h" #include "nouveau_connector.h" #include "nouveau_encoder.h" #include "nouveau_crtc.h" #include "nouveau_fence.h" #include "nouveau_fbcon.h" #include "nv50_display.h" #define EVO_DMA_NR 9 #define EVO_MASTER (0x00) #define EVO_FLIP(c) (0x01 + (c)) #define EVO_OVLY(c) (0x05 + (c)) #define EVO_OIMM(c) (0x09 + (c)) #define EVO_CURS(c) (0x0d + (c)) /* offsets in shared sync bo of various structures */ #define EVO_SYNC(c, o) ((c) * 0x0100 + (o)) #define EVO_MAST_NTFY EVO_SYNC( 0, 0x00) #define EVO_FLIP_SEM0(c) EVO_SYNC((c) + 1, 0x00) #define EVO_FLIP_SEM1(c) EVO_SYNC((c) + 1, 0x10) #define EVO_FLIP_NTFY0(c) EVO_SYNC((c) + 1, 0x20) #define EVO_FLIP_NTFY1(c) EVO_SYNC((c) + 1, 0x30) /****************************************************************************** * Atomic state *****************************************************************************/ #define nv50_atom(p) container_of((p), struct nv50_atom, state) struct nv50_atom { struct drm_atomic_state state; struct list_head outp; bool lock_core; bool flush_disable; }; struct nv50_outp_atom { struct list_head head; struct drm_encoder *encoder; bool flush_disable; union { struct { bool ctrl:1; }; u8 mask; } clr; union { struct { bool ctrl:1; }; u8 mask; } set; }; #define nv50_head_atom(p) container_of((p), struct nv50_head_atom, state) struct nv50_head_atom { struct drm_crtc_state state; struct { u16 iW; u16 iH; u16 oW; u16 oH; } view; struct nv50_head_mode { bool interlace; u32 clock; struct { u16 active; u16 synce; u16 blanke; u16 blanks; } h; struct { u32 active; u16 synce; u16 blanke; u16 blanks; u16 blank2s; u16 blank2e; u16 blankus; } v; } mode; struct { u32 handle; u64 offset:40; } lut; struct { bool visible; u32 handle; u64 offset:40; u8 format; u8 kind:7; u8 layout:1; u8 block:4; u32 pitch:20; u16 x; u16 y; u16 w; u16 h; } core; struct { bool visible; u32 handle; u64 offset:40; u8 layout:1; u8 format:1; } curs; struct { u8 depth; u8 cpp; u16 x; u16 y; u16 w; u16 h; } base; struct { u8 cpp; } ovly; struct { bool enable:1; u8 bits:2; u8 mode:4; } dither; struct { struct { u16 cos:12; u16 sin:12; } sat; } procamp; union { struct { bool core:1; bool curs:1; }; u8 mask; } clr; union { struct { bool core:1; bool curs:1; bool view:1; bool mode:1; bool base:1; bool ovly:1; bool dither:1; bool procamp:1; }; u16 mask; } set; }; static inline struct nv50_head_atom * nv50_head_atom_get(struct drm_atomic_state *state, struct drm_crtc *crtc) { struct drm_crtc_state *statec = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(statec)) return (void *)statec; return nv50_head_atom(statec); } #define nv50_wndw_atom(p) container_of((p), struct nv50_wndw_atom, state) struct nv50_wndw_atom { struct drm_plane_state state; u8 interval; struct drm_rect clip; struct { u32 handle; u16 offset:12; bool awaken:1; } ntfy; struct { u32 handle; u16 offset:12; u32 acquire; u32 release; } sema; struct { u8 enable:2; } lut; struct { u8 mode:2; u8 interval:4; u8 format; u8 kind:7; u8 layout:1; u8 block:4; u32 pitch:20; u16 w; u16 h; u32 handle; u64 offset; } image; struct { u16 x; u16 y; } point; union { struct { bool ntfy:1; bool sema:1; bool image:1; }; u8 mask; } clr; union { struct { bool ntfy:1; bool sema:1; bool image:1; bool lut:1; bool point:1; }; u8 mask; } set; }; /****************************************************************************** * EVO channel *****************************************************************************/ struct nv50_chan { struct nvif_object user; struct nvif_device *device; }; static int nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, const s32 *oclass, u8 head, void *data, u32 size, struct nv50_chan *chan) { struct nvif_sclass *sclass; int ret, i, n; chan->device = device; ret = n = nvif_object_sclass_get(disp, &sclass); if (ret < 0) return ret; while (oclass[0]) { for (i = 0; i < n; i++) { if (sclass[i].oclass == oclass[0]) { ret = nvif_object_init(disp, 0, oclass[0], data, size, &chan->user); if (ret == 0) nvif_object_map(&chan->user); nvif_object_sclass_put(&sclass); return ret; } } oclass++; } nvif_object_sclass_put(&sclass); return -ENOSYS; } static void nv50_chan_destroy(struct nv50_chan *chan) { nvif_object_fini(&chan->user); } /****************************************************************************** * PIO EVO channel *****************************************************************************/ struct nv50_pioc { struct nv50_chan base; }; static void nv50_pioc_destroy(struct nv50_pioc *pioc) { nv50_chan_destroy(&pioc->base); } static int nv50_pioc_create(struct nvif_device *device, struct nvif_object *disp, const s32 *oclass, u8 head, void *data, u32 size, struct nv50_pioc *pioc) { return nv50_chan_create(device, disp, oclass, head, data, size, &pioc->base); } /****************************************************************************** * Overlay Immediate *****************************************************************************/ struct nv50_oimm { struct nv50_pioc base; }; static int nv50_oimm_create(struct nvif_device *device, struct nvif_object *disp, int head, struct nv50_oimm *oimm) { struct nv50_disp_cursor_v0 args = { .head = head, }; static const s32 oclass[] = { GK104_DISP_OVERLAY, GF110_DISP_OVERLAY, GT214_DISP_OVERLAY, G82_DISP_OVERLAY, NV50_DISP_OVERLAY, 0 }; return nv50_pioc_create(device, disp, oclass, head, &args, sizeof(args), &oimm->base); } /****************************************************************************** * DMA EVO channel *****************************************************************************/ struct nv50_dmac_ctxdma { struct list_head head; struct nvif_object object; }; struct nv50_dmac { struct nv50_chan base; dma_addr_t handle; u32 *ptr; struct nvif_object sync; struct nvif_object vram; struct list_head ctxdma; /* Protects against concurrent pushbuf access to this channel, lock is * grabbed by evo_wait (if the pushbuf reservation is successful) and * dropped again by evo_kick. */ struct mutex lock; }; static void nv50_dmac_ctxdma_del(struct nv50_dmac_ctxdma *ctxdma) { nvif_object_fini(&ctxdma->object); list_del(&ctxdma->head); kfree(ctxdma); } static struct nv50_dmac_ctxdma * nv50_dmac_ctxdma_new(struct nv50_dmac *dmac, struct nouveau_framebuffer *fb) { struct nouveau_drm *drm = nouveau_drm(fb->base.dev); struct nv50_dmac_ctxdma *ctxdma; const u8 kind = (fb->nvbo->tile_flags & 0x0000ff00) >> 8; const u32 handle = 0xfb000000 | kind; struct { struct nv_dma_v0 base; union { struct nv50_dma_v0 nv50; struct gf100_dma_v0 gf100; struct gf119_dma_v0 gf119; }; } args = {}; u32 argc = sizeof(args.base); int ret; list_for_each_entry(ctxdma, &dmac->ctxdma, head) { if (ctxdma->object.handle == handle) return ctxdma; } if (!(ctxdma = kzalloc(sizeof(*ctxdma), GFP_KERNEL))) return ERR_PTR(-ENOMEM); list_add(&ctxdma->head, &dmac->ctxdma); args.base.target = NV_DMA_V0_TARGET_VRAM; args.base.access = NV_DMA_V0_ACCESS_RDWR; args.base.start = 0; args.base.limit = drm->device.info.ram_user - 1; if (drm->device.info.chipset < 0x80) { args.nv50.part = NV50_DMA_V0_PART_256; argc += sizeof(args.nv50); } else if (drm->device.info.chipset < 0xc0) { args.nv50.part = NV50_DMA_V0_PART_256; args.nv50.kind = kind; argc += sizeof(args.nv50); } else if (drm->device.info.chipset < 0xd0) { args.gf100.kind = kind; argc += sizeof(args.gf100); } else { args.gf119.page = GF119_DMA_V0_PAGE_LP; args.gf119.kind = kind; argc += sizeof(args.gf119); } ret = nvif_object_init(&dmac->base.user, handle, NV_DMA_IN_MEMORY, &args, argc, &ctxdma->object); if (ret) { nv50_dmac_ctxdma_del(ctxdma); return ERR_PTR(ret); } return ctxdma; } static void nv50_dmac_destroy(struct nv50_dmac *dmac, struct nvif_object *disp) { struct nvif_device *device = dmac->base.device; struct nv50_dmac_ctxdma *ctxdma, *ctxtmp; list_for_each_entry_safe(ctxdma, ctxtmp, &dmac->ctxdma, head) { nv50_dmac_ctxdma_del(ctxdma); } nvif_object_fini(&dmac->vram); nvif_object_fini(&dmac->sync); nv50_chan_destroy(&dmac->base); if (dmac->ptr) { struct device *dev = nvxx_device(device)->dev; dma_free_coherent(dev, PAGE_SIZE, dmac->ptr, dmac->handle); } } static int nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp, const s32 *oclass, u8 head, void *data, u32 size, u64 syncbuf, struct nv50_dmac *dmac) { struct nv50_disp_core_channel_dma_v0 *args = data; struct nvif_object pushbuf; int ret; mutex_init(&dmac->lock); dmac->ptr = dma_alloc_coherent(nvxx_device(device)->dev, PAGE_SIZE, &dmac->handle, GFP_KERNEL); if (!dmac->ptr) return -ENOMEM; ret = nvif_object_init(&device->object, 0, NV_DMA_FROM_MEMORY, &(struct nv_dma_v0) { .target = NV_DMA_V0_TARGET_PCI_US, .access = NV_DMA_V0_ACCESS_RD, .start = dmac->handle + 0x0000, .limit = dmac->handle + 0x0fff, }, sizeof(struct nv_dma_v0), &pushbuf); if (ret) return ret; args->pushbuf = nvif_handle(&pushbuf); ret = nv50_chan_create(device, disp, oclass, head, data, size, &dmac->base); nvif_object_fini(&pushbuf); if (ret) return ret; ret = nvif_object_init(&dmac->base.user, 0xf0000000, NV_DMA_IN_MEMORY, &(struct nv_dma_v0) { .target = NV_DMA_V0_TARGET_VRAM, .access = NV_DMA_V0_ACCESS_RDWR, .start = syncbuf + 0x0000, .limit = syncbuf + 0x0fff, }, sizeof(struct nv_dma_v0), &dmac->sync); if (ret) return ret; ret = nvif_object_init(&dmac->base.user, 0xf0000001, NV_DMA_IN_MEMORY, &(struct nv_dma_v0) { .target = NV_DMA_V0_TARGET_VRAM, .access = NV_DMA_V0_ACCESS_RDWR, .start = 0, .limit = device->info.ram_user - 1, }, sizeof(struct nv_dma_v0), &dmac->vram); if (ret) return ret; INIT_LIST_HEAD(&dmac->ctxdma); return ret; } /****************************************************************************** * Core *****************************************************************************/ struct nv50_mast { struct nv50_dmac base; }; static int nv50_core_create(struct nvif_device *device, struct nvif_object *disp, u64 syncbuf, struct nv50_mast *core) { struct nv50_disp_core_channel_dma_v0 args = { .pushbuf = 0xb0007d00, }; static const s32 oclass[] = { GP104_DISP_CORE_CHANNEL_DMA, GP100_DISP_CORE_CHANNEL_DMA, GM200_DISP_CORE_CHANNEL_DMA, GM107_DISP_CORE_CHANNEL_DMA, GK110_DISP_CORE_CHANNEL_DMA, GK104_DISP_CORE_CHANNEL_DMA, GF110_DISP_CORE_CHANNEL_DMA, GT214_DISP_CORE_CHANNEL_DMA, GT206_DISP_CORE_CHANNEL_DMA, GT200_DISP_CORE_CHANNEL_DMA, G82_DISP_CORE_CHANNEL_DMA, NV50_DISP_CORE_CHANNEL_DMA, 0 }; return nv50_dmac_create(device, disp, oclass, 0, &args, sizeof(args), syncbuf, &core->base); } /****************************************************************************** * Base *****************************************************************************/ struct nv50_sync { struct nv50_dmac base; u32 addr; u32 data; }; static int nv50_base_create(struct nvif_device *device, struct nvif_object *disp, int head, u64 syncbuf, struct nv50_sync *base) { struct nv50_disp_base_channel_dma_v0 args = { .pushbuf = 0xb0007c00 | head, .head = head, }; static const s32 oclass[] = { GK110_DISP_BASE_CHANNEL_DMA, GK104_DISP_BASE_CHANNEL_DMA, GF110_DISP_BASE_CHANNEL_DMA, GT214_DISP_BASE_CHANNEL_DMA, GT200_DISP_BASE_CHANNEL_DMA, G82_DISP_BASE_CHANNEL_DMA, NV50_DISP_BASE_CHANNEL_DMA, 0 }; return nv50_dmac_create(device, disp, oclass, head, &args, sizeof(args), syncbuf, &base->base); } /****************************************************************************** * Overlay *****************************************************************************/ struct nv50_ovly { struct nv50_dmac base; }; static int nv50_ovly_create(struct nvif_device *device, struct nvif_object *disp, int head, u64 syncbuf, struct nv50_ovly *ovly) { struct nv50_disp_overlay_channel_dma_v0 args = { .pushbuf = 0xb0007e00 | head, .head = head, }; static const s32 oclass[] = { GK104_DISP_OVERLAY_CONTROL_DMA, GF110_DISP_OVERLAY_CONTROL_DMA, GT214_DISP_OVERLAY_CHANNEL_DMA, GT200_DISP_OVERLAY_CHANNEL_DMA, G82_DISP_OVERLAY_CHANNEL_DMA, NV50_DISP_OVERLAY_CHANNEL_DMA, 0 }; return nv50_dmac_create(device, disp, oclass, head, &args, sizeof(args), syncbuf, &ovly->base); } struct nv50_head { struct nouveau_crtc base; struct nv50_ovly ovly; struct nv50_oimm oimm; }; #define nv50_head(c) ((struct nv50_head *)nouveau_crtc(c)) #define nv50_ovly(c) (&nv50_head(c)->ovly) #define nv50_oimm(c) (&nv50_head(c)->oimm) #define nv50_chan(c) (&(c)->base.base) #define nv50_vers(c) nv50_chan(c)->user.oclass struct nv50_disp { struct nvif_object *disp; struct nv50_mast mast; struct nouveau_bo *sync; struct mutex mutex; }; static struct nv50_disp * nv50_disp(struct drm_device *dev) { return nouveau_display(dev)->priv; } #define nv50_mast(d) (&nv50_disp(d)->mast) /****************************************************************************** * EVO channel helpers *****************************************************************************/ static u32 * evo_wait(void *evoc, int nr) { struct nv50_dmac *dmac = evoc; struct nvif_device *device = dmac->base.device; u32 put = nvif_rd32(&dmac->base.user, 0x0000) / 4; mutex_lock(&dmac->lock); if (put + nr >= (PAGE_SIZE / 4) - 8) { dmac->ptr[put] = 0x20000000; nvif_wr32(&dmac->base.user, 0x0000, 0x00000000); if (nvif_msec(device, 2000, if (!nvif_rd32(&dmac->base.user, 0x0004)) break; ) < 0) { mutex_unlock(&dmac->lock); printk(KERN_ERR "nouveau: evo channel stalled\n"); return NULL; } put = 0; } return