/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * SGI UV APIC functions (note: not an Intel compatible APIC) * * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DEFINE_PER_CPU(int, x2apic_extra_bits); #define PR_DEVEL(fmt, args...) pr_devel("%s: " fmt, __func__, args) static enum uv_system_type uv_system_type; static u64 gru_start_paddr, gru_end_paddr; static u64 gru_dist_base, gru_first_node_paddr = -1LL, gru_last_node_paddr; static u64 gru_dist_lmask, gru_dist_umask; static union uvh_apicid uvh_apicid; int uv_min_hub_revision_id; EXPORT_SYMBOL_GPL(uv_min_hub_revision_id); unsigned int uv_apicid_hibits; EXPORT_SYMBOL_GPL(uv_apicid_hibits); static struct apic apic_x2apic_uv_x; /* Set this to use hardware error handler instead of kernel panic */ static int disable_uv_undefined_panic = 1; unsigned long uv_undefined(char *str) { if (likely(!disable_uv_undefined_panic)) panic("UV: error: undefined MMR: %s\n", str); else pr_crit("UV: error: undefined MMR: %s\n", str); return ~0ul; /* cause a machine fault */ } EXPORT_SYMBOL(uv_undefined); static unsigned long __init uv_early_read_mmr(unsigned long addr) { unsigned long val, *mmr; mmr = early_ioremap(UV_LOCAL_MMR_BASE | addr, sizeof(*mmr)); val = *mmr; early_iounmap(mmr, sizeof(*mmr)); return val; } static inline bool is_GRU_range(u64 start, u64 end) { if (gru_dist_base) { u64 su = start & gru_dist_umask; /* upper (incl pnode) bits */ u64 sl = start & gru_dist_lmask; /* base offset bits */ u64 eu = end & gru_dist_umask; u64 el = end & gru_dist_lmask; /* Must reside completely within a single GRU range */ return (sl == gru_dist_base && el == gru_dist_base && su >= gru_first_node_paddr && su <= gru_last_node_paddr && eu == su); } else { return start >= gru_start_paddr && end <= gru_end_paddr; } } static bool uv_is_untracked_pat_range(u64 start, u64 end) { return is_ISA_range(start, end) || is_GRU_range(start, end); } static int __init early_get_pnodeid(void) { union uvh_node_id_u node_id; union uvh_rh_gam_config_mmr_u m_n_config; int pnode; /* Currently, all blades have same revision number */ node_id.v = uv_early_read_mmr(UVH_NODE_ID); m_n_config.v = uv_early_read_mmr(UVH_RH_GAM_CONFIG_MMR); uv_min_hub_revision_id = node_id.s.revision; switch (node_id.s.part_number) { case UV2_HUB_PART_NUMBER: case UV2_HUB_PART_NUMBER_X: uv_min_hub_revision_id += UV2_HUB_REVISION_BASE - 1; break; case UV3_HUB_PART_NUMBER: case UV3_HUB_PART_NUMBER_X: uv_min_hub_revision_id += UV3_HUB_REVISION_BASE; break; case UV4_HUB_PART_NUMBER: uv_min_hub_revision_id += UV4_HUB_REVISION_BASE - 1; break; } uv_hub_info->hub_revision = uv_min_hub_revision_id; pnode = (node_id.s.node_id >> 1) & ((1 << m_n_config.s.n_skt) - 1); return pnode; } static void __init early_get_apic_pnode_shift(void) { uvh_apicid.v = uv_early_read_mmr(UVH_APICID); if (!uvh_apicid.v) /* * Old bios, use default value */ uvh_apicid.s.pnode_shift = UV_APIC_PNODE_SHIFT; } /* * Add an extra bit as dictated by bios to the destination apicid of * interrupts potentially passing through the UV HUB. This prevents * a deadlock between interrupts and IO port operations. */ static void __init uv_set_apicid_hibit(void) { union uv1h_lb_target_physical_apic_id_mask_u apicid_mask; if (is_uv1_hub()) { apicid_mask.v = uv_early_read_mmr(UV1H_LB_TARGET_PHYSICAL_APIC_ID_MASK); uv_apicid_hibits = apicid_mask.s1.bit_enables & UV_APICID_HIBIT_MASK; } } static int __init uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id) { int pnodeid; int uv_apic; if (strncmp(oem_id, "SGI", 3) != 0) return 0; /* * Determine UV arch type. * SGI: UV100/1000 * SGI2: UV2000/3000 * SGI3: UV300 (truncated to 4 chars because of different varieties) * SGI4: UV400 (truncated to 4 chars because of different varieties) */ uv_hub_info->hub_revision = !strncmp(oem_id, "SGI4", 4) ? UV4_HUB_REVISION_BASE : !strncmp(oem_id, "SGI3", 4) ? UV3_HUB_REVISION_BASE : !strcmp(oem_id, "SGI2") ? UV2_HUB_REVISION_BASE : !strcmp(oem_id, "SGI") ? UV1_HUB_REVISION_BASE : 0; if (uv_hub_info->hub_revision == 0) goto badbios; pnodeid = early_get_pnodeid(); early_get_apic_pnode_shift(); x86_platform.is_untracked_pat_range = uv_is_untracked_pat_range; x86_platform.nmi_init = uv_nmi_init; if (!strcmp(oem_table_id, "UVX")) { /* most common */ uv_system_type = UV_X2APIC; uv_apic = 0; } else if (!strcmp(oem_table_id, "UVH")) { /* only UV1 systems */ uv_system_type = UV_NON_UNIQUE_APIC; __this_cpu_write(x2apic_extra_bits, pnodeid << uvh_apicid.s.pnode_shift); uv_set_apicid_hibit(); uv_apic = 1; } else if (!strcmp(oem_table_id, "UVL")) { /* only used for */ uv_system_type = UV_LEGACY_APIC; /* very small systems */ uv_apic = 0; } else { goto badbios; } pr_info("UV: OEM IDs %s/%s, System/HUB Types %d/%d, uv_apic %d\n", oem_id, oem_table_id, uv_system_type, uv_min_hub_revision_id, uv_apic); return uv_apic; badbios: pr_err("UV: OEM_ID:%s OEM_TABLE_ID:%s\n", oem_id, oem_table_id); pr_err("Current BIOS not supported, update kernel and/or BIOS\n"); BUG(); } enum uv_system_type get_uv_system_type(void) { return uv_system_type; } int is_uv_system(void) { return uv_system_type != UV_NONE; } EXPORT_SYMBOL_GPL(is_uv_system); DEFINE_PER_CPU(struct uv_hub_info_s, __uv_hub_info); EXPORT_PER_CPU_SYMBOL_GPL(__uv_hub_info); struct uv_blade_info *uv_blade_info; EXPORT_SYMBOL_GPL(uv_blade_info); short *uv_node_to_blade; EXPORT_SYMBOL_GPL(uv_node_to_blade); short *uv_cpu_to_blade; EXPORT_SYMBOL_GPL(uv_cpu_to_blade); short uv_possible_blades; EXPORT_SYMBOL_GPL(uv_possible_blades); unsigned long sn_rtc_cycles_per_second; EXPORT_SYMBOL(sn_rtc_cycles_per_second); static int uv_wakeup_secondary(int phys_apicid, unsigned long start_rip) { unsigned long val; int pnode; pnode = uv_apicid_to_pnode(phys_apicid); phys_apicid |= uv_apicid_hibits; val = (1UL << UVH_IPI_INT_SEND_SHFT) | (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) | ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) | APIC_DM_INIT; uv_write_global_mmr64(pnode, UVH_IPI_INT, val); val = (1UL << UVH_IPI_INT_SEND_SHFT) | (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) | ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) | APIC_DM_STARTUP; uv_write_global_mmr64(pnode, UVH_IPI_INT, val); return 0; } static void uv_send_IPI_one(int cpu, int vector) { unsigned long apicid; int pnode; apicid = per_cpu(x86_cpu_to_apicid, cpu); pnode = uv_apicid_to_pnode(apicid); uv_hub_send_ipi(pnode, apicid, vector); } static void uv_send_IPI_mask(const struct cpumask *mask, int vector) { unsigned int cpu; for_each_cpu(cpu, mask) uv_send_IPI_one(cpu, vector); } static void uv_send_IPI_mask_allbutself(const struct cpumask *mask, int vector) { unsigned int this_cpu = smp_processor_id(); unsigned int cpu; for_each_cpu(cpu, mask) { if (cpu != this_cpu) uv_send_IPI_one(cpu, vector); } } static void uv_send_IPI_allbutself(int vector) { unsigned int this_cpu = smp_processor_id(); unsigned int cpu; for_each_online_cpu(cpu) { if (cpu != this_cpu) uv_send_IPI_one(cpu, vector); } } static void uv_send_IPI_all(int vector) { uv_send_IPI_mask(cpu_online_mask, vector); } static int uv_apic_id_valid(int apicid) { return 1; } static int uv_apic_id_registered(void) { return 1; } static void uv_init_apic_ldr(void) { } static int uv_cpu_mask_to_apicid_and(const struct cpumask *cpumask, const struct cpumask *andmask, unsigned int *apicid) { int unsigned cpu; /* * We're using fixed IRQ delivery, can only return one phys APIC ID. * May as well be the first. */ for_each_cpu_and(cpu, cpumask, andmask) { if (cpumask_test_cpu(cpu, cpu_online_mask)) break; } if (likely(cpu < nr_cpu_ids)) { *apicid = per_cpu(x86_cpu_to_apicid, cpu) | uv_apicid_hibits; return 0; } return -EINVAL; } static unsigned int x2apic_get_apic_id(unsigned long x) { unsigned int id; WARN_ON(preemptible() && num_online_cpus() > 1); id = x | __this_cpu_read(x2apic_extra_bits); return id; } static unsigned long set_apic_id(unsigned int id) { unsigned long x; /* maskout x2apic_extra_bits ? */ x = id; return x; } static unsigned int uv_read_apic_id(void) { return x2apic_get_apic_id(apic_read(APIC_ID)); } static int uv_phys_pkg_id(int initial_apicid, int index_msb) { return uv_read_apic_id() >> index_msb; } static void uv_send_IPI_self(int vector) { apic_write(APIC_SELF_IPI, vector); } static int uv_probe(void) { return apic == &apic_x2apic_uv_x; } static struct apic __refdata apic_x2apic_uv_x = { .name = "UV large system", .probe = uv_probe, .acpi_madt_oem_check = uv_acpi_madt_oem_check, .apic_id_valid = uv_apic_id_valid, .apic_id_registered = uv_apic_id_registered, .irq_delivery_mode = dest_Fixed, .irq_dest_mode = 0, /* physical */ .target_cpus = online_target_cpus, .disable_esr = 0, .dest_logical = APIC_DEST_LOGICAL, .check_apicid_used = NULL, .vector_allocation_domain = default_vector_allocation_domain, .init_apic_ldr = uv_init_apic_ldr, .ioapic_phys_id_map = NULL, .setup_apic_routing = NULL, .cpu_present_to_apicid = default_cpu_present_to_apicid, .apicid_to_cpu_present = NULL, .check_phys_apicid_present = default_check_phys_apicid_present, .phys_pkg_id = uv_phys_pkg_id, .get_apic_id = x2apic_get_apic_id, .set_apic_id = set_apic_id, .apic_id_mask = 0xFFFFFFFFu, .cpu_mask_to_apicid_and = uv_cpu_mask_to_apicid_and, .send_IPI = uv_send_IPI_one, .send_IPI_mask = uv_send_IPI_mask, .send_IPI_mask_allbutself = uv_send_IPI_mask_allbutself, .send_IPI_allbutself = uv_send_IPI_allbutself, .send_IPI_all = uv_send_IPI_all, .send_IPI_self = uv_send_IPI_self, .wakeup_secondary_cpu = uv_wakeup_secondary, .inquire_remote_apic = NULL, .read = native_apic_msr_read, .write = native_apic_msr_write, .eoi_write = native_apic_msr_eoi_write, .icr_read = native_x2apic_icr_read, .icr_write = native_x2apic_icr_write, .wait_icr_idle = native_x2apic_wait_icr_idle, .safe_wait_icr_idle = native_safe_x2apic_wait_icr_idle, }; static void set_x2apic_extra_bits(int pnode) { __this_cpu_write(x2apic_extra_bits, pnode << uvh_apicid.s.pnode_shift); } /* * Called on boot cpu. */ static __init int boot_pnode_to_blade(int pnode) { int blade; for (blade = 0; blade < uv_num_possible_blades(); blade++) if (pnode == uv_blade_info[blade].pnode) return blade; BUG(); } #define UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH 3 #define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size) { union uvh_rh_gam_alias210_overlay_config_2_mmr_u alias; union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect; unsigned long m_redirect; unsigned long m_overlay; int i; for (i = 0; i < UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH; i++) { switch (i) { case 0: m_redirect = UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR; m_overlay = UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_0_MMR; break; case 1: m_redirect = UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR; m_overlay = UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_1_MMR; break; case 2: m_redirect = UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR; m_overlay = UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_2_MMR; break; } alias.v = uv_read_local_mmr(m_overlay); if (alias.s.enable && alias.s.base == 0) { *size = (1UL << alias.s.m_alias); redirect.v = uv_read_local_mmr(m_redirect); *base = (unsigned long)redirect.s.dest_base << DEST_SHIFT; return; } } *base = *size = 0; } enum map_type {map_wb, map_uc}; static __init void map_high(char *id, unsigned long base, int pshift, int bshift, int max_pnode, enum map_type map_type) { unsigned long bytes, paddr; paddr = base << pshift; bytes = (1UL << bshift) * (max_pnode + 1); if (!paddr) { pr_info("UV: Map %s_HI base address NULL\n", id); return; } pr_debug("UV: Map %s_HI 0x%lx - 0x%lx\n", id, paddr, paddr + bytes); if (map_type == map_uc) init_extra_mapping_uc(paddr, bytes); else init_extra_mapping_wb(paddr, bytes); } static __init void map_gru_distributed(unsigned long c) { union uvh_rh_gam_gru_overlay_config_mmr_u gru; u64 paddr; unsigned long bytes; int nid; gru.v = c; /* only base bits 42:28 relevant in dist mode */ gru_dist_base = gru.v & 0x000007fff0000000UL; if (!gru_dist_base) { pr_info("UV: Map GRU_DIST base address NULL\n"); return; } bytes = 1UL << UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT; gru_dist_lmask = ((1UL << uv_hub_info->m_val) - 1) & ~(bytes - 1); gru_dist_umask = ~((1UL << uv_hub_info->m_val) - 1); gru_dist_base &= gru_dist_lmask; /* Clear bits above M */ for_each_online_node(nid) { paddr = ((u64)uv_node_to_pnode(nid) << uv_hub_info->m_val) | gru_dist_base; init_extra_mapping_wb(paddr, bytes); gru_first_node_paddr = min(paddr, gru_first_node_paddr); gru_last_node_paddr = max(paddr, gru_last_node_paddr); } /* Save upper (63:M) bits of address only for is_GRU_range */ gru_first_node_paddr &= gru_dist_umask; gru_last_node_paddr &= gru_dist_umask; pr_debug("UV: Map GRU_DIST base 0x%016llx 0x%016llx - 0x%016llx\n", gru_dist_base, gru_first_node_paddr, gru_last_node_paddr); } static __init void map_gru_high(int max_pnode) { union uvh_rh_gam_gru_overlay_config_mmr_u gru; int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT; unsigned long mask = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_MASK; unsigned long base; gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR); if (!gru.s.enable) { pr_info("UV: GRU disabled\n"); return; } if (is_uv3_hub() && gru.s3.mode) { map_gru_distributed(gru.v); return; } base = (gru.v & mask) >> shift; map_high("GRU", base, shift, shift, max_pnode, map_wb); gru_start_paddr = ((u64)base << shift); gru_end_paddr = gru_start_paddr + (1UL << shift) * (max_pnode + 1); } static __init void map_mmr_high(int max_pnode) { union uvh_rh_gam_mmr_overlay_config_mmr_u mmr; int shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR_BASE_SHFT; mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR); if (mmr.s.enable) map_high("MMR", mmr.s.base, shift, shift, max_pnode, map_uc); else pr_info("UV: MMR disabled\n"); } /* * This commonality works because both 0 & 1 versions of the MMIOH OVERLAY * and REDIRECT MMR regs are exactly the same on UV3. */ struct mmioh_config { unsigned long overlay; unsigned long redirect; char *id; }; static __initdata struct mmioh_config mmiohs[] = { { UV3H_RH_GAM_MMIOH_OVERLAY_CONFIG0_MMR, UV3H_RH_GAM_MMIOH_REDIRECT_CONFIG0_MMR, "MMIOH0" }, { UV3H_RH_GAM_MMIOH_OVERLAY_CONFIG1_MMR, UV3H_RH_GAM_MMIOH_REDIRECT_CONFIG1_MMR, "MMIOH1" }, }; /* UV3 & UV4 have identical MMIOH overlay configs */ static __init void map_mmioh_high_uv3(int index, int min_pnode, int max_pnode) { union uv3h_rh_gam_mmioh_overlay_config0_mmr_u overlay; unsigned long mmr; unsigned long base; int i, n, shift, m_io, max_io; int nasid, lnasid, fi, li; char *id; id = mmiohs[index].id; overlay.v = uv_read_local_mmr(mmiohs[index].overlay); pr_info("UV: %s overlay 0x%lx base:0x%x m_io:%d\n", id, overlay.v, overlay.s3.base, overlay.s3.m_io); if (!overlay.s3.enable) { pr_info("UV: %s disabled\n", id); return; } shift = UV3H_RH_GAM_MMIOH_OVERLAY_CONFIG0_MMR_BASE_SHFT; base = (unsigned long)overlay.s3.base; m_io = overlay.s3.m_io; mmr = mmiohs[index].redirect; n = UV3H_RH_GAM_MMIOH_REDIRECT_CONFIG0_MMR_DEPTH; min_pnode *= 2; /* convert to NASID */ max_pnode *= 2; max_io = lnasid = fi = li = -1; for (i = 0; i < n; i++) { union uv3h_rh_gam_mmioh_redirect_config0_mmr_u redirect; redirect.v = uv_read_local_mmr(mmr + i * 8); nasid = redirect.s3.nasid; if (nasid < min_pnode || max_pnode < nasid) nasid = -1; /* invalid NASID */ if (nasid == lnasid) { li = i; if (i != n-1) /* last entry check */ continue; } /* check if we have a cached (or last) redirect to print */ if (lnasid != -1 || (i == n-1 && nasid != -1)) { unsigned long addr1, addr2; int f, l; if (lnasid == -1) { f = l = i; lnasid = nasid; } else { f = fi; l = li; } addr1 = (base << shift) + f * (unsigned long)(1 << m_io); addr2 = (base << shift) + (l + 1) * (unsigned long)(1 << m_io); pr_info("UV: %s[%03d..%03d] NASID 0x%04x ADDR 0x%016lx - 0x%016lx\n", id, fi, li, lnasid, addr1, addr2); if (max_io < l) max_io = l; } fi = li = i; lnasid = nasid; } pr_info("UV: %s base:0x%lx shift:%d M_IO:%d MAX_IO:%d\n", id, base, shift, m_io, max_io); if (max_io >= 0) map_high(id, base, shift, m_io, max_io, map_uc); } static __init void map_mmioh_high(int min_pnode, int max_pnode) { union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh; unsigned long mmr, base; int shift, enable, m_io, n_io; if (is_uv3_hub() || is_uv4_hub()) { /* Map both MMIOH Regions */ map_mmioh_high_uv3(0, min_pnode, max_pnode); map_mmioh_high_uv3(1, min_pnode, max_pnode); return; } if (is_uv1_hub()) { mmr = UV1H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR; shift = UV1H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT; mmioh.v = uv_read_local_mmr(mmr); enable = !!mmioh.s1.enable; base = mmioh.s1.base; m_io = mmioh.s1.m_io; n_io = mmioh.s1.n_io; } else if (is_uv2_hub()) { mmr = UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR; shift = UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT; mmioh.v = uv_read_local_mmr(mmr); enable = !!mmioh.s2.enable; base = mmioh.s2.base; m_io = mmioh.s2.m_io; n_io = mmioh.s2.n_io; } else return; if (enable) { max_pnode &= (1 << n_io) - 1; pr_info( "UV: base:0x%lx shift:%d N_IO:%d M_IO:%d max_pnode:0x%x\n", base, shift, m_io, n_io, max_pnode); map_high("MMIOH", base, shift, m_io, max_pnode, map_uc); } else { pr_info("UV: MMIOH disabled\n"); } } static __init void map_low_mmrs(void) { init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE); init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE); } static __init void uv_rtc_init(void) { long status; u64 ticks_per_sec; status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec); if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) { printk(KERN_WARNING "unable to determine platform RTC clock frequency, " "guessing.\n"); /* BIOS gives wrong value for clock freq. so guess */ sn_rtc_cycles_per_second = 1000000000000UL / 30000UL; } else sn_rtc_cycles_per_second = ticks_per_sec; } /* * percpu heartbeat timer */ static void uv_heartbeat(unsigned long ignored) { struct timer_list *timer = &uv_hub_info->scir.timer; unsigned char bits = uv_hub_info->scir.state; /* flip heartbeat bit */ bits ^= SCIR_CPU_HEARTBEAT; /* is this cpu idle? */ if (idle_cpu(raw_smp_processor_id())) bits &= ~SCIR_CPU_ACTIVITY; else bits |= SCIR_CPU_ACTIVITY; /* update system controller interface reg */ uv_set_scir_bits(bits); /* enable next timer period */ mod_timer_pinned(timer, jiffies + SCIR_CPU_HB_INTERVAL); } static void uv_heartbeat_enable(int cpu) { while (!uv_cpu_hub_info(cpu)->scir.enabled) { struct timer_list *timer = &uv_cpu_hub_info(cpu)->scir.timer; uv_set_cpu_scir_bits(cpu, SCIR_CPU_HEARTBEAT|SCIR_CPU_ACTIVITY); setup_timer(timer, uv_heartbeat, cpu); timer->expires = jiffies + SCIR_CPU_HB_INTERVAL; add_timer_on(timer, cpu); uv_cpu_hub_info(cpu)->scir.enabled = 1; /* also ensure that boot cpu is enabled */ cpu = 0; } } #ifdef CONFIG_HOTPLUG_CPU static void uv_heartbeat_disable(int cpu) { if (uv_cpu_hub_info(cpu)->scir.enabled) { uv_cpu_hub_info(cpu)->scir.enabled = 0; del_timer(&uv_cpu_hub_info(cpu)->scir.timer); } uv_set_cpu_scir_bits(cpu, 0xff); } /* * cpu hotplug notifier */ static int uv_scir_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { long cpu = (long)hcpu; switch (action & ~CPU_TASKS_FROZEN) { case CPU_DOWN_FAILED: case CPU_ONLINE: uv_heartbeat_enable(cpu); break; case CPU_DOWN_PREPARE: uv_heartbeat_disable(cpu); break; default: break; } return NOTIFY_OK; } static __init void uv_scir_register_cpu_notifier(void) { hotcpu_notifier(uv_scir_cpu_notify, 0); } #else /* !CONFIG_HOTPLUG_CPU */ static __init void uv_scir_register_cpu_notifier(void) { } static __init int uv_init_heartbeat(void) { int cpu; if (is_uv_system()) for_each_online_cpu(cpu) uv_heartbeat_enable(cpu); return 0; } late_initcall(uv_init_heartbeat); #endif /* !CONFIG_HOTPLUG_CPU */ /* Direct Legacy VGA I/O traffic to designated IOH */ int uv_set_vga_state(struct pci_dev *pdev, bool decode, unsigned int command_bits, u32 flags) { int domain, bus, rc; PR_DEVEL("devfn %x decode %d cmd %x flags %d\n", pdev->devfn, decode, command_bits, flags); if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) return 0; if ((command_bits & PCI_COMMAND_IO) == 0) return 0; domain = pci_domain_nr(pdev->bus); bus = pdev->bus->number; rc = uv_bios_set_legacy_vga_target(decode, domain, bus); PR_DEVEL("vga decode %d %x:%x, rc: %d\n", decode, domain, bus, rc); return rc; } /* * Called on each cpu to initialize the per_cpu UV data area. * FIXME: hotplug not supported yet */ void uv_cpu_init(void) { /* CPU 0 initialization will be done via uv_system_init. */ if (!uv_blade_info) return; uv_blade_info[uv_numa_blade_id()].nr_online_cpus++; if (get_uv_system_type() == UV_NON_UNIQUE_APIC) set_x2apic_extra_bits(uv_hub_info->pnode); } struct mn { unsigned char m_val; unsigned char n_val; unsigned char m_shift; unsigned char n_lshift; }; static void get_mn(struct mn *mnp) { union uvh_rh_gam_config_mmr_u m_n_config; union uv3h_gr0_gam_gr_config_u m_gr_config; m_n_config.v = uv_read_local_mmr(UVH_RH_GAM_CONFIG_MMR); mnp->n_val = m_n_config.s.n_skt; if (is_uv4_hub()) { mnp->m_val = 0; mnp->n_lshift = 0; } else if (is_uv3_hub()) { mnp->m_val = m_n_config.s3.m_skt; m_gr_config.v = uv_read_local_mmr(UV3H_GR0_GAM_GR_CONFIG); mnp->n_lshift = m_gr_config.s3.m_skt; } else if (is_uv2_hub()) { mnp->m_val = m_n_config.s2.m_skt; mnp->n_lshift = mnp->m_val == 40 ? 40 : 39; } else if (is_uv1_hub()) { mnp->m_val = m_n_config.s1.m_skt; mnp->n_lshift = mnp->m_val; } mnp->m_shift = mnp->m_val ? 64 - mnp->m_val : 0; } void __init uv_init_hub_info(struct uv_hub_info_s *hub_info) { struct mn mn = {0}; /* avoid unitialized warnings */ union uvh_node_id_u node_id; get_mn(&mn); hub_info->m_val = mn.m_val; hub_info->n_val = mn.n_val; hub_info->m_shift = mn.m_shift; hub_info->n_lshift = mn.n_lshift; hub_info->hub_revision = uv_hub_info->hub_revision; hub_info->pnode_mask = (1 << mn.n_val) - 1; hub_info->gpa_mask = (1UL << (mn.m_val + mn.n_val)) - 1; node_id.v = uv_read_local_mmr(UVH_NODE_ID); hub_info->gnode_extra = (node_id.s.node_id & ~((1 << mn.n_val) - 1)) >> 1; hub_info->gnode_upper = ((unsigned long)hub_info->gnode_extra << mn.m_val); hub_info->global_mmr_base = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) & ~UV_MMR_ENABLE; get_lowmem_redirect( &hub_info->lowmem_remap_base, &hub_info->lowmem_remap_top); hub_info->apic_pnode_shift = uvh_apicid.s.pnode_shift; /* show system specific info */ pr_info("UV: N:%d M:%d m_shift:%d n_lshift:%d\n", hub_info->n_val, hub_info->m_val, hub_info->m_shift, hub_info->n_lshift); pr_info("UV: pnode_mask:0x%x gpa_mask:0x%lx apic_pns:%d\n", hub_info->pnode_mask, hub_info->gpa_mask, hub_info->apic_pnode_shift); pr_info("UV: gnode_upper:0x%lx gnode_extra:0x%x\n", hub_info->gnode_upper, hub_info->gnode_extra); pr_info("UV: global MMR base 0x%lx\n", hub_info->global_mmr_base); } void __init uv_system_init(void) { struct uv_hub_info_s hub_info = {0}; int bytes, nid, cpu, pnode, blade, i, j; int min_pnode = 999999, max_pnode = -1; char *hub = is_uv4_hub() ? "UV400" : is_uv3_hub() ? "UV300" : is_uv2_hub() ? "UV2000/3000" : is_uv1_hub() ? "UV100/1000" : NULL; if (!hub) { pr_err("UV: Unknown/unsupported UV hub\n"); return; } pr_info("UV: Found %s hub\n", hub); /* We now only need to map the MMRs on UV1 */ if (is_uv1_hub()) map_low_mmrs(); uv_init_hub_info(&hub_info); for(i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) uv_possible_blades += hweight64(uv_read_local_mmr( UVH_NODE_PRESENT_TABLE + i * 8)); /* uv_num_possible_blades() is really the hub count */ pr_info("UV: Found %d blades, %d hubs\n", is_uv1_hub() ? uv_num_possible_blades() : (uv_num_possible_blades() + 1) / 2, uv_num_possible_blades()); bytes = sizeof(struct uv_blade_info) * uv_num_possible_blades(); uv_blade_info = kzalloc(bytes, GFP_KERNEL); BUG_ON(!uv_blade_info); for (blade = 0; blade < uv_num_possible_blades(); blade++) uv_blade_info[blade].memory_nid = -1; bytes = sizeof(uv_node_to_blade[0]) * num_possible_nodes(); uv_node_to_blade = kmalloc(bytes, GFP_KERNEL); BUG_ON(!uv_node_to_blade); memset(uv_node_to_blade, 255, bytes); bytes = sizeof(uv_cpu_to_blade[0]) * num_possible_cpus(); uv_cpu_to_blade = kmalloc(bytes, GFP_KERNEL); BUG_ON(!uv_cpu_to_blade); memset(uv_cpu_to_blade, 255, bytes); blade = 0; for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) { unsigned long present = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8); for (j = 0; j < 64; j++) { if (!test_bit(j, &present)) continue; pnode = (i * 64 + j) & hub_info.pnode_mask; uv_blade_info[blade].pnode = pnode; uv_blade_info[blade].nr_possible_cpus = 0; uv_blade_info[blade].nr_online_cpus = 0; min_pnode = min(pnode, min_pnode); max_pnode = max(pnode, max_pnode); blade++; } } uv_bios_init(); uv_bios_get_sn_info(0, &uv_type, &sn_partition_id, &sn_coherency_id, &sn_region_size, &system_serial_number); hub_info.coherency_domain_number = sn_coherency_id; uv_rtc_init(); for_each_present_cpu(cpu) { int apicid = per_cpu(x86_cpu_to_apicid, cpu); int nodeid = cpu_to_node(cpu); int lcpu; *uv_cpu_hub_info(cpu) = hub_info; /* common hub values */ pnode = uv_apicid_to_pnode(apicid); blade = boot_pnode_to_blade(pnode); lcpu = uv_blade_info[blade].nr_possible_cpus; uv_blade_info[blade].nr_possible_cpus++; /* Any node on the blade, else will contain -1. */ uv_blade_info[blade].memory_nid = nodeid; uv_cpu_hub_info(cpu)->numa_blade_id = blade; uv_cpu_hub_info(cpu)->pnode = pnode; uv_cpu_hub_info(cpu)->scir.offset = uv_scir_offset(apicid); uv_cpu_hub_info(cpu)->blade_processor_id = lcpu; uv_node_to_blade[nodeid] = blade; uv_cpu_to_blade[cpu] = blade; } /* Add blade/pnode info for nodes without cpus */ for_each_online_node(nid) { unsigned long paddr; if (uv_node_to_blade[nid] >= 0) continue; paddr = node_start_pfn(nid) << PAGE_SHIFT; pnode = uv_gpa_to_pnode(uv_soc_phys_ram_to_gpa(paddr)); blade = boot_pnode_to_blade(pnode); uv_node_to_blade[nid] = blade; } map_gru_high(max_pnode); map_mmr_high(max_pnode); map_mmioh_high(min_pnode, max_pnode); uv_nmi_setup(); uv_cpu_init(); uv_scir_register_cpu_notifier(); proc_mkdir("sgi_uv", NULL); /* register Legacy VGA I/O redirection handler */ pci_register_set_vga_state(uv_set_vga_state); /* * For a kdump kernel the reset must be BOOT_ACPI, not BOOT_EFI, as * EFI is not enabled in the kdump kernel. */ if (is_kdump_kernel()) reboot_type = BOOT_ACPI; } apic_driver(apic_x2apic_uv_x);