/* * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_sb.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_inode.h" #include "xfs_btree.h" #include "xfs_ialloc.h" #include "xfs_ialloc_btree.h" #include "xfs_alloc.h" #include "xfs_rtalloc.h" #include "xfs_errortag.h" #include "xfs_error.h" #include "xfs_bmap.h" #include "xfs_cksum.h" #include "xfs_trans.h" #include "xfs_buf_item.h" #include "xfs_icreate_item.h" #include "xfs_icache.h" #include "xfs_trace.h" #include "xfs_log.h" #include "xfs_rmap.h" /* * Allocation group level functions. */ int xfs_ialloc_cluster_alignment( struct xfs_mount *mp) { if (xfs_sb_version_hasalign(&mp->m_sb) && mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) return mp->m_sb.sb_inoalignmt; return 1; } /* * Lookup a record by ino in the btree given by cur. */ int /* error */ xfs_inobt_lookup( struct xfs_btree_cur *cur, /* btree cursor */ xfs_agino_t ino, /* starting inode of chunk */ xfs_lookup_t dir, /* <=, >=, == */ int *stat) /* success/failure */ { cur->bc_rec.i.ir_startino = ino; cur->bc_rec.i.ir_holemask = 0; cur->bc_rec.i.ir_count = 0; cur->bc_rec.i.ir_freecount = 0; cur->bc_rec.i.ir_free = 0; return xfs_btree_lookup(cur, dir, stat); } /* * Update the record referred to by cur to the value given. * This either works (return 0) or gets an EFSCORRUPTED error. */ STATIC int /* error */ xfs_inobt_update( struct xfs_btree_cur *cur, /* btree cursor */ xfs_inobt_rec_incore_t *irec) /* btree record */ { union xfs_btree_rec rec; rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); rec.inobt.ir_u.sp.ir_count = irec->ir_count; rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; } else { /* ir_holemask/ir_count not supported on-disk */ rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); } rec.inobt.ir_free = cpu_to_be64(irec->ir_free); return xfs_btree_update(cur, &rec); } /* Convert on-disk btree record to incore inobt record. */ void xfs_inobt_btrec_to_irec( struct xfs_mount *mp, union xfs_btree_rec *rec, struct xfs_inobt_rec_incore *irec) { irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); if (xfs_sb_version_hassparseinodes(&mp->m_sb)) { irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); irec->ir_count = rec->inobt.ir_u.sp.ir_count; irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; } else { /* * ir_holemask/ir_count not supported on-disk. Fill in hardcoded * values for full inode chunks. */ irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; irec->ir_count = XFS_INODES_PER_CHUNK; irec->ir_freecount = be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); } irec->ir_free = be64_to_cpu(rec->inobt.ir_free); } /* * Get the data from the pointed-to record. */ int xfs_inobt_get_rec( struct xfs_btree_cur *cur, struct xfs_inobt_rec_incore *irec, int *stat) { union xfs_btree_rec *rec; int error; error = xfs_btree_get_rec(cur, &rec, stat); if (error || *stat == 0) return error; xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec); return 0; } /* * Insert a single inobt record. Cursor must already point to desired location. */ int xfs_inobt_insert_rec( struct xfs_btree_cur *cur, uint16_t holemask, uint8_t count, int32_t freecount, xfs_inofree_t free, int *stat) { cur->bc_rec.i.ir_holemask = holemask; cur->bc_rec.i.ir_count = count; cur->bc_rec.i.ir_freecount = freecount; cur->bc_rec.i.ir_free = free; return xfs_btree_insert(cur, stat); } /* * Insert records describing a newly allocated inode chunk into the inobt. */ STATIC int xfs_inobt_insert( struct xfs_mount *mp, struct xfs_trans *tp, struct xfs_buf *agbp, xfs_agino_t newino, xfs_agino_t newlen, xfs_btnum_t btnum) { struct xfs_btree_cur *cur; struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); xfs_agino_t thisino; int i; int error; cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); for (thisino = newino; thisino < newino + newlen; thisino += XFS_INODES_PER_CHUNK) { error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); if (error) { xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } ASSERT(i == 0); error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, XFS_INODES_PER_CHUNK, XFS_INODES_PER_CHUNK, XFS_INOBT_ALL_FREE, &i); if (error) { xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } ASSERT(i == 1); } xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); return 0; } /* * Verify that the number of free inodes in the AGI is correct. */ #ifdef DEBUG STATIC int xfs_check_agi_freecount( struct xfs_btree_cur *cur, struct xfs_agi *agi) { if (cur->bc_nlevels == 1) { xfs_inobt_rec_incore_t rec; int freecount = 0; int error; int i; error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); if (error) return error; do { error = xfs_inobt_get_rec(cur, &rec, &i); if (error) return error; if (i) { freecount += rec.ir_freecount; error = xfs_btree_increment(cur, 0, &i); if (error) return error; } } while (i == 1); if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); } return 0; } #else #define xfs_check_agi_freecount(cur, agi) 0 #endif /* * Initialise a new set of inodes. When called without a transaction context * (e.g. from recovery) we initiate a delayed write of the inode buffers rather * than logging them (which in a transaction context puts them into the AIL * for writeback rather than the xfsbufd queue). */ int xfs_ialloc_inode_init( struct xfs_mount *mp, struct xfs_trans *tp, struct list_head *buffer_list, int icount, xfs_agnumber_t agno, xfs_agblock_t agbno, xfs_agblock_t length, unsigned int gen) { struct xfs_buf *fbuf; struct xfs_dinode *free; int nbufs, blks_per_cluster, inodes_per_cluster; int version; int i, j; xfs_daddr_t d; xfs_ino_t ino = 0; /* * Loop over the new block(s), filling in the inodes. For small block * sizes, manipulate the inodes in buffers which are multiples of the * blocks size. */ blks_per_cluster = xfs_icluster_size_fsb(mp); inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; nbufs = length / blks_per_cluster; /* * Figure out what version number to use in the inodes we create. If * the superblock version has caught up to the one that supports the new * inode format, then use the new inode version. Otherwise use the old * version so that old kernels will continue to be able to use the file * system. * * For v3 inodes, we also need to write the inode number into the inode, * so calculate the first inode number of the chunk here as * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not * across multiple filesystem blocks (such as a cluster) and so cannot * be used in the cluster buffer loop below. * * Further, because we are writing the inode directly into the buffer * and calculating a CRC on the entire inode, we have ot log the entire * inode so that the entire range the CRC covers is present in the log. * That means for v3 inode we log the entire buffer rather than just the * inode cores. */ if (xfs_sb_version_hascrc(&mp->m_sb)) { version = 3; ino = XFS_AGINO_TO_INO(mp, agno, XFS_OFFBNO_TO_AGINO(mp, agbno, 0)); /* * log the initialisation that is about to take place as an * logical operation. This means the transaction does not * need to log the physical changes to the inode buffers as log * recovery will know what initialisation is actually needed. * Hence we only need to log the buffers as "ordered" buffers so * they track in the AIL as if they were physically logged. */ if (tp) xfs_icreate_log(tp, agno, agbno, icount, mp->m_sb.sb_inodesize, length, gen); } else version = 2; for (j = 0; j < nbufs; j++) { /* * Get the block. */ d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster)); fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize * blks_per_cluster, XBF_UNMAPPED); if (!fbuf) return -ENOMEM; /* Initialize the inode buffers and log them appropriately. */ fbuf->b_ops = &xfs_inode_buf_ops; xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); for (i = 0; i < inodes_per_cluster; i++) { int ioffset = i << mp->m_sb.sb_inodelog; uint isize = xfs_dinode_size(version); free = xfs_make_iptr(mp, fbuf, i); free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); free->di_version = version; free->di_gen = cpu_to_be32(gen); free->di_next_unlinked = cpu_to_be32(NULLAGINO); if (version == 3) { free->di_ino = cpu_to_be64(ino); ino++; uuid_copy(&free->di_uuid, &mp->m_sb.sb_meta_uuid); xfs_dinode_calc_crc(mp, free); } else if (tp) { /* just log the inode core */ xfs_trans_log_buf(tp, fbuf, ioffset, ioffset + isize - 1); } } if (tp) { /* * Mark the buffer as an inode allocation buffer so it * sticks