dmac->ptr + put; } static void evo_kick(u32 *push, void *evoc) { struct nv50_dmac *dmac = evoc; nvif_wr32(&dmac->base.user, 0x0000, (push - dmac->ptr) << 2); mutex_unlock(&dmac->lock); } #define evo_mthd(p,m,s) do { \ const u32 _m = (m), _s = (s); \ if (drm_debug & DRM_UT_KMS) \ printk(KERN_ERR "%04x %d %s\n", _m, _s, __func__); \ *((p)++) = ((_s << 18) | _m); \ } while(0) #define evo_data(p,d) do { \ const u32 _d = (d); \ if (drm_debug & DRM_UT_KMS) \ printk(KERN_ERR "\t%08x\n", _d); \ *((p)++) = _d; \ } while(0) /****************************************************************************** * Plane *****************************************************************************/ #define nv50_wndw(p) container_of((p), struct nv50_wndw, plane) struct nv50_wndw { const struct nv50_wndw_func *func; struct nv50_dmac *dmac; struct drm_plane plane; struct nvif_notify notify; u16 ntfy; u16 sema; u32 data; }; struct nv50_wndw_func { void *(*dtor)(struct nv50_wndw *); int (*acquire)(struct nv50_wndw *, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh); void (*release)(struct nv50_wndw *, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh); void (*prepare)(struct nv50_wndw *, struct nv50_head_atom *asyh, struct nv50_wndw_atom *asyw); void (*sema_set)(struct nv50_wndw *, struct nv50_wndw_atom *); void (*sema_clr)(struct nv50_wndw *); void (*ntfy_set)(struct nv50_wndw *, struct nv50_wndw_atom *); void (*ntfy_clr)(struct nv50_wndw *); int (*ntfy_wait_begun)(struct nv50_wndw *, struct nv50_wndw_atom *); void (*image_set)(struct nv50_wndw *, struct nv50_wndw_atom *); void (*image_clr)(struct nv50_wndw *); void (*lut)(struct nv50_wndw *, struct nv50_wndw_atom *); void (*point)(struct nv50_wndw *, struct nv50_wndw_atom *); u32 (*update)(struct nv50_wndw *, u32 interlock); }; static int nv50_wndw_wait_armed(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { if (asyw->set.ntfy) return wndw->func->ntfy_wait_begun(wndw, asyw); return 0; } static u32 nv50_wndw_flush_clr(struct nv50_wndw *wndw, u32 interlock, bool flush, struct nv50_wndw_atom *asyw) { if (asyw->clr.sema && (!asyw->set.sema || flush)) wndw->func->sema_clr(wndw); if (asyw->clr.ntfy && (!asyw->set.ntfy || flush)) wndw->func->ntfy_clr(wndw); if (asyw->clr.image && (!asyw->set.image || flush)) wndw->func->image_clr(wndw); return flush ? wndw->func->update(wndw, interlock) : 0; } static u32 nv50_wndw_flush_set(struct nv50_wndw *wndw, u32 interlock, struct nv50_wndw_atom *asyw) { if (interlock) { asyw->image.mode = 0; asyw->image.interval = 1; } if (asyw->set.sema ) wndw->func->sema_set (wndw, asyw); if (asyw->set.ntfy ) wndw->func->ntfy_set (wndw, asyw); if (asyw->set.image) wndw->func->image_set(wndw, asyw); if (asyw->set.lut ) wndw->func->lut (wndw, asyw); if (asyw->set.point) wndw->func->point (wndw, asyw); return wndw->func->update(wndw, interlock); } static void nv50_wndw_atomic_check_release(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { struct nouveau_drm *drm = nouveau_drm(wndw->plane.dev); NV_ATOMIC(drm, "%s release\n", wndw->plane.name); wndw->func->release(wndw, asyw, asyh); asyw->ntfy.handle = 0; asyw->sema.handle = 0; } static int nv50_wndw_atomic_check_acquire(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { struct nouveau_framebuffer *fb = nouveau_framebuffer(asyw->state.fb); struct nouveau_drm *drm = nouveau_drm(wndw->plane.dev); int ret; NV_ATOMIC(drm, "%s acquire\n", wndw->plane.name); asyw->clip.x1 = 0; asyw->clip.y1 = 0; asyw->clip.x2 = asyh->state.mode.hdisplay; asyw->clip.y2 = asyh->state.mode.vdisplay; asyw->image.w = fb->base.width; asyw->image.h = fb->base.height; asyw->image.kind = (fb->nvbo->tile_flags & 0x0000ff00) >> 8; if (asyw->image.kind) { asyw->image.layout = 0; if (drm->device.info.chipset >= 0xc0) asyw->image.block = fb->nvbo->tile_mode >> 4; else asyw->image.block = fb->nvbo->tile_mode; asyw->image.pitch = (fb->base.pitches[0] / 4) << 4; } else { asyw->image.layout = 1; asyw->image.block = 0; asyw->image.pitch = fb->base.pitches[0]; } ret = wndw->func->acquire(wndw, asyw, asyh); if (ret) return ret; if (asyw->set.image) { if (!(asyw->image.mode = asyw->interval ? 0 : 1)) asyw->image.interval = asyw->interval; else asyw->image.interval = 0; } return 0; } static int nv50_wndw_atomic_check(struct drm_plane *plane, struct drm_plane_state *state) { struct nouveau_drm *drm = nouveau_drm(plane->dev); struct nv50_wndw *wndw = nv50_wndw(plane); struct nv50_wndw_atom *armw = nv50_wndw_atom(wndw->plane.state); struct nv50_wndw_atom *asyw = nv50_wndw_atom(state); struct nv50_head_atom *harm = NULL, *asyh = NULL; bool varm = false, asyv = false, asym = false; int ret; NV_ATOMIC(drm, "%s atomic_check\n", plane->name); if (asyw->state.crtc) { asyh = nv50_head_atom_get(asyw->state.state, asyw->state.crtc); if (IS_ERR(asyh)) return PTR_ERR(asyh); asym = drm_atomic_crtc_needs_modeset(&asyh->state); asyv = asyh->state.active; } if (armw->state.crtc) { harm = nv50_head_atom_get(asyw->state.state, armw->state.crtc); if (IS_ERR(harm)) return PTR_ERR(harm); varm = harm->state.crtc->state->active; } if (asyv) { asyw->point.x = asyw->state.crtc_x; asyw->point.y = asyw->state.crtc_y; if (memcmp(&armw->point, &asyw->point, sizeof(asyw->point))) asyw->set.point = true; if (!varm || asym || armw->state.fb != asyw->state.fb) { ret = nv50_wndw_atomic_check_acquire(wndw, asyw, asyh); if (ret) return ret; } } else if (varm) { nv50_wndw_atomic_check_release(wndw, asyw, harm); } else { return 0; } if (!asyv || asym) { asyw->clr.ntfy = armw->ntfy.handle != 0; asyw->clr.sema = armw->sema.handle != 0; if (wndw->func->image_clr) asyw->clr.image = armw->image.handle != 0; asyw->set.lut = wndw->func->lut && asyv; } return 0; } static void nv50_wndw_cleanup_fb(struct drm_plane *plane, struct drm_plane_state *old_state) { struct nouveau_framebuffer *fb = nouveau_framebuffer(old_state->fb); struct nouveau_drm *drm = nouveau_drm(plane->dev); NV_ATOMIC(drm, "%s cleanup: %p\n", plane->name, old_state->fb); if (!old_state->fb) return; nouveau_bo_unpin(fb->nvbo); } static int nv50_wndw_prepare_fb(struct drm_plane *plane, struct drm_plane_state *state) { struct nouveau_framebuffer *fb = nouveau_framebuffer(state->fb); struct nouveau_drm *drm = nouveau_drm(plane->dev); struct nv50_wndw *wndw = nv50_wndw(plane); struct nv50_wndw_atom *asyw = nv50_wndw_atom(state); struct nv50_head_atom *asyh; struct nv50_dmac_ctxdma *ctxdma; int ret; NV_ATOMIC(drm, "%s prepare: %p\n", plane->name, state->fb); if (!asyw->state.fb) return 0; ret = nouveau_bo_pin(fb->nvbo, TTM_PL_FLAG_VRAM, true); if (ret) return ret; ctxdma = nv50_dmac_ctxdma_new(wndw->dmac, fb); if (IS_ERR(ctxdma)) { nouveau_bo_unpin(fb->nvbo); return PTR_ERR(ctxdma); } asyw->state.fence = reservation_object_get_excl_rcu(fb->nvbo->bo.resv); asyw->image.handle = ctxdma->object.handle; asyw->image.offset = fb->nvbo->bo.offset; if (wndw->func->prepare) { asyh = nv50_head_atom_get(asyw->state.state, asyw->state.crtc); if (IS_ERR(asyh)) return PTR_ERR(asyh); wndw->func->prepare(wndw, asyh, asyw); } return 0; } static const struct drm_plane_helper_funcs nv50_wndw_helper = { .prepare_fb = nv50_wndw_prepare_fb, .cleanup_fb = nv50_wndw_cleanup_fb, .atomic_check = nv50_wndw_atomic_check, }; static void nv50_wndw_atomic_destroy_state(struct drm_plane *plane, struct drm_plane_state *state) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(state); __drm_atomic_helper_plane_destroy_state(&asyw->state); dma_fence_put(asyw->state.fence); kfree(asyw); } static struct drm_plane_state * nv50_wndw_atomic_duplicate_state(struct drm_plane *plane) { struct nv50_wndw_atom *armw = nv50_wndw_atom(plane->state); struct nv50_wndw_atom *asyw; if (!(asyw = kmalloc(sizeof(*asyw), GFP_KERNEL))) return NULL; __drm_atomic_helper_plane_duplicate_state(plane, &asyw->state); asyw->state.fence = NULL; asyw->interval = 1; asyw->sema = armw->sema; asyw->ntfy = armw->ntfy; asyw->image = armw->image; asyw->point = armw->point; asyw->lut = armw->lut; asyw->clr.mask = 0; asyw->set.mask = 0; return &asyw->state; } static void nv50_wndw_reset(struct drm_plane *plane) { struct nv50_wndw_atom *asyw; if (WARN_ON(!(asyw = kzalloc(sizeof(*asyw), GFP_KERNEL)))) return; if (plane->state) plane->funcs->atomic_destroy_state(plane, plane->state); plane->state = &asyw->state; plane->state->plane = plane; plane->state->rotation = DRM_ROTATE_0; } static void nv50_wndw_destroy(struct drm_plane *plane) { struct nv50_wndw *wndw = nv50_wndw(plane); void *data; nvif_notify_fini(&wndw->notify); data = wndw->func->dtor(wndw); drm_plane_cleanup(&wndw->plane); kfree(data); } static const struct drm_plane_funcs nv50_wndw = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = nv50_wndw_destroy, .reset = nv50_wndw_reset, .set_property = drm_atomic_helper_plane_set_property, .atomic_duplicate_state = nv50_wndw_atomic_duplicate_state, .atomic_destroy_state = nv50_wndw_atomic_destroy_state, }; static void nv50_wndw_fini(struct nv50_wndw *wndw) { nvif_notify_put(&wndw->notify); } static void nv50_wndw_init(struct nv50_wndw *wndw) { nvif_notify_get(&wndw->notify); } static int nv50_wndw_ctor(const struct nv50_wndw_func *func, struct drm_device *dev, enum drm_plane_type type, const char *name, int index, struct nv50_dmac *dmac, const u32 *format, int nformat, struct nv50_wndw *wndw) { int ret; wndw->func = func; wndw->dmac = dmac; ret = drm_universal_plane_init(dev, &wndw->plane, 0, &nv50_wndw, format, nformat, type, "%s-%d", name, index); if (ret) return ret; drm_plane_helper_add(&wndw->plane, &nv50_wndw_helper); return 0; } /****************************************************************************** * Cursor plane *****************************************************************************/ #define nv50_curs(p) container_of((p), struct nv50_curs, wndw) struct nv50_curs { struct nv50_wndw wndw; struct nvif_object chan; }; static u32 nv50_curs_update(struct nv50_wndw *wndw, u32 interlock) { struct nv50_curs *curs = nv50_curs(wndw); nvif_wr32(&curs->chan, 0x0080, 0x00000000); return 0; } static void nv50_curs_point(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nv50_curs *curs = nv50_curs(wndw); nvif_wr32(&curs->chan, 0x0084, (asyw->point.y << 16) | asyw->point.x); } static void nv50_curs_prepare(struct nv50_wndw *wndw, struct nv50_head_atom *asyh, struct nv50_wndw_atom *asyw) { asyh->curs.handle = nv50_disp(wndw->plane.dev)->mast.base.vram.handle; asyh->curs.offset = asyw->image.offset; asyh->set.curs = asyh->curs.visible; } static void nv50_curs_release(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { asyh->curs.visible = false; } static int nv50_curs_acquire(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { int ret; ret = drm_plane_helper_check_state(&asyw->state, &asyw->clip, DRM_PLANE_HELPER_NO_SCALING, DRM_PLANE_HELPER_NO_SCALING, true, true); asyh->curs.visible = asyw->state.visible; if (ret || !asyh->curs.visible) return ret; switch (asyw->state.fb->width) { case 32: asyh->curs.layout = 0; break; case 64: asyh->curs.layout = 1; break; default: return -EINVAL; } if (asyw->state.fb->width != asyw->state.fb->height) return -EINVAL; switch (asyw->state.fb->pixel_format) { case DRM_FORMAT_ARGB8888: asyh->curs.format = 1; break; default: WARN_ON(1); return -EINVAL; } return 0; } static void * nv50_curs_dtor(struct nv50_wndw *wndw) { struct nv50_curs *curs = nv50_curs(wndw); nvif_object_fini(&curs->chan); return curs; } static const u32 nv50_curs_format[] = { DRM_FORMAT_ARGB8888, }; static const struct nv50_wndw_func nv50_curs = { .dtor = nv50_curs_dtor, .acquire = nv50_curs_acquire, .release = nv50_curs_release, .prepare = nv50_curs_prepare, .point = nv50_curs_point, .update = nv50_curs_update, }; static int nv50_curs_new(struct nouveau_drm *drm, struct nv50_head *head, struct nv50_curs **pcurs) { static const struct nvif_mclass curses[] = { { GK104_DISP_CURSOR, 0 }, { GF110_DISP_CURSOR, 0 }, { GT214_DISP_CURSOR, 0 }, { G82_DISP_CURSOR, 0 }, { NV50_DISP_CURSOR, 0 }, {} }; struct nv50_disp_cursor_v0 args = { .head = head->base.index, }; struct nv50_disp *disp = nv50_disp(drm->dev); struct nv50_curs *curs; int cid, ret; cid = nvif_mclass(disp->disp, curses); if (cid < 0) { NV_ERROR(drm, "No supported cursor immediate class\n"); return cid; } if (!(curs = *pcurs = kzalloc(sizeof(*curs), GFP_KERNEL))) return -ENOMEM; ret = nv50_wndw_ctor(&nv50_curs, drm->dev, DRM_PLANE_TYPE_CURSOR, "curs", head->base.index, &disp->mast.base, nv50_curs_format, ARRAY_SIZE(nv50_curs_format), &curs->wndw); if (ret) { kfree(curs); return ret; } ret = nvif_object_init(disp->disp, 0, curses[cid].oclass, &args, sizeof(args), &curs->chan); if (ret) { NV_ERROR(drm, "curs%04x allocation failed: %d\n", curses[cid].oclass, ret); return ret; } return 0; } /****************************************************************************** * Primary plane *****************************************************************************/ #define nv50_base(p) container_of((p), struct nv50_base, wndw) struct nv50_base { struct nv50_wndw wndw; struct nv50_sync chan; int id; }; static int nv50_base_notify(struct nvif_notify *notify) { return NVIF_NOTIFY_KEEP; } static void nv50_base_lut(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nv50_base *base = nv50_base(wndw); u32 *push; if ((push = evo_wait(&base->chan, 2))) { evo_mthd(push, 0x00e0, 1); evo_data(push, asyw->lut.enable << 30); evo_kick(push, &base->chan); } } static void nv50_base_image_clr(struct nv50_wndw *wndw) { struct nv50_base *base = nv50_base(wndw); u32 *push; if ((push = evo_wait(&base->chan, 4))) { evo_mthd(push, 0x0084, 1); evo_data(push, 0x00000000); evo_mthd(push, 0x00c0, 1); evo_data(push, 0x00000000); evo_kick(push, &base->chan); } } static void nv50_base_image_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nv50_base *base = nv50_base(wndw); const s32 oclass = base->chan.base.base.user.oclass; u32 *push; if ((push = evo_wait(&base->chan, 10))) { evo_mthd(push, 0x0084, 1); evo_data(push, (asyw->image.mode << 8) | (asyw->image.interval << 4)); evo_mthd(push, 0x00c0, 1); evo_data(push, asyw->image.handle); if (oclass < G82_DISP_BASE_CHANNEL_DMA) { evo_mthd(push, 0x0800, 5); evo_data(push, asyw->image.offset >> 8); evo_data(push, 0x00000000); evo_data(push, (asyw->image.h << 16) | asyw->image.w); evo_data(push, (asyw->image.layout << 20) | asyw->image.pitch | asyw->image.block); evo_data(push, (asyw->image.kind << 16) | (asyw->image.format << 8)); } else if (oclass < GF110_DISP_BASE_CHANNEL_DMA) { evo_mthd(push, 0x0800, 5); evo_data(push, asyw->image.offset >> 8); evo_data(push, 0x00000000); evo_data(push, (asyw->image.h << 16) | asyw->image.w); evo_data(push, (asyw->image.layout << 20) | asyw->image.pitch | asyw->image.block); evo_data(push, asyw->image.format << 8); } else { evo_mthd(push, 0x0400, 5); evo_data(push, asyw->image.offset >> 8); evo_data(push, 0x00000000); evo_data(push, (asyw->image.h << 16) | asyw->image.w); evo_data(push, (asyw->image.layout << 24) | asyw->image.pitch | asyw->image.block); evo_data(push, asyw->image.format << 8); } evo_kick(push, &base->chan); } } static void nv50_base_ntfy_clr(struct nv50_wndw *wndw) { struct nv50_base *base = nv50_base(wndw); u32 *push; if ((push = evo_wait(&base->chan, 2))) { evo_mthd(push, 0x00a4, 1); evo_data(push, 0x00000000); evo_kick(push, &base->chan); } } static void nv50_base_ntfy_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nv50_base *base = nv50_base(wndw); u32 *push; if ((push = evo_wait(&base->chan, 3))) { evo_mthd(push, 0x00a0, 2); evo_data(push, (asyw->ntfy.awaken << 30) | asyw->ntfy.offset); evo_data(push, asyw->ntfy.handle); evo_kick(push, &base->chan); } } static void nv50_base_sema_clr(struct nv50_wndw *wndw) { struct nv50_base *base = nv50_base(wndw); u32 *push; if ((push = evo_wait(&base->chan, 2))) { evo_mthd(push, 0x0094, 1); evo_data(push, 0x00000000); evo_kick(push, &base->chan); } } static void nv50_base_sema_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nv50_base *base = nv50_base(wndw); u32 *push; if ((push = evo_wait(&base->chan, 5))) { evo_mthd(push, 0x0088, 4); evo_data(push, asyw->sema.offset); evo_data(push, asyw->sema.acquire); evo_data(push, asyw->sema.release); evo_data(push, asyw->sema.handle); evo_kick(push, &base->chan); } } static u32 nv50_base_update(struct nv50_wndw *wndw, u32 interlock) { struct nv50_base *base = nv50_base(wndw); u32 *push; if (!(push = evo_wait(&base->chan, 2))) return 0; evo_mthd(push, 0x0080, 1); evo_data(push, interlock); evo_kick(push, &base->chan); if (base->chan.base.base.user.oclass < GF110_DISP_BASE_CHANNEL_DMA) return interlock ? 2 << (base->id * 8) : 0; return interlock ? 2 << (base->id * 4) : 0; } static int nv50_base_ntfy_wait_begun(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw) { struct nouveau_drm *drm = nouveau_drm(wndw->plane.dev); struct nv50_disp *disp = nv50_disp(wndw->plane.dev); if (nvif_msec(&drm->device, 2000ULL, u32 data = nouveau_bo_rd32(disp->sync, asyw->ntfy.offset / 4); if ((data & 0xc0000000) == 0x40000000) break; usleep_range(1, 2); ) < 0) return -ETIMEDOUT; return 0; } static void nv50_base_release(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { asyh->base.cpp = 0; } static int nv50_base_acquire(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw, struct nv50_head_atom *asyh) { const u32 format = asyw->state.fb->pixel_format; const struct drm_format_info *info; int ret; info = drm_format_info(format); if (!info || !info->depth) return -EINVAL; ret = drm_plane_helper_check_state(&asyw->state, &asyw->clip, DRM_PLANE_HELPER_NO_SCALING, DRM_PLANE_HELPER_NO_SCALING, false, true); if (ret) return ret; asyh->base.depth = info->depth; asyh->base.cpp = info->cpp[0]; asyh->base.x = asyw->state.src.x1 >> 16; asyh->base.y = asyw->state.src.y1 >> 16; asyh->base.w = asyw->state.fb->width; asyh->base.h = asyw->state.fb->height; switch (format) { case DRM_FORMAT_C8 : asyw->image.format = 0x1e; break; case DRM_FORMAT_RGB565 : asyw->image.format = 0xe8; break; case DRM_FORMAT_XRGB1555 : case DRM_FORMAT_ARGB1555 : asyw->image.format = 0xe9; break; case DRM_FORMAT_XRGB8888 : case DRM_FORMAT_ARGB8888 : asyw->image.format = 0xcf; break; case DRM_FORMAT_XBGR2101010: case DRM_FORMAT_ABGR2101010: asyw->image.format = 0xd1; break; case DRM_FORMAT_XBGR8888 : case DRM_FORMAT_ABGR8888 : asyw->image.format = 0xd5; break; default: WARN_ON(1); return -EINVAL; } asyw->lut.enable = 1; asyw->set.image = true; return 0; } static void * nv50_base_dtor(struct nv50_wndw *wndw) { struct nv50_disp *disp = nv50_disp(wndw->plane.dev); struct nv50_base *base = nv50_base(wndw); nv50_dmac_destroy(&base->chan.base, disp->disp); return base; } static const u32 nv50_base_format[] = { DRM_FORMAT_C8, DRM_FORMAT_RGB565, DRM_FORMAT_XRGB1555, DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB8888, DRM_FORMAT_ARGB8888, DRM_FORMAT_XBGR2101010, DRM_FORMAT_ABGR2101010, DRM_FORMAT_XBGR8888, DRM_FORMAT_ABGR8888, }; static const struct nv50_wndw_func nv50_base = { .dtor = nv50_base_dtor, .acquire = nv50_base_acquire, .release = nv50_base_release, .sema_set = nv50_base_sema_set, .sema_clr = nv50_base_sema_clr, .ntfy_set = nv50_base_ntfy_set, .ntfy_clr = nv50_base_ntfy_clr, .ntfy_wait_begun = nv50_base_ntfy_wait_begun, .image_set = nv50_base_image_set, .image_clr = nv50_base_image_clr, .lut = nv50_base_lut, .update = nv50_base_update, }; static int nv50_base_new(struct nouveau_drm *drm, struct nv50_head *head, struct nv50_base **pbase) { struct nv50_disp *disp = nv50_disp(drm->dev); struct nv50_base *base; int ret; if (!(base = *pbase = kzalloc(sizeof(*base), GFP_KERNEL))) return -ENOMEM; base->id = head->base.index; base->wndw.ntfy = EVO_FLIP_NTFY0(base->id); base->wndw.sema = EVO_FLIP_SEM0(base->id); base->wndw.data = 0x00000000; ret = nv50_wndw_ctor(&nv50_base, drm->dev, DRM_PLANE_TYPE_PRIMARY, "base", base->id, &base->chan.base, nv50_base_format, ARRAY_SIZE(nv50_base_format), &base->wndw); if (ret) { kfree(base); return ret; } ret = nv50_base_create(&drm->device, disp->disp, base->id, disp->sync->bo.offset, &base->chan); if (ret) return ret; return nvif_notify_init(&base->chan.base.base.user, nv50_base_notify, false, NV50_DISP_BASE_CHANNEL_DMA_V0_NTFY_UEVENT, &(struct nvif_notify_uevent_req) {}, sizeof(struct nvif_notify_uevent_req), sizeof(struct nvif_notify_uevent_rep), &base->wndw.notify); } /****************************************************************************** * Head *****************************************************************************/ static void nv50_head_procamp(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base; u32 *push; if ((push = evo_wait(core, 2))) { if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) evo_mthd(push, 0x08a8 + (head->base.index * 0x400), 1); else evo_mthd(push, 0x0498 + (head->base.index * 0x300), 1); evo_data(push, (asyh->procamp.sat.sin << 20) | (asyh->procamp.sat.cos << 8)); evo_kick(push, core); } } static void nv50_head_dither(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base; u32 *push; if ((push = evo_wait(core, 2))) { if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) evo_mthd(push, 0x08a0 + (head->base.index * 0x0400), 1); else if (core->base.user.oclass < GK104_DISP_CORE_CHANNEL_DMA) evo_mthd(push, 0x0490 + (head->base.index * 0x0300), 1); else evo_mthd(push, 0x04a0 + (head->base.index * 0x0300), 1); evo_data(push, (asyh->dither.mode << 3) | (asyh->dither.bits << 1) | asyh->dither.enable); evo_kick(push, core); } } static void nv50_head_ovly(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base; u32 bounds = 0; u32 *push; if (asyh->base.cpp) { switch (asyh->base.cpp) { case 8: bounds |= 0x00000500; break; case 4: bounds |= 0x00000300; break; case 2: bounds |= 0x00000100; break; default: WARN_ON(1); break; } bounds |= 0x00000001; } if ((push = evo_wait(core, 2))) { if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) evo_mthd(push, 0x0904 + head->base.index * 0x400, 1); else evo_mthd(push, 0x04d4 + head->base.index * 0x300, 1); evo_data(push, bounds); evo_kick(push, core); } } static void nv50_head_base(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base; u32 bounds = 0; u32 *push; if (asyh->base.cpp) { switch (asyh->base.cpp) { case 8: bounds |= 0x00000500; break; case 4: bounds |= 0x00000300; break; case 2: bounds |= 0x00000100; break; case 1: bounds |= 0x00000000; break; default: WARN_ON(1); break; } bounds |= 0x00000001; } if ((push = evo_wait(core, 2))) { if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) evo_mthd(push, 0x0900 + head->base.index * 0x400, 1); else evo_mthd(push, 0x04d0 + head->base.index * 0x300, 1); evo_data(push, bounds); evo_kick(push, core); } } static void nv50_head_curs_clr(struct nv50_head *head) { struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base; u32 *push; if ((push = evo_wait(core, 4))) { if (core->base.user.oclass < G82_DISP_CORE_CHANNEL_DMA) { evo_mthd(push, 0x0880 + head->base.index * 0x400, 1); evo_data(push, 0x05000000); } else if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) { evo_mthd(push, 0x0880 + head->base.index * 0x400, 1); evo_data(push, 0x05000000); evo_mthd(push, 0x089c + head->base.index * 0x400, 1); evo_data(push, 0x00000000); } else { evo_mthd(push, 0x0480 + head->base.index * 0x300, 1); evo_data(push, 0x05000000); evo_mthd(push, 0x048c + head->base.index * 0x300, 1); evo_data(push, 0x00000000); } evo_kick(push, core); } } static void nv50_head_curs_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base; u32 *push; if ((push = evo_wait(core, 5))) { if (core->base.user.oclass < G82_DISP_BASE_CHANNEL_DMA) { evo_mthd(push, 0x0880 + head->base.index * 0x400, 2); evo_data(push, 0x80000000 | (asyh->curs.layout << 26) | (asyh->curs.format << 24)); evo_data(push, asyh->curs.offset >> 8); } else if (core->base.user.oclass < GF110_DISP_BASE_CHANNEL_DMA) { evo_mthd(push, 0x0880 + head->base.index * 0x400, 2); evo_data(push, 0x80000000 | (asyh->curs.layout << 26) | (asyh->curs.format << 24)); evo_data(push, asyh->curs.offset >> 8); evo_mthd(push, 0x089c + head->base.index * 0x400, 1); evo_data(push, asyh->curs.handle); } else { evo_mthd(push, 0x0480 + head->base.index * 0x300, 2); evo_data(push, 0x80000000 | (asyh->curs.layout << 26) | (asyh->curs.format << 24)); evo_data(push, asyh->curs.offset >> 8); evo_mthd(push, 0x048c + head->base.index * 0x300, 1); evo_data(push, asyh->curs.handle); } evo_kick(push, core); } } static void nv50_head_core_clr(struct nv50_head *head) { struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base; u32 *push; if ((push = evo_wait(core, 2))) { if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) evo_mthd(push, 0x0874 + head->base.index * 0x400, 1); else evo_mthd(push, 0x0474 + head->base.index * 0x300, 1); evo_data(push, 0x00000000); evo_kick(push, core); } } static void nv50_head_core_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base; u32 *push; if ((push = evo_wait(core, 9))) { if (core->base.user.oclass < G82_DISP_CORE_CHANNEL_DMA) { evo_mthd(push, 0x0860 + head->base.index * 0x400, 1); evo_data(push, asyh->core.offset >> 8); evo_mthd(push, 0x0868 + head->base.index * 0x400, 4); evo_data(push, (asyh->core.h << 16) | asyh->core.w); evo_data(push, asyh->core.layout << 20 | (asyh->core.pitch >> 8) << 8 | asyh->core.block); evo_data(push, asyh->core.kind << 16 | asyh->core.format << 8); evo_data(push, asyh->core.handle); evo_mthd(push, 0x08c0 + head->base.index * 0x400, 1); evo_data(push, (asyh->core.y << 16) | asyh->core.x); } else if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) { evo_mthd(push, 0x0860 + head->base.index * 0x400, 1); evo_data(push, asyh->core.offset >> 8); evo_mthd(push, 0x0868 + head->base.index * 0x400, 4); evo_data(push, (asyh->core.h << 16) | asyh->core.w); evo_data(push, asyh->core.layout << 20 | (asyh->core.pitch >> 8) << 8 | asyh->core.block); evo_data(push, asyh->core.format << 8); evo_data(push, asyh->core.handle); evo_mthd(push, 0x08c0 + head->base.index * 0x400, 1); evo_data(push, (asyh->core.y << 16) | asyh->core.x); } else { evo_mthd(push, 0x0460 + head->base.index * 0x300, 1); evo_data(push, asyh->core.offset >> 8); evo_mthd(push, 0x0468 + head->base.index * 0x300, 4); evo_data(push, (asyh->core.h << 16) | asyh->core.w); evo_data(push, asyh->core.layout << 24 | (asyh->core.pitch >> 8) << 8 | asyh->core.block); evo_data(push, asyh->core.format << 8); evo_data(push, asyh->core.handle); evo_mthd(push, 0x04b0 + head->base.index * 0x300, 1); evo_data(push, (asyh->core.y << 16) | asyh->core.x); } evo_kick(push, core); } } static void nv50_head_lut_clr(struct nv50_head *head) { struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base; u32 *push; if ((push = evo_wait(core, 4))) { if (core->base.user.oclass < G82_DISP_CORE_CHANNEL_DMA) { evo_mthd(push, 0x0840 + (head->base.index * 0x400), 1); evo_data(push, 0x40000000); } else if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) { evo_mthd(push, 0x0840 + (head->base.index * 0x400), 1); evo_data(push, 0x40000000); evo_mthd(push, 0x085c + (head->base.index * 0x400), 1); evo_data(push, 0x00000000); } else { evo_mthd(push, 0x0440 + (head->base.index * 0x300), 1); evo_data(push, 0x03000000); evo_mthd(push, 0x045c + (head->base.index * 0x300), 1); evo_data(push, 0x00000000); } evo_kick(push, core); } } static void nv50_head_lut_set(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base; u32 *push; if ((push = evo_wait(core, 7))) { if (core->base.user.oclass < G82_DISP_CORE_CHANNEL_DMA) { evo_mthd(push, 0x0840 + (head->base.index * 0x400), 2); evo_data(push, 0xc0000000); evo_data(push, asyh->lut.offset >> 8); } else if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) { evo_mthd(push, 0x0840 + (head->base.index * 0x400), 2); evo_data(push, 0xc0000000); evo_data(push, asyh->lut.offset >> 8); evo_mthd(push, 0x085c + (head->base.index * 0x400), 1); evo_data(push, asyh->lut.handle); } else { evo_mthd(push, 0x0440 + (head->base.index * 0x300), 4); evo_data(push, 0x83000000); evo_data(push, asyh->lut.offset >> 8); evo_data(push, 0x00000000); evo_data(push, 0x00000000); evo_mthd(push, 0x045c + (head->base.index * 0x300), 1); evo_data(push, asyh->lut.handle); } evo_kick(push, core); } } static void nv50_head_mode(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base; struct nv50_head_mode *m = &asyh->mode; u32 *push; if ((push = evo_wait(core, 14))) { if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) { evo_mthd(push, 0x0804 + (head->base.index * 0x400), 2); evo_data(push, 0x00800000 | m->clock); evo_data(push, m->interlace ? 0x00000002 : 0x00000000); evo_mthd(push, 0x0810 + (head->base.index * 0x400), 7); evo_data(push, 0x00000000); evo_data(push, (m->v.active << 16) | m->h.active ); evo_data(push, (m->v.synce << 16) | m->h.synce ); evo_data(push, (m->v.blanke << 16) | m->h.blanke ); evo_data(push, (m->v.blanks << 16) | m->h.blanks ); evo_data(push, (m->v.blank2e << 16) | m->v.blank2s); evo_data(push, asyh->mode.v.blankus); evo_mthd(push, 0x082c + (head->base.index * 0x400), 1); evo_data(push, 0x00000000); } else { evo_mthd(push, 0x0410 + (head->base.index * 0x300), 6); evo_data(push, 0x00000000); evo_data(push, (m->v.active << 16) | m->h.active ); evo_data(push, (m->v.synce << 16) | m->h.synce ); evo_data(push, (m->v.blanke << 16) | m->h.blanke ); evo_data(push, (m->v.blanks << 16) | m->h.blanks ); evo_data(push, (m->v.blank2e << 16) | m->v.blank2s); evo_mthd(push, 0x042c + (head->base.index * 0x300), 2); evo_data(push, 0x00000000); /* ??? */ evo_data(push, 0xffffff00); evo_mthd(push, 0x0450 + (head->base.index * 0x300), 3); evo_data(push, m->clock * 1000); evo_data(push, 0x00200000); /* ??? */ evo_data(push, m->clock * 1000); } evo_kick(push, core); } } static void nv50_head_view(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base; u32 *push; if ((push = evo_wait(core, 10))) { if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) { evo_mthd(push, 0x08a4 + (head->base.index * 0x400), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x08c8 + (head->base.index * 0x400), 1); evo_data(push, (asyh->view.iH << 16) | asyh->view.iW); evo_mthd(push, 0x08d8 + (head->base.index * 0x400), 2); evo_data(push, (asyh->view.oH << 16) | asyh->view.oW); evo_data(push, (asyh->view.oH << 16) | asyh->view.oW); } else { evo_mthd(push, 0x0494 + (head->base.index * 0x300), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x04b8 + (head->base.index * 0x300), 1); evo_data(push, (asyh->view.iH << 16) | asyh->view.iW); evo_mthd(push, 0x04c0 + (head->base.index * 0x300), 3); evo_data(push, (asyh->view.oH << 16) | asyh->view.oW); evo_data(push, (asyh->view.oH << 16) | asyh->view.oW); evo_data(push, (asyh->view.oH << 16) | asyh->view.oW); } evo_kick(push, core); } } static void nv50_head_flush_clr(struct nv50_head *head, struct nv50_head_atom *asyh, bool y) { if (asyh->clr.core && (!asyh->set.core || y)) nv50_head_lut_clr(head); if (asyh->clr.core && (!asyh->set.core || y)) nv50_head_core_clr(head); if (asyh->clr.curs && (!asyh->set.curs || y)) nv50_head_curs_clr(head); } static void nv50_head_flush_set(struct nv50_head *head, struct nv50_head_atom *asyh) { if (asyh->set.view ) nv50_head_view (head, asyh); if (asyh->set.mode ) nv50_head_mode (head, asyh); if (asyh->set.core ) nv50_head_lut_set (head, asyh); if (asyh->set.core ) nv50_head_core_set(head, asyh); if (asyh->set.curs ) nv50_head_curs_set(head, asyh); if (asyh->set.base ) nv50_head_base (head, asyh); if (asyh->set.ovly ) nv50_head_ovly (head, asyh); if (asyh->set.dither ) nv50_head_dither (head, asyh); if (asyh->set.procamp) nv50_head_procamp (head, asyh); } static void nv50_head_atomic_check_procamp(struct nv50_head_atom *armh, struct nv50_head_atom *asyh, struct nouveau_conn_atom *asyc) { const int vib = asyc->procamp.color_vibrance - 100; const int hue = asyc->procamp.vibrant_hue - 90; const int adj = (vib > 0) ? 50 : 0; asyh->procamp.sat.cos = ((vib * 2047 + adj) / 100) & 0xfff; asyh->procamp.sat.sin = ((hue * 2047) / 100) & 0xfff; asyh->set.procamp = true; } static void nv50_head_atomic_check_dither(struct nv50_head_atom *armh, struct nv50_head_atom *asyh, struct nouveau_conn_atom *asyc) { struct drm_connector *connector = asyc->state.connector; u32 mode = 0x00; if (asyc->dither.mode == DITHERING_MODE_AUTO) { if (asyh->base.depth > connector->display_info.bpc * 3) mode = DITHERING_MODE_DYNAMIC2X2; } else { mode = asyc->dither.mode; } if (asyc->dither.depth == DITHERING_DEPTH_AUTO) { if (connector->display_info.bpc >= 8) mode |= DITHERING_DEPTH_8BPC; } else { mode |= asyc->dither.depth; } asyh->dither.enable = mode; asyh->dither.bits = mode >> 1; asyh->dither.mode = mode >> 3; asyh->set.dither = true; } static void nv50_head_atomic_check_view(struct nv50_head_atom *armh, struct nv50_head_atom *asyh, struct nouveau_conn_atom *asyc) { struct drm_connector *connector = asyc->state.connector; struct drm_display_mode *omode = &asyh->state.adjusted_mode; struct drm_display_mode *umode = &asyh->state.mode; int mode = asyc->scaler.mode; struct edid *edid; if (connector->edid_blob_ptr) edid = (struct edid *)connector->edid_blob_ptr->data; else edid = NULL; if (!asyc->scaler.full) { if (mode == DRM_MODE_SCALE_NONE) omode = umode; } else { /* Non-EDID LVDS/eDP mode. */ mode = DRM_MODE_SCALE_FULLSCREEN; } asyh->view.iW = umode->hdisplay; asyh->view.iH = umode->vdisplay; asyh->view.oW = omode->hdisplay; asyh->view.oH = omode->vdisplay; if (omode->flags & DRM_MODE_FLAG_DBLSCAN) asyh->view.oH *= 2; /* Add overscan compensation if necessary, will keep the aspect * ratio the same as the backend mode unless overridden by the * user setting both hborder and vborder properties. */ if ((asyc->scaler.underscan.mode == UNDERSCAN_ON || (asyc->scaler.underscan.mode == UNDERSCAN_AUTO && drm_detect_hdmi_monitor(edid)))) { u32 bX = asyc->scaler.underscan.hborder; u32 bY = asyc->scaler.underscan.vborder; u32 r = (asyh->view.oH << 19) / asyh->view.oW; if (bX) { asyh->view.oW -= (bX * 2); if (bY) asyh->view.oH -= (bY * 2); else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; } else { asyh->view.oW -= (asyh->view.oW >> 4) + 32; if (bY) asyh->view.oH -= (bY * 2); else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; } } /* Handle CENTER/ASPECT scaling, taking into account the areas * removed already for overscan compensation. */ switch (mode) { case DRM_MODE_SCALE_CENTER: asyh->view.oW = min((u16)umode->hdisplay, asyh->view.oW); asyh->view.oH = min((u16)umode->vdisplay, asyh->view.oH); /* fall-through */ case DRM_MODE_SCALE_ASPECT: if (asyh->view.oH < asyh->view.oW) { u32 r = (asyh->view.iW << 19) / asyh->view.iH; asyh->view.oW = ((asyh->view.oH * r) + (r / 2)) >> 19; } else { u32 r = (asyh->view.iH << 19) / asyh->view.iW; asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; } break; default: break; } asyh->set.view = true; } static void nv50_head_atomic_check_mode(struct nv50_head *head, struct nv50_head_atom *asyh) { struct drm_display_mode *mode = &asyh->state.adjusted_mode; u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1; u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1; u32 hbackp = mode->htotal - mode->hsync_end; u32 vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace; u32 hfrontp = mode->hsync_start - mode->hdisplay; u32 vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace; struct nv50_head_mode *m = &asyh->mode; m->h.active = mode->htotal; m->h.synce = mode->hsync_end - mode->hsync_start - 1; m->h.blanke = m->h.synce + hbackp; m->h.blanks = mode->htotal - hfrontp - 1; m->v.active = mode->vtotal * vscan / ilace; m->v.synce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1; m->v.blanke = m->v.synce + vbackp; m->v.blanks = m->v.active - vfrontp - 1; /*XXX: Safe underestimate, even "0" works */ m->v.blankus = (m->v.active - mode->vdisplay - 2) * m->h.active; m->v.blankus *= 1000; m->v.blankus /= mode->clock; if (mode->flags & DRM_MODE_FLAG_INTERLACE) { m->v.blank2e = m->v.active + m->v.synce + vbackp; m->v.blank2s = m->v.blank2e + (mode->vdisplay * vscan / ilace); m->v.active = (m->v.active * 2) + 1; m->interlace = true; } else { m->v.blank2e = 0; m->v.blank2s = 1; m->interlace = false; } m->clock = mode->clock; drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V); asyh->set.mode = true; } static int nv50_head_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct nouveau_drm *drm = nouveau_drm(crtc->dev); struct nv50_disp *disp = nv50_disp(crtc->dev); struct nv50_head *head = nv50_head(crtc); struct nv50_head_atom *armh = nv50_head_atom(crtc->state); struct nv50_head_atom *asyh = nv50_head_atom(state); struct nouveau_conn_atom *asyc = NULL; struct drm_connector_state *conns; struct drm_connector *conn; int i; NV_ATOMIC(drm, "%s atomic_check %d\n", crtc->name, asyh->state.active); if (asyh->state.active) { for_each_connector_in_state(asyh->state.state, conn, conns, i) { if (conns->crtc == crtc) { asyc = nouveau_conn_atom(conns); break; } } if (armh->state.active) { if (asyc) { if (asyh->state.mode_changed) asyc->set.scaler = true; if (armh->base.depth != asyh->base.depth) asyc->set.dither = true; } } else { asyc->set.mask = ~0; asyh->set.mask = ~0; } if (asyh->state.mode_changed) nv50_head_atomic_check_mode(head, asyh); if (asyc) { if (asyc->set.scaler) nv50_head_atomic_check_view(armh, asyh, asyc); if (asyc->set.dither) nv50_head_atomic_check_dither(armh, asyh, asyc); if (asyc->set.procamp) nv50_head_atomic_check_procamp(armh, asyh, asyc); } if ((asyh->core.visible = (asyh->base.cpp != 0))) { asyh->core.x = asyh->base.x; asyh->core.y = asyh->base.y; asyh->core.w = asyh->base.w; asyh->core.h = asyh->base.h; } else if ((asyh->core.visible = asyh->curs.visible)) { /*XXX: We need to either find some way of having the * primary base layer appear black, while still * being able to display the other layers, or we * need to allocate a dummy black surface here. */ asyh->core.x = 0; asyh->core.y = 0; asyh->core.w = asyh->state.mode.hdisplay; asyh->core.h = asyh->state.mode.vdisplay; } asyh->core.handle = disp->mast.base.vram.handle; asyh->core.offset = 0; asyh->core.format = 0xcf; asyh->core.kind = 0; asyh->core.layout = 1; asyh->core.block = 0; asyh->core.pitch = ALIGN(asyh->core.w, 64) * 4; asyh->lut.handle = disp->mast.base.vram.handle; asyh->lut.offset = head->base.lut.nvbo->bo.offset; asyh->set.base = armh->base.cpp != asyh->base.cpp; asyh->set.ovly = armh->ovly.cpp != asyh->ovly.cpp; } else { asyh->core.visible = false; asyh->curs.visible = false; asyh->base.cpp = 0; asyh->ovly.cpp = 0; } if (!drm_atomic_crtc_needs_modeset(&asyh->state)) { if (asyh->core.visible) { if (memcmp(&armh->core, &asyh->core, sizeof(asyh->core))) asyh->set.core = true; } else if (armh->core.visible) { asyh->clr.core = true; } if (asyh->curs.visible) { if (memcmp(&armh->curs, &asyh->curs, sizeof(asyh->curs))) asyh->set.curs = true; } else if (armh->curs.visible) { asyh->clr.curs = true; } } else { asyh->clr.core = armh->core.visible; asyh->clr.curs = armh->curs.visible; asyh->set.core = asyh->core.visible; asyh->set.curs = asyh->curs.visible; } if (asyh->clr.mask || asyh->set.mask) nv50_atom(asyh->state.state)->lock_core = true; return 0; } static void nv50_head_lut_load(struct drm_crtc *crtc) { struct nv50_disp *disp = nv50_disp(crtc->dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo); int i; for (i = 0; i < 256; i++) { u16 r = nv_crtc->lut.r[i] >> 2; u16 g = nv_crtc->lut.g[i] >> 2; u16 b = nv_crtc->lut.b[i] >> 2; if (disp->disp->oclass < GF110_DISP) { writew(r + 0x0000, lut + (i * 0x08) + 0); writew(g + 0x0000, lut + (i * 0x08) + 2); writew(b + 0x0000, lut + (i * 0x08) + 4); } else { writew(r + 0x6000, lut + (i * 0x20) + 0); writew(g + 0x6000, lut + (i * 0x20) + 2); writew(b + 0x6000, lut + (i * 0x20) + 4); } } } static int nv50_head_mode_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, enum mode_set_atomic state) { WARN_ON(1); return 0; } static const struct drm_crtc_helper_funcs nv50_head_help = { .mode_set_base_atomic = nv50_head_mode_set_base_atomic, .load_lut = nv50_head_lut_load, .atomic_check = nv50_head_atomic_check, }; /* This is identical to the version in the atomic helpers, except that * it supports non-vblanked ("async") page flips. */ static int nv50_head_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, u32 flags) { struct drm_plane *plane = crtc->primary; struct drm_atomic_state *state; struct drm_plane_state *plane_state; struct drm_crtc_state *crtc_state; int ret = 0; state = drm_atomic_state_alloc(plane->dev); if (!state) return -ENOMEM; state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc); retry: crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); goto fail; } crtc_state->event = event; plane_state = drm_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) { ret = PTR_ERR(plane_state); goto fail; } ret = drm_atomic_set_crtc_for_plane(plane_state, crtc); if (ret != 0) goto fail; drm_atomic_set_fb_for_plane(plane_state, fb); /* Make sure we don't accidentally do a full modeset. */ state->allow_modeset = false; if (!crtc_state->active) { DRM_DEBUG_ATOMIC("[CRTC:%d] disabled, rejecting legacy flip\n", crtc->base.id); ret = -EINVAL; goto fail; } if (flags & DRM_MODE_PAGE_FLIP_ASYNC) nv50_wndw_atom(plane_state)->interval = 0; ret = drm_atomic_nonblocking_commit(state); fail: if (ret == -EDEADLK) goto backoff; drm_atomic_state_put(state); return ret; backoff: drm_atomic_state_clear(state); drm_atomic_legacy_backoff(state); /* * Someone might have exchanged the framebuffer while we dropped locks * in the backoff code. We need to fix up the fb refcount tracking the * core does for us. */ plane->old_fb = plane->fb; goto retry; } static int nv50_head_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, uint32_t size) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); u32 i; for (i = 0; i < size; i++) { nv_crtc->lut.r[i] = r[i]; nv_crtc->lut.g[i] = g[i]; nv_crtc->lut.b[i] = b[i]; } nv50_head_lut_load(crtc); return 0; } static void nv50_head_atomic_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct nv50_head_atom *asyh = nv50_head_atom(state); __drm_atomic_helper_crtc_destroy_state(&asyh->state); kfree(asyh); } static struct drm_crtc_state * nv50_head_atomic_duplicate_state(struct drm_crtc *crtc) { struct nv50_head_atom *armh = nv50_head_atom(crtc->state); struct nv50_head_atom *asyh; if (!(asyh = kmalloc(sizeof(*asyh), GFP_KERNEL))) return NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, &asyh->state); asyh->view = armh->view; asyh->mode = armh->mode; asyh->lut = armh->lut; asyh->core = armh->core; asyh->curs = armh->curs; asyh->base = armh->base; asyh->ovly = armh->ovly; asyh->dither = armh->dither; asyh->procamp = armh->procamp; asyh->clr.mask = 0; asyh->set.mask = 0; return &asyh->state; } static void __drm_atomic_helper_crtc_reset(struct drm_crtc *crtc, struct drm_crtc_state *state) { if (crtc->state) crtc->funcs->atomic_destroy_state(crtc, crtc->state); crtc->state = state; crtc->state->crtc = crtc; } static void nv50_head_reset(struct drm_crtc *crtc) { struct nv50_head_atom *asyh; if (WARN_ON(!(asyh = kzalloc(sizeof(*asyh), GFP_KERNEL)))) return; __drm_atomic_helper_crtc_reset(crtc, &asyh->state); } static void nv50_head_destroy(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nv50_disp *disp = nv50_disp(crtc->dev); struct nv50_head *head = nv50_head(crtc); nv50_dmac_destroy(&head->ovly.base, disp->disp); nv50_pioc_destroy(&head->oimm.base); nouveau_bo_unmap(nv_crtc->lut.nvbo); if (nv_crtc->lut.nvbo) nouveau_bo_unpin(nv_crtc->lut.nvbo); nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo); drm_crtc_cleanup(crtc); kfree(crtc); } static const struct drm_crtc_funcs nv50_head_func = { .reset = nv50_head_reset, .gamma_set = nv50_head_gamma_set, .destroy = nv50_head_destroy, .set_config = drm_atomic_helper_set_config, .page_flip = nv50_head_page_flip, .set_property = drm_atomic_helper_crtc_set_property, .atomic_duplicate_state = nv50_head_atomic_duplicate_state, .atomic_destroy_state = nv50_head_atomic_destroy_state, }; static int nv50_head_create(struct drm_device *dev, int index) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvif_device *device = &drm->device; struct nv50_disp *disp = nv50_disp(dev); struct nv50_head *head; struct nv50_base *base; struct nv50_curs *curs; struct drm_crtc *crtc; int ret, i; head = kzalloc(sizeof(*head), GFP_KERNEL); if (!head) return -ENOMEM; head->base.index = index; for (i = 0; i < 256; i++) { head->base.lut.r[i] = i << 8; head->base.lut.g[i] = i << 8; head->base.lut.b[i] = i << 8; } ret = nv50_base_new(drm, head, &base); if (ret == 0) ret = nv50_curs_new(drm, head, &curs); if (ret) { kfree(head); return ret; } crtc = &head->base.base; drm_crtc_init_with_planes(dev, crtc, &base->wndw.plane, &curs->wndw.plane, &nv50_head_func, "head-%d", head->base.index); drm_crtc_helper_add(crtc, &nv50_head_help); drm_mode_crtc_set_gamma_size(crtc, 256); ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, NULL, &head->base.lut.nvbo); if (!ret) { ret = nouveau_bo_pin(head->base.lut.nvbo, TTM_PL_FLAG_VRAM, true); if (!ret) { ret = nouveau_bo_map(head->base.lut.nvbo); if (ret) nouveau_bo_unpin(head->base.lut.nvbo); } if (ret) nouveau_bo_ref(NULL, &head->base.lut.nvbo); } if (ret) goto out; /* allocate overlay resources */ ret = nv50_oimm_create(device, disp->disp, index, &head->oimm); if (ret) goto out; ret = nv50_ovly_create(device, disp->disp, index, disp->sync->bo.offset, &head->ovly); if (ret) goto out; out: if (ret) nv50_head_destroy(crtc); return ret; } /****************************************************************************** * Output path helpers *****************************************************************************/ static int nv50_outp_atomic_check_view(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, struct drm_display_mode *native_mode) { struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; struct drm_display_mode *mode = &crtc_state->mode; struct drm_connector *connector = conn_state->connector; struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); struct nouveau_drm *drm = nouveau_drm(encoder->dev); NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); asyc->scaler.full = false; if (!native_mode) return 0; if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { switch (connector->connector_type) { case DRM_MODE_CONNECTOR_LVDS: case DRM_MODE_CONNECTOR_eDP: /* Force use of scaler for non-EDID modes. */ if (adjusted_mode->type & DRM_MODE_TYPE_DRIVER) break; mode = native_mode; asyc->scaler.full = true; break; default: break; } } else { mode = native_mode; } if (!drm_mode_equal(adjusted_mode, mode)) { drm_mode_copy(adjusted_mode, mode); crtc_state->mode_changed = true; } return 0; } static int nv50_outp_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct nouveau_connector *nv_connector = nouveau_connector(conn_state->connector); return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, nv_connector->native_mode); } /****************************************************************************** * DAC *****************************************************************************/ static void nv50_dac_dpms(struct drm_encoder *encoder, int mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_dac_pwr_v0 pwr; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_DAC_PWR, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = nv_encoder->dcb->hashm, .pwr.state = 1, .pwr.data = 1, .pwr.vsync = (mode != DRM_MODE_DPMS_SUSPEND && mode != DRM_MODE_DPMS_OFF), .pwr.hsync = (mode != DRM_MODE_DPMS_STANDBY && mode != DRM_MODE_DPMS_OFF), }; nvif_mthd(disp->disp, 0, &args, sizeof(args)); } static void nv50_dac_disable(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_mast *mast = nv50_mast(encoder->dev); const int or = nv_encoder->or; u32 *push; if (nv_encoder->crtc) { push = evo_wait(mast, 4); if (push) { if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) { evo_mthd(push, 0x0400 + (or * 0x080), 1); evo_data(push, 0x00000000); } else { evo_mthd(push, 0x0180 + (or * 0x020), 1); evo_data(push, 0x00000000); } evo_kick(push, mast); } } nv_encoder->crtc = NULL; } static void nv50_dac_enable(struct drm_encoder *encoder) { struct nv50_mast *mast = nv50_mast(encoder->dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct drm_display_mode *mode = &nv_crtc->base.state->adjusted_mode; u32 *push; push = evo_wait(mast, 8); if (push) { if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) { u32 syncs = 0x00000000; if (mode->flags & DRM_MODE_FLAG_NHSYNC) syncs |= 0x00000001; if (mode->flags & DRM_MODE_FLAG_NVSYNC) syncs |= 0x00000002; evo_mthd(push, 0x0400 + (nv_encoder->or * 0x080), 2); evo_data(push, 1 << nv_crtc->index); evo_data(push, syncs); } else { u32 magic = 0x31ec6000 | (nv_crtc->index << 25); u32 syncs = 0x00000001; if (mode->flags & DRM_MODE_FLAG_NHSYNC) syncs |= 0x00000008; if (mode->flags & DRM_MODE_FLAG_NVSYNC) syncs |= 0x00000010; if (mode->flags & DRM_MODE_FLAG_INTERLACE) magic |= 0x00000001; evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2); evo_data(push, syncs); evo_data(push, magic); evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 1); evo_data(push, 1 << nv_crtc->index); } evo_kick(push, mast); } nv_encoder->crtc = encoder->crtc; } static enum drm_connector_status nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_dac_load_v0 load; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_DAC_LOAD, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = nv_encoder->dcb->hashm, }; int ret; args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval; if (args.load.data == 0) args.load.data = 340; ret = nvif_mthd(disp->disp, 0, &args, sizeof(args)); if (ret || !args.load.load) return connector_status_disconnected; return connector_status_connected; } static const struct drm_encoder_helper_funcs nv50_dac_help = { .dpms = nv50_dac_dpms, .atomic_check = nv50_outp_atomic_check, .enable = nv50_dac_enable, .disable = nv50_dac_disable, .detect = nv50_dac_detect }; static void nv50_dac_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_funcs nv50_dac_func = { .destroy = nv50_dac_destroy, }; static int nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe) { struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nvkm_i2c *i2c = nvxx_i2c(&drm->device); struct nvkm_i2c_bus *bus; struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; int type = DRM_MODE_ENCODER_DAC; nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; nv_encoder->or = ffs(dcbe->or) - 1; bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); if (bus) nv_encoder->i2c = &bus->i2c; encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); drm_encoder_helper_add(encoder, &nv50_dac_help); drm_mode_connector_attach_encoder(connector, encoder); return 0; } /****************************************************************************** * Audio *****************************************************************************/ static void nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_hda_eld_v0 eld; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | (0x0100 << nv_crtc->index), }; nvif_mthd(disp->disp, 0, &args, sizeof(args)); } static void nv50_audio_enable(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nouveau_connector *nv_connector; struct nv50_disp *disp = nv50_disp(encoder->dev); struct __packed { struct { struct nv50_disp_mthd_v1 mthd; struct nv50_disp_sor_hda_eld_v0 eld; } base; u8 data[sizeof(nv_connector->base.eld)]; } args = { .base.mthd.version = 1, .base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD, .base.mthd.hasht = nv_encoder->dcb->hasht, .base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) | (0x0100 << nv_crtc->index), }; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (!drm_detect_monitor_audio(nv_connector->edid)) return; drm_edid_to_eld(&nv_connector->base, nv_connector->edid); memcpy(args.data, nv_connector->base.eld, sizeof(args.data)); nvif_mthd(disp->disp, 0, &args, sizeof(args.base) + drm_eld_size(args.data)); } /****************************************************************************** * HDMI *****************************************************************************/ static void nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_hdmi_pwr_v0 pwr; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | (0x0100 << nv_crtc->index), }; nvif_mthd(disp->disp, 0, &args, sizeof(args)); } static void nv50_hdmi_enable(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_hdmi_pwr_v0 pwr; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) | (0x0100 << nv_crtc->index), .pwr.state = 1, .pwr.rekey = 56, /* binary driver, and tegra, constant */ }; struct nouveau_connector *nv_connector; u32 max_ac_packet; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (!drm_detect_hdmi_monitor(nv_connector->edid)) return; max_ac_packet = mode->htotal - mode->hdisplay; max_ac_packet -= args.pwr.rekey; max_ac_packet -= 18; /* constant from tegra */ args.pwr.max_ac_packet = max_ac_packet / 32; nvif_mthd(disp->disp, 0, &args, sizeof(args)); nv50_audio_enable(encoder, mode); } /****************************************************************************** * MST *****************************************************************************/ #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) struct nv50_mstm { struct nouveau_encoder *outp; struct drm_dp_mst_topology_mgr mgr; struct nv50_msto *msto[4]; bool modified; }; struct nv50_mstc { struct nv50_mstm *mstm; struct drm_dp_mst_port *port; struct drm_connector connector; struct drm_display_mode *native; struct edid *edid; int pbn; }; struct nv50_msto { struct drm_encoder encoder; struct nv50_head *head; struct nv50_mstc *mstc; bool disabled; }; static struct drm_dp_payload * nv50_msto_payload(struct nv50_msto *msto) { struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); struct nv50_mstc *mstc = msto->mstc; struct nv50_mstm *mstm = mstc->mstm; int vcpi = mstc->port->vcpi.vcpi, i; NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi); for (i = 0; i < mstm->mgr.max_payloads; i++) { struct drm_dp_payload *payload = &mstm->mgr.payloads[i]; NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n", mstm->outp->base.base.name, i, payload->vcpi, payload->start_slot, payload->num_slots); } for (i = 0; i < mstm->mgr.max_payloads; i++) { struct drm_dp_payload *payload = &mstm->mgr.payloads[i]; if (payload->vcpi == vcpi) return payload; } return NULL; } static void nv50_msto_cleanup(struct nv50_msto *msto) { struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); struct nv50_mstc *mstc = msto->mstc; struct nv50_mstm *mstm = mstc->mstm; NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); if (mstc->port && mstc->port->vcpi.vcpi > 0 && !nv50_msto_payload(msto)) drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port); if (msto->disabled) { msto->mstc = NULL; msto->head = NULL; msto->disabled = false; } } static void nv50_msto_prepare(struct nv50_msto *msto) { struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); struct nv50_mstc *mstc = msto->mstc; struct nv50_mstm *mstm = mstc->mstm; struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI, .base.hasht = mstm->outp->dcb->hasht, .base.hashm = (0xf0ff & mstm->outp->dcb->hashm) | (0x0100 << msto->head->base.index), }; NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); if (mstc->port && mstc->port->vcpi.vcpi > 0) { struct drm_dp_payload *payload = nv50_msto_payload(msto); if (payload) { args.vcpi.start_slot = payload->start_slot; args.vcpi.num_slots = payload->num_slots; args.vcpi.pbn = mstc->port->vcpi.pbn; args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn; } } NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n", msto->encoder.name, msto->head->base.base.name, args.vcpi.start_slot, args.vcpi.num_slots, args.vcpi.pbn, args.vcpi.aligned_pbn); nvif_mthd(&drm->display->disp, 0, &args, sizeof(args)); } static int nv50_msto_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct nv50_mstc *mstc = nv50_mstc(conn_state->connector); struct nv50_mstm *mstm = mstc->mstm; int bpp = conn_state->connector->display_info.bpc * 3; int slots; mstc->pbn = drm_dp_calc_pbn_mode(crtc_state->adjusted_mode.clock, bpp); slots = drm_dp_find_vcpi_slots(&mstm->mgr, mstc->pbn); if (slots < 0) return slots; return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, mstc->native); } static void nv50_msto_enable(struct drm_encoder *encoder) { struct nv50_head *head = nv50_head(encoder->crtc); struct nv50_msto *msto = nv50_msto(encoder); struct nv50_mstc *mstc = NULL; struct nv50_mstm *mstm = NULL; struct drm_connector *connector; u8 proto, depth; int slots; bool r; drm_for_each_connector(connector, encoder->dev) { if (connector->state->best_encoder == &msto->encoder) { mstc = nv50_mstc(connector); mstm = mstc->mstm; break; } } if (WARN_ON(!mstc)) return; r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, mstc->pbn, &slots); WARN_ON(!r); if (mstm->outp->dcb->sorconf.link & 1) proto = 0x8; else proto = 0x9; switch (mstc->connector.display_info.bpc) { case 6: depth = 0x2; break; case 8: depth = 0x5; break; case 10: default: depth = 0x6; break; } mstm->outp->update(mstm->outp, head->base.index, &head->base.base.state->adjusted_mode, proto, depth); msto->head = head; msto->mstc = mstc; mstm->modified = true; } static void nv50_msto_disable(struct drm_encoder *encoder) { struct nv50_msto *msto = nv50_msto(encoder); struct nv50_mstc *mstc = msto->mstc; struct nv50_mstm *mstm = mstc->mstm; if (mstc->port) drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port); mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); mstm->modified = true; msto->disabled = true; } static const struct drm_encoder_helper_funcs nv50_msto_help = { .disable = nv50_msto_disable, .enable = nv50_msto_enable, .atomic_check = nv50_msto_atomic_check, }; static void nv50_msto_destroy(struct drm_encoder *encoder) { struct nv50_msto *msto = nv50_msto(encoder); drm_encoder_cleanup(&msto->encoder); kfree(msto); } static const struct drm_encoder_funcs nv50_msto = { .destroy = nv50_msto_destroy, }; static int nv50_msto_new(struct drm_device *dev, u32 heads, const char *name, int id, struct nv50_msto **pmsto) { struct nv50_msto *msto; int ret; if (!(msto = *pmsto = kzalloc(sizeof(*msto), GFP_KERNEL))) return -ENOMEM; ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, DRM_MODE_ENCODER_DPMST, "%s-mst-%d", name, id); if (ret) { kfree(*pmsto); *pmsto = NULL; return ret; } drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); msto->encoder.possible_crtcs = heads; return 0; } static struct drm_encoder * nv50_mstc_atomic_best_encoder(struct drm_connector *connector, struct drm_connector_state *connector_state) { struct nv50_head *head = nv50_head(connector_state->crtc); struct nv50_mstc *mstc = nv50_mstc(connector); if (mstc->port) { struct nv50_mstm *mstm = mstc->mstm; return &mstm->msto[head->base.index]->encoder; } return NULL; } static struct drm_encoder * nv50_mstc_best_encoder(struct drm_connector *connector) { struct nv50_mstc *mstc = nv50_mstc(connector); if (mstc->port) { struct nv50_mstm *mstm = mstc->mstm; return &mstm->msto[0]->encoder; } return NULL; } static enum drm_mode_status nv50_mstc_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { return MODE_OK; } static int nv50_mstc_get_modes(struct drm_connector *connector) { struct nv50_mstc *mstc = nv50_mstc(connector); int ret = 0; mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); drm_mode_connector_update_edid_property(&mstc->connector, mstc->edid); if (mstc->edid) { ret = drm_add_edid_modes(&mstc->connector, mstc->edid); drm_edid_to_eld(&mstc->connector, mstc->edid); } if (!mstc->connector.display_info.bpc) mstc->connector.display_info.bpc = 8; if (mstc->native) drm_mode_destroy(mstc->connector.dev, mstc->native); mstc->native = nouveau_conn_native_mode(&mstc->connector); return ret; } static const struct drm_connector_helper_funcs nv50_mstc_help = { .get_modes = nv50_mstc_get_modes, .mode_valid = nv50_mstc_mode_valid, .best_encoder = nv50_mstc_best_encoder, .atomic_best_encoder = nv50_mstc_atomic_best_encoder, }; static enum drm_connector_status nv50_mstc_detect(struct drm_connector *connector, bool force) { struct nv50_mstc *mstc = nv50_mstc(connector); if (!mstc->port) return connector_status_disconnected; return drm_dp_mst_detect_port(connector, mstc->port->mgr, mstc->port); } static void nv50_mstc_destroy(struct drm_connector *connector) { struct nv50_mstc *mstc = nv50_mstc(connector); drm_connector_cleanup(&mstc->connector); kfree(mstc); } static const struct drm_connector_funcs nv50_mstc = { .dpms = drm_atomic_helper_connector_dpms, .reset = nouveau_conn_reset, .detect = nv50_mstc_detect, .fill_modes = drm_helper_probe_single_connector_modes, .set_property = drm_atomic_helper_connector_set_property, .destroy = nv50_mstc_destroy, .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, .atomic_destroy_state = nouveau_conn_atomic_destroy_state, .atomic_set_property = nouveau_conn_atomic_set_property, .atomic_get_property = nouveau_conn_atomic_get_property, }; static int nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, const char *path, struct nv50_mstc **pmstc) { struct drm_device *dev = mstm->outp->base.base.dev; struct nv50_mstc *mstc; int ret, i; if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) return -ENOMEM; mstc->mstm = mstm; mstc->port = port; ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc, DRM_MODE_CONNECTOR_DisplayPort); if (ret) { kfree(*pmstc); *pmstc = NULL; return ret; } drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); mstc->connector.funcs->reset(&mstc->connector); nouveau_conn_attach_properties(&mstc->connector); for (i = 0; i < ARRAY_SIZE(mstm->msto) && mstm->msto; i++) drm_mode_connector_attach_encoder(&mstc->connector, &mstm->msto[i]->encoder); drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); drm_mode_connector_set_path_property(&mstc->connector, path); return 0; } static void nv50_mstm_cleanup(struct nv50_mstm *mstm) { struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); struct drm_encoder *encoder; int ret; NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); ret = drm_dp_check_act_status(&mstm->mgr); ret = drm_dp_update_payload_part2(&mstm->mgr); drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { struct nv50_msto *msto = nv50_msto(encoder); struct nv50_mstc *mstc = msto->mstc; if (mstc && mstc->mstm == mstm) nv50_msto_cleanup(msto); } } mstm->modified = false; } static void nv50_mstm_prepare(struct nv50_mstm *mstm) { struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); struct drm_encoder *encoder; int ret; NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); ret = drm_dp_update_payload_part1(&mstm->mgr); drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { struct nv50_msto *msto = nv50_msto(encoder); struct nv50_mstc *mstc = msto->mstc; if (mstc && mstc->mstm == mstm) nv50_msto_prepare(msto); } } } static void nv50_mstm_hotplug(struct drm_dp_mst_topology_mgr *mgr) { struct nv50_mstm *mstm = nv50_mstm(mgr); drm_kms_helper_hotplug_event(mstm->outp->base.base.dev); } static void nv50_mstm_destroy_connector(struct drm_dp_mst_topology_mgr *mgr, struct drm_connector *connector) { struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nv50_mstc *mstc = nv50_mstc(connector); drm_connector_unregister(&mstc->connector); drm_modeset_lock_all(drm->dev); drm_fb_helper_remove_one_connector(&drm->fbcon->helper, &mstc->connector); mstc->port = NULL; drm_modeset_unlock_all(drm->dev); drm_connector_unreference(&mstc->connector); } static void nv50_mstm_register_connector(struct drm_connector *connector) { struct nouveau_drm *drm = nouveau_drm(connector->dev); drm_modeset_lock_all(drm->dev); drm_fb_helper_add_one_connector(&drm->fbcon->helper, connector); drm_modeset_unlock_all(drm->dev); drm_connector_register(connector); } static struct drm_connector * nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port, const char *path) { struct nv50_mstm *mstm = nv50_mstm(mgr); struct nv50_mstc *mstc; int ret; ret = nv50_mstc_new(mstm, port, path, &mstc); if (ret) { if (mstc) mstc->connector.funcs->destroy(&mstc->connector); return NULL; } return &mstc->connector; } static const struct drm_dp_mst_topology_cbs nv50_mstm = { .add_connector = nv50_mstm_add_connector, .register_connector = nv50_mstm_register_connector, .destroy_connector = nv50_mstm_destroy_connector, .hotplug = nv50_mstm_hotplug, }; void nv50_mstm_service(struct nv50_mstm *mstm) { struct drm_dp_aux *aux = mstm->mgr.aux; bool handled = true; int ret; u8 esi[8] = {}; while (handled) { ret = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); if (ret != 8) { drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); return; } drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled); if (!handled) break; drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1], 3); } } void nv50_mstm_remove(struct nv50_mstm *mstm) { if (mstm) drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); } static int nv50_mstm_enable(struct nv50_mstm *mstm, u8 dpcd, int state) { struct nouveau_encoder *outp = mstm->outp; struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_dp_mst_link_v0 mst; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK, .base.hasht = outp->dcb->hasht, .base.hashm = outp->dcb->hashm, .mst.state = state, }; struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev); struct nvif_object *disp = &drm->display->disp; int ret; if (dpcd >= 0x12) { ret = drm_dp_dpcd_readb(mstm->mgr.aux, DP_MSTM_CTRL, &dpcd); if (ret < 0) return ret; dpcd &= ~DP_MST_EN; if (state) dpcd |= DP_MST_EN; ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL, dpcd); if (ret < 0) return ret; } return nvif_mthd(disp, 0, &args, sizeof(args)); } int nv50_mstm_detect(struct nv50_mstm *mstm, u8 dpcd[8], int allow) { int ret, state = 0; if (!mstm) return 0; if (dpcd[0] >= 0x12) { ret = drm_dp_dpcd_readb(mstm->mgr.aux, DP_MSTM_CAP, &dpcd[1]); if (ret < 0) return ret; if (!(dpcd[1] & DP_MST_CAP)) dpcd[0] = 0x11; else state = allow; } ret = nv50_mstm_enable(mstm, dpcd[0], state); if (ret) return ret; ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, state); if (ret) return nv50_mstm_enable(mstm, dpcd[0], 0); return mstm->mgr.mst_state; } static void nv50_mstm_fini(struct nv50_mstm *mstm) { if (mstm && mstm->mgr.mst_state) drm_dp_mst_topology_mgr_suspend(&mstm->mgr); } static void nv50_mstm_init(struct nv50_mstm *mstm) { if (mstm && mstm->mgr.mst_state) drm_dp_mst_topology_mgr_resume(&mstm->mgr); } static void nv50_mstm_del(struct nv50_mstm **pmstm) { struct nv50_mstm *mstm = *pmstm; if (mstm) { kfree(*pmstm); *pmstm = NULL; } } static int nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, int conn_base_id, struct nv50_mstm **pmstm) { const int max_payloads = hweight8(outp->dcb->heads); struct drm_device *dev = outp->base.base.dev; struct nv50_mstm *mstm; int ret, i; u8 dpcd; /* This is a workaround for some monitors not functioning * correctly in MST mode on initial module load. I think * some bad interaction with the VBIOS may be responsible. * * A good ol' off and on again seems to work here ;) */ ret = drm_dp_dpcd_readb(aux, DP_DPCD_REV, &dpcd); if (ret >= 0 && dpcd >= 0x12) drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) return -ENOMEM; mstm->outp = outp; mstm->mgr.cbs = &nv50_mstm; ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev->dev, aux, aux_max, max_payloads, conn_base_id); if (ret) return ret; for (i = 0; i < max_payloads; i++) { ret = nv50_msto_new(dev, outp->dcb->heads, outp->base.base.name, i, &mstm->msto[i]); if (ret) return ret; } return 0; } /****************************************************************************** * SOR *****************************************************************************/ static void nv50_sor_dpms(struct drm_encoder *encoder, int mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_pwr_v0 pwr; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_PWR, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = nv_encoder->dcb->hashm, .pwr.state = mode == DRM_MODE_DPMS_ON, }; nvif_mthd(disp->disp, 0, &args, sizeof(args)); } static void nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, struct drm_display_mode *mode, u8 proto, u8 depth) { struct nv50_dmac *core = &nv50_mast(nv_encoder->base.base.dev)->base; u32 *push; if (!mode) { nv_encoder->ctrl &= ~BIT(head); if (!(nv_encoder->ctrl & 0x0000000f)) nv_encoder->ctrl = 0; } else { nv_encoder->ctrl |= proto << 8; nv_encoder->ctrl |= BIT(head); } if ((push = evo_wait(core, 6))) { if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) { if (mode) { if (mode->flags & DRM_MODE_FLAG_NHSYNC) nv_encoder->ctrl |= 0x00001000; if (mode->flags & DRM_MODE_FLAG_NVSYNC) nv_encoder->ctrl |= 0x00002000; nv_encoder->ctrl |= depth << 16; } evo_mthd(push, 0x0600 + (nv_encoder->or * 0x40), 1); } else { if (mode) { u32 magic = 0x31ec6000 | (head << 25); u32 syncs = 0x00000001; if (mode->flags & DRM_MODE_FLAG_NHSYNC) syncs |= 0x00000008; if (mode->flags & DRM_MODE_FLAG_NVSYNC) syncs |= 0x00000010; if (mode->flags & DRM_MODE_FLAG_INTERLACE) magic |= 0x00000001; evo_mthd(push, 0x0404 + (head * 0x300), 2); evo_data(push, syncs | (depth << 6)); evo_data(push, magic); } evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1); } evo_data(push, nv_encoder->ctrl); evo_kick(push, core); } } static void nv50_sor_disable(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc); nv_encoder->crtc = NULL; if (nv_crtc) { struct nvkm_i2c_aux *aux = nv_encoder->aux; u8 pwr; if (aux) { int ret = nvkm_rdaux(aux, DP_SET_POWER, &pwr, 1); if (ret == 0) { pwr &= ~DP_SET_POWER_MASK; pwr |= DP_SET_POWER_D3; nvkm_wraux(aux, DP_SET_POWER, &pwr, 1); } } nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0); nv50_audio_disable(encoder, nv_crtc); nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc); } } static void nv50_sor_enable(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct drm_display_mode *mode = &nv_crtc->base.state->adjusted_mode; struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_sor_lvds_script_v0 lvds; } lvds = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = nv_encoder->dcb->hashm, }; struct nv50_disp *disp = nv50_disp(encoder->dev); struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_connector *nv_connector; struct nvbios *bios = &drm->vbios; u8 proto = 0xf; u8 depth = 0x0; nv_connector = nouveau_encoder_connector_get(nv_encoder); nv_encoder->crtc = encoder->crtc; switch (nv_encoder->dcb->type) { case DCB_OUTPUT_TMDS: if (nv_encoder->dcb->sorconf.link & 1) { proto = 0x1; /* Only enable dual-link if: * - Need to (i.e. rate > 165MHz) * - DCB says we can * - Not an HDMI monitor, since there's no dual-link * on HDMI. */ if (mode->clock >= 165000 && nv_encoder->dcb->duallink_possible && !drm_detect_hdmi_monitor(nv_connector->edid)) proto |= 0x4; } else { proto = 0x2; } nv50_hdmi_enable(&nv_encoder->base.base, mode); break; case DCB_OUTPUT_LVDS: proto = 0x0; if (bios->fp_no_ddc) { if (bios->fp.dual_link) lvds.lvds.script |= 0x0100; if (bios->fp.if_is_24bit) lvds.lvds.script |= 0x0200; } else { if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { if (((u8 *)nv_connector->edid)[121] == 2) lvds.lvds.script |= 0x0100; } else if (mode->clock >= bios->fp.duallink_transition_clk) { lvds.lvds.script |= 0x0100; } if (lvds.lvds.script & 0x0100) { if (bios->fp.strapless_is_24bit & 2) lvds.lvds.script |= 0x0200; } else { if (bios->fp.strapless_is_24bit & 1) lvds.lvds.script |= 0x0200; } if (nv_connector->base.display_info.bpc == 8) lvds.lvds.script |= 0x0200; } nvif_mthd(disp->disp, 0, &lvds, sizeof(lvds)); break; case DCB_OUTPUT_DP: if (nv_connector->base.display_info.bpc == 6) depth = 0x2; else if (nv_connector->base.display_info.bpc == 8) depth = 0x5; else depth = 0x6; if (nv_encoder->dcb->sorconf.link & 1) proto = 0x8; else proto = 0x9; nv50_audio_enable(encoder, mode); break; default: BUG_ON(1); break; } nv_encoder->update(nv_encoder, nv_crtc->index, mode, proto, depth); } static const struct drm_encoder_helper_funcs nv50_sor_help = { .dpms = nv50_sor_dpms, .atomic_check = nv50_outp_atomic_check, .enable = nv50_sor_enable, .disable = nv50_sor_disable, }; static void nv50_sor_destroy(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); nv50_mstm_del(&nv_encoder->dp.mstm); drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_funcs nv50_sor_func = { .destroy = nv50_sor_destroy, }; static int nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe) { struct nouveau_connector *nv_connector = nouveau_connector(connector); struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nvkm_i2c *i2c = nvxx_i2c(&drm->device); struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; int type, ret; switch (dcbe->type) { case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; case DCB_OUTPUT_TMDS: case DCB_OUTPUT_DP: default: type = DRM_MODE_ENCODER_TMDS; break; } nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; nv_encoder->or = ffs(dcbe->or) - 1; nv_encoder->update = nv50_sor_update; encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); drm_encoder_helper_add(encoder, &nv50_sor_help); drm_mode_connector_attach_encoder(connector, encoder); if (dcbe->type == DCB_OUTPUT_DP) { struct nvkm_i2c_aux *aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index); if (aux) { nv_encoder->i2c = &aux->i2c; nv_encoder->aux = aux; } /*TODO: Use DP Info Table to check for support. */ if (nv50_disp(encoder->dev)->disp->oclass >= GF110_DISP) { ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 16, nv_connector->base.base.id, &nv_encoder->dp.mstm); if (ret) return ret; } } else { struct nvkm_i2c_bus *bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); if (bus) nv_encoder->i2c = &bus->i2c; } return 0; } /****************************************************************************** * PIOR *****************************************************************************/ static void nv50_pior_dpms(struct drm_encoder *encoder, int mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_disp *disp = nv50_disp(encoder->dev); struct { struct nv50_disp_mthd_v1 base; struct nv50_disp_pior_pwr_v0 pwr; } args = { .base.version = 1, .base.method = NV50_DISP_MTHD_V1_PIOR_PWR, .base.hasht = nv_encoder->dcb->hasht, .base.hashm = nv_encoder->dcb->hashm, .pwr.state = mode == DRM_MODE_DPMS_ON, .pwr.type = nv_encoder->dcb->type, }; nvif_mthd(disp->disp, 0, &args, sizeof(args)); } static int nv50_pior_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); if (ret) return ret; crtc_state->adjusted_mode.clock *= 2; return 0; } static void nv50_pior_disable(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_mast *mast = nv50_mast(encoder->dev); const int or = nv_encoder->or; u32 *push; if (nv_encoder->crtc) { push = evo_wait(mast, 4); if (push) { if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) { evo_mthd(push, 0x0700 + (or * 0x040), 1); evo_data(push, 0x00000000); } evo_kick(push, mast); } } nv_encoder->crtc = NULL; } static void nv50_pior_enable(struct drm_encoder *encoder) { struct nv50_mast *mast = nv50_mast(encoder->dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nouveau_connector *nv_connector; struct drm_display_mode *mode = &nv_crtc->base.state->adjusted_mode; u8 owner = 1 << nv_crtc->index; u8 proto, depth; u32 *push; nv_connector = nouveau_encoder_connector_get(nv_encoder); switch (nv_connector->base.display_info.bpc) { case 10: depth = 0x6; break; case 8: depth = 0x5; break; case 6: depth = 0x2; break; default: depth = 0x0; break; } switch (nv_encoder->dcb->type) { case DCB_OUTPUT_TMDS: case DCB_OUTPUT_DP: proto = 0x0; break; default: BUG_ON(1); break; } push = evo_wait(mast, 8); if (push) { if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) { u32 ctrl = (depth << 16) | (proto << 8) | owner; if (mode->flags & DRM_MODE_FLAG_NHSYNC) ctrl |= 0x00001000; if (mode->flags & DRM_MODE_FLAG_NVSYNC) ctrl |= 0x00002000; evo_mthd(push, 0x0700 + (nv_encoder->or * 0x040), 1); evo_data(push, ctrl); } evo_kick(push, mast); } nv_encoder->crtc = encoder->crtc; } static const struct drm_encoder_helper_funcs nv50_pior_help = { .dpms = nv50_pior_dpms, .atomic_check = nv50_pior_atomic_check, .enable = nv50_pior_enable, .disable = nv50_pior_disable, }; static void nv50_pior_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_funcs nv50_pior_func = { .destroy = nv50_pior_destroy, }; static int nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe) { struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nvkm_i2c *i2c = nvxx_i2c(&drm->device); struct nvkm_i2c_bus *bus = NULL; struct nvkm_i2c_aux *aux = NULL; struct i2c_adapter *ddc; struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; int type; switch (dcbe->type) { case DCB_OUTPUT_TMDS: bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev)); ddc = bus ? &bus->i2c : NULL; type = DRM_MODE_ENCODER_TMDS; break; case DCB_OUTPUT_DP: aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev)); ddc = aux ? &aux->i2c : NULL; type = DRM_MODE_ENCODER_TMDS; break; default: return -ENODEV; } nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; nv_encoder->or = ffs(dcbe->or) - 1; nv_encoder->i2c = ddc; nv_encoder->aux = aux; encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); drm_encoder_helper_add(encoder, &nv50_pior_help); drm_mode_connector_attach_encoder(connector, encoder); return 0; } /****************************************************************************** * Atomic *****************************************************************************/ static void nv50_disp_atomic_commit_core(struct nouveau_drm *drm, u32 interlock) { struct nv50_disp *disp = nv50_disp(drm->dev); struct nv50_dmac *core = &disp->mast.base; struct nv50_mstm *mstm; struct drm_encoder *encoder; u32 *push; NV_ATOMIC(drm, "commit core %08x\n", interlock); drm_for_each_encoder(encoder, drm->dev) { if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { mstm = nouveau_encoder(encoder)->dp.mstm; if (mstm && mstm->modified) nv50_mstm_prepare(mstm); } } if ((push = evo_wait(core, 5))) { evo_mthd(push, 0x0084, 1); evo_data(push, 0x80000000); evo_mthd(push, 0x0080, 2); evo_data(push, interlock); evo_data(push, 0x00000000); nouveau_bo_wr32(disp->sync, 0, 0x00000000); evo_kick(push, core); if (nvif_msec(&drm->device, 2000ULL, if (nouveau_bo_rd32(disp->sync, 0)) break; usleep_range(1, 2); ) < 0) NV_ERROR(drm, "EVO timeout\n"); } drm_for_each_encoder(encoder, drm->dev) { if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { mstm = nouveau_encoder(encoder)->dp.mstm; if (mstm && mstm->modified) nv50_mstm_cleanup(mstm); } } } static void nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) { struct drm_device *dev = state->dev; struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; struct drm_plane_state *plane_state; struct drm_plane *plane; struct nouveau_drm *drm = nouveau_drm(dev); struct nv50_disp *disp = nv50_disp(dev); struct nv50_atom *atom = nv50_atom(state); struct nv50_outp_atom *outp, *outt; u32 interlock_core = 0; u32 interlock_chan = 0; int i; NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); drm_atomic_helper_wait_for_fences(dev, state, false); drm_atomic_helper_wait_for_dependencies(state); drm_atomic_helper_update_legacy_modeset_state(dev, state); if (atom->lock_core) mutex_lock(&disp->mutex); /* Disable head(s). */ for_each_crtc_in_state(state, crtc, crtc_state, i) { struct nv50_head_atom *asyh = nv50_head_atom(crtc->state); struct nv50_head *head = nv50_head(crtc); NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, asyh->clr.mask, asyh->set.mask); if (asyh->clr.mask) { nv50_head_flush_clr(head, asyh, atom->flush_disable); interlock_core |= 1; } } /* Disable plane(s). */ for_each_plane_in_state(state, plane, plane_state, i) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(plane->state); struct nv50_wndw *wndw = nv50_wndw(plane); NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, asyw->clr.mask, asyw->set.mask); if (!asyw->clr.mask) continue; interlock_chan |= nv50_wndw_flush_clr(wndw, interlock_core, atom->flush_disable, asyw); } /* Disable output path(s). */ list_for_each_entry(outp, &atom->outp, head) { const struct drm_encoder_helper_funcs *help; struct drm_encoder *encoder; encoder = outp->encoder; help = encoder->helper_private; NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, outp->clr.mask, outp->set.mask); if (outp->clr.mask) { help->disable(encoder); interlock_core |= 1; if (outp->flush_disable) { nv50_disp_atomic_commit_core(drm, interlock_chan); interlock_core = 0; interlock_chan = 0; } } } /* Flush disable. */ if (interlock_core) { if (atom->flush_disable) { nv50_disp_atomic_commit_core(drm, interlock_chan); interlock_core = 0; interlock_chan = 0; } } /* Update output path(s). */ list_for_each_entry_safe(outp, outt, &atom->outp, head) { const struct drm_encoder_helper_funcs *help; struct drm_encoder *encoder; encoder = outp->encoder; help = encoder->helper_private; NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, outp->set.mask, outp->clr.mask); if (outp->set.mask) { help->enable(encoder); interlock_core = 1; } list_del(&outp->head); kfree(outp); } /* Update head(s). */ for_each_crtc_in_state(state, crtc, crtc_state, i) { struct nv50_head_atom *asyh = nv50_head_atom(crtc->state); struct nv50_head *head = nv50_head(crtc); NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, asyh->set.mask, asyh->clr.mask); if (asyh->set.mask) { nv50_head_flush_set(head, asyh); interlock_core = 1; } } /* Update plane(s). */ for_each_plane_in_state(state, plane, plane_state, i) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(plane->state); struct nv50_wndw *wndw = nv50_wndw(plane); NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, asyw->set.mask, asyw->clr.mask); if ( !asyw->set.mask && (!asyw->clr.mask || atom->flush_disable)) continue; interlock_chan |= nv50_wndw_flush_set(wndw, interlock_core, asyw); } /* Flush update. */ if (interlock_core) { if (!interlock_chan && atom->state.legacy_cursor_update) { u32 *push = evo_wait(&disp->mast, 2); if (push) { evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); evo_kick(push, &disp->mast); } } else { nv50_disp_atomic_commit_core(drm, interlock_chan); } } if (atom->lock_core) mutex_unlock(&disp->mutex); /* Wait for HW to signal completion. */ for_each_plane_in_state(state, plane, plane_state, i) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(plane->state); struct nv50_wndw *wndw = nv50_wndw(plane); int ret = nv50_wndw_wait_armed(wndw, asyw); if (ret) NV_ERROR(drm, "%s: timeout\n", plane->name); } for_each_crtc_in_state(state, crtc, crtc_state, i) { if (crtc->state->event) { unsigned long flags; spin_lock_irqsave(&crtc->dev->event_lock, flags); drm_crtc_send_vblank_event(crtc, crtc->state->event); spin_unlock_irqrestore(&crtc->dev->event_lock, flags); crtc->state->event = NULL; } } drm_atomic_helper_commit_hw_done(state); drm_atomic_helper_cleanup_planes(dev, state); drm_atomic_helper_commit_cleanup_done(state); drm_atomic_state_put(state); } static void nv50_disp_atomic_commit_work(struct work_struct *work) { struct drm_atomic_state *state = container_of(work, typeof(*state), commit_work); nv50_disp_atomic_commit_tail(state); } static int nv50_disp_atomic_commit(struct drm_device *dev, struct drm_atomic_state *state, bool nonblock) { struct nouveau_drm *drm = nouveau_drm(dev); struct nv50_disp *disp = nv50_disp(dev); struct drm_plane_state *plane_state; struct drm_plane *plane; struct drm_crtc *crtc; bool active = false; int ret, i; ret = pm_runtime_get_sync(dev->dev); if (ret < 0 && ret != -EACCES) return ret; ret = drm_atomic_helper_setup_commit(state, nonblock); if (ret) goto done; INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); ret = drm_atomic_helper_prepare_planes(dev, state); if (ret) goto done; if (!nonblock) { ret = drm_atomic_helper_wait_for_fences(dev, state, true); if (ret) goto done; } for_each_plane_in_state(state, plane, plane_state, i) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(plane_state); struct nv50_wndw *wndw = nv50_wndw(plane); if (asyw->set.image) { asyw->ntfy.handle = wndw->dmac->sync.handle; asyw->ntfy.offset = wndw->ntfy; asyw->ntfy.awaken = false; asyw->set.ntfy = true; nouveau_bo_wr32(disp->sync, wndw->ntfy / 4, 0x00000000); wndw->ntfy ^= 0x10; } } drm_atomic_helper_swap_state(state, true); drm_atomic_state_get(state); if (nonblock) queue_work(system_unbound_wq, &state->commit_work); else nv50_disp_atomic_commit_tail(state); drm_for_each_crtc(crtc, dev) { if (crtc->state->enable) { if (!drm->have_disp_power_ref) { drm->have_disp_power_ref = true; return ret; } active = true; break; } } if (!active && drm->have_disp_power_ref) { pm_runtime_put_autosuspend(dev->dev); drm->have_disp_power_ref = false; } done: pm_runtime_put_autosuspend(dev->dev); return ret; } static struct nv50_outp_atom * nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) { struct nv50_outp_atom *outp; list_for_each_entry(outp, &atom->outp, head) { if (outp->encoder == encoder) return outp; } outp = kzalloc(sizeof(*outp), GFP_KERNEL); if (!outp) return ERR_PTR(-ENOMEM); list_add(&outp->head, &atom->outp); outp->encoder = encoder; return outp; } static int nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, struct drm_connector *connector) { struct drm_encoder *encoder = connector->state->best_encoder; struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; struct nv50_outp_atom *outp; if (!(crtc = connector->state->crtc)) return 0; crtc_state = drm_atomic_get_existing_crtc_state(&atom->state, crtc); if (crtc->state->active && drm_atomic_crtc_needs_modeset(crtc_state)) { outp = nv50_disp_outp_atomic_add(atom, encoder); if (IS_ERR(outp)) return PTR_ERR(outp); if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { outp->flush_disable = true; atom->flush_disable = true; } outp->clr.ctrl = true; atom->lock_core = true; } return 0; } static int nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, struct drm_connector_state *connector_state) { struct drm_encoder *encoder = connector_state->best_encoder; struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; struct nv50_outp_atom *outp; if (!(crtc = connector_state->crtc)) return 0; crtc_state = drm_atomic_get_existing_crtc_state(&atom->state, crtc); if (crtc_state->active && drm_atomic_crtc_needs_modeset(crtc_state)) { outp = nv50_disp_outp_atomic_add(atom, encoder); if (IS_ERR(outp)) return PTR_ERR(outp); outp->set.ctrl = true; atom->lock_core = true; } return 0; } static int nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) { struct nv50_atom *atom = nv50_atom(state); struct drm_connector_state *connector_state; struct drm_connector *connector; int ret, i; ret = drm_atomic_helper_check(dev, state); if (ret) return ret; for_each_connector_in_state(state, connector, connector_state, i) { ret = nv50_disp_outp_atomic_check_clr(atom, connector); if (ret) return ret; ret = nv50_disp_outp_atomic_check_set(atom, connector_state); if (ret) return ret; } return 0; } static void nv50_disp_atomic_state_clear(struct drm_atomic_state *state) { struct nv50_atom *atom = nv50_atom(state); struct nv50_outp_atom *outp, *outt; list_for_each_entry_safe(outp, outt, &atom->outp, head) { list_del(&outp->head); kfree(outp); } drm_atomic_state_default_clear(state); } static void nv50_disp_atomic_state_free(struct drm_atomic_state *state) { struct nv50_atom *atom = nv50_atom(state); drm_atomic_state_default_release(&atom->state); kfree(atom); } static struct drm_atomic_state * nv50_disp_atomic_state_alloc(struct drm_device *dev) { struct nv50_atom *atom; if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || drm_atomic_state_init(dev, &atom->state) < 0) { kfree(atom); return NULL; } INIT_LIST_HEAD(&atom->outp); return &atom->state; } static const struct drm_mode_config_funcs nv50_disp_func = { .fb_create = nouveau_user_framebuffer_create, .output_poll_changed = nouveau_fbcon_output_poll_changed, .atomic_check = nv50_disp_atomic_check, .atomic_commit = nv50_disp_atomic_commit, .atomic_state_alloc = nv50_disp_atomic_state_alloc, .atomic_state_clear = nv50_disp_atomic_state_clear, .atomic_state_free = nv50_disp_atomic_state_free, }; /****************************************************************************** * Init *****************************************************************************/ void nv50_display_fini(struct drm_device *dev) { struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; struct drm_plane *plane; drm_for_each_plane(plane, dev) { struct nv50_wndw *wndw = nv50_wndw(plane); if (plane->funcs != &nv50_wndw) continue; nv50_wndw_fini(wndw); } list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { nv_encoder = nouveau_encoder(encoder); nv50_mstm_fini(nv_encoder->dp.mstm); } } } int nv50_display_init(struct drm_device *dev) { struct drm_encoder *encoder; struct drm_plane *plane; struct drm_crtc *crtc; u32 *push; push = evo_wait(nv50_mast(dev), 32); if (!push) return -EBUSY; evo_mthd(push, 0x0088, 1); evo_data(push, nv50_mast(dev)->base.sync.handle); evo_kick(push, nv50_mast(dev)); list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { const struct drm_encoder_helper_funcs *help; struct nouveau_encoder *nv_encoder; nv_encoder = nouveau_encoder(encoder); help = encoder->helper_private; if (help && help->dpms) help->dpms(encoder, DRM_MODE_DPMS_ON); nv50_mstm_init(nv_encoder->dp.mstm); } } drm_for_each_crtc(crtc, dev) { nv50_head_lut_load(crtc); } drm_for_each_plane(plane, dev) { struct nv50_wndw *wndw = nv50_wndw(plane); if (plane->funcs != &nv50_wndw) continue; nv50_wndw_init(wndw); } return 0; } void nv50_display_destroy(struct drm_device *dev) { struct nv50_disp *disp = nv50_disp(dev); nv50_dmac_destroy(&disp->mast.base, disp->disp); nouveau_bo_unmap(disp->sync); if (disp->sync) nouveau_bo_unpin(disp->sync); nouveau_bo_ref(NULL, &disp->sync); nouveau_display(dev)->priv = NULL; kfree(disp); } MODULE_PARM_DESC(atomic, "Expose atomic ioctl (default: disabled)"); static int nouveau_atomic = 0; module_param_named(atomic, nouveau_atomic, int, 0400); int nv50_display_create(struct drm_device *dev) { struct nvif_device *device = &nouveau_drm(dev)->device; struct nouveau_drm *drm = nouveau_drm(dev); struct dcb_table *dcb = &drm->vbios.dcb; struct drm_connector *connector, *tmp; struct nv50_disp *disp; struct dcb_output *dcbe; int crtcs, ret, i; disp = kzalloc(sizeof(*disp), GFP_KERNEL); if (!disp) return -ENOMEM; mutex_init(&disp->mutex); nouveau_display(dev)->priv = disp; nouveau_display(dev)->dtor = nv50_display_destroy; nouveau_display(dev)->init = nv50_display_init; nouveau_display(dev)->fini = nv50_display_fini; disp->disp = &nouveau_display(dev)->disp; dev->mode_config.funcs = &nv50_disp_func; if (nouveau_atomic) dev->driver->driver_features |= DRIVER_ATOMIC; /* small shared memory area we use for notifiers and semaphores */ ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, NULL, &disp->sync); if (!ret) { ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM, true); if (!ret) { ret = nouveau_bo_map(disp->sync); if (ret) nouveau_bo_unpin(disp->sync); } if (ret) nouveau_bo_ref(NULL, &disp->sync); } if (ret) goto out; /* allocate master evo channel */ ret = nv50_core_create(device, disp->disp, disp->sync->bo.offset, &disp->mast); if (ret) goto out; /* create crtc objects to represent the hw heads */ if (disp->disp->oclass >= GF110_DISP) crtcs = nvif_rd32(&device->object, 0x022448); else crtcs = 2; for (i = 0; i < crtcs; i++) { ret = nv50_head_create(dev, i); if (ret) goto out; } /* create encoder/connector objects based on VBIOS DCB table */ for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) { connector = nouveau_connector_create(dev, dcbe->connector); if (IS_ERR(connector)) continue; if (dcbe->location == DCB_LOC_ON_CHIP) { switch (dcbe->type) { case DCB_OUTPUT_TMDS: case DCB_OUTPUT_LVDS: case DCB_OUTPUT_DP: ret = nv50_sor_create(connector, dcbe); break; case DCB_OUTPUT_ANALOG: ret = nv50_dac_create(connector, dcbe); break; default: ret = -ENODEV; break; } } else { ret = nv50_pior_create(connector, dcbe); } if (ret) { NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", dcbe->location, dcbe->type, ffs(dcbe->or) - 1, ret); ret = 0; } } /* cull any connectors we created that don't have an encoder */ list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { if (connector->encoder_ids[0]) continue; NV_WARN(drm, "%s has no encoders, removing\n", connector->name); connector->funcs->destroy(connector); } out: if (ret) nv50_display_destroy(dev); return ret; }