in AIL at the point of this allocation * transaction. This ensures the they are on disk before * the tail of the log can be moved past this * transaction (i.e. by preventing relogging from moving * it forward in the log). */ xfs_trans_inode_alloc_buf(tp, fbuf); if (version == 3) { /* * Mark the buffer as ordered so that they are * not physically logged in the transaction but * still tracked in the AIL as part of the * transaction and pin the log appropriately. */ xfs_trans_ordered_buf(tp, fbuf); } } else { fbuf->b_flags |= XBF_DONE; xfs_buf_delwri_queue(fbuf, buffer_list); xfs_buf_relse(fbuf); } } return 0; } /* * Align startino and allocmask for a recently allocated sparse chunk such that * they are fit for insertion (or merge) into the on-disk inode btrees. * * Background: * * When enabled, sparse inode support increases the inode alignment from cluster * size to inode chunk size. This means that the minimum range between two * non-adjacent inode records in the inobt is large enough for a full inode * record. This allows for cluster sized, cluster aligned block allocation * without need to worry about whether the resulting inode record overlaps with * another record in the tree. Without this basic rule, we would have to deal * with the consequences of overlap by potentially undoing recent allocations in * the inode allocation codepath. * * Because of this alignment rule (which is enforced on mount), there are two * inobt possibilities for newly allocated sparse chunks. One is that the * aligned inode record for the chunk covers a range of inodes not already * covered in the inobt (i.e., it is safe to insert a new sparse record). The * other is that a record already exists at the aligned startino that considers * the newly allocated range as sparse. In the latter case, record content is * merged in hope that sparse inode chunks fill to full chunks over time. */ STATIC void xfs_align_sparse_ino( struct xfs_mount *mp, xfs_agino_t *startino, uint16_t *allocmask) { xfs_agblock_t agbno; xfs_agblock_t mod; int offset; agbno = XFS_AGINO_TO_AGBNO(mp, *startino); mod = agbno % mp->m_sb.sb_inoalignmt; if (!mod) return; /* calculate the inode offset and align startino */ offset = mod << mp->m_sb.sb_inopblog; *startino -= offset; /* * Since startino has been aligned down, left shift allocmask such that * it continues to represent the same physical inodes relative to the * new startino. */ *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; } /* * Determine whether the source inode record can merge into the target. Both * records must be sparse, the inode ranges must match and there must be no * allocation overlap between the records. */ STATIC bool __xfs_inobt_can_merge( struct xfs_inobt_rec_incore *trec, /* tgt record */ struct xfs_inobt_rec_incore *srec) /* src record */ { uint64_t talloc; uint64_t salloc; /* records must cover the same inode range */ if (trec->ir_startino != srec->ir_startino) return false; /* both records must be sparse */ if (!xfs_inobt_issparse(trec->ir_holemask) || !xfs_inobt_issparse(srec->ir_holemask)) return false; /* both records must track some inodes */ if (!trec->ir_count || !srec->ir_count) return false; /* can't exceed capacity of a full record */ if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) return false; /* verify there is no allocation overlap */ talloc = xfs_inobt_irec_to_allocmask(trec); salloc = xfs_inobt_irec_to_allocmask(srec); if (talloc & salloc) return false; return true; } /* * Merge the source inode record into the target. The caller must call * __xfs_inobt_can_merge() to ensure the merge is valid. */ STATIC void __xfs_inobt_rec_merge( struct xfs_inobt_rec_incore *trec, /* target */ struct xfs_inobt_rec_incore *srec) /* src */ { ASSERT(trec->ir_startino == srec->ir_startino); /* combine the counts */ trec->ir_count += srec->ir_count; trec->ir_freecount += srec->ir_freecount; /* * Merge the holemask and free mask. For both fields, 0 bits refer to * allocated inodes. We combine the allocated ranges with bitwise AND. */ trec->ir_holemask &= srec->ir_holemask; trec->ir_free &= srec->ir_free; } /* * Insert a new sparse inode chunk into the associated inode btree. The inode * record for the sparse chunk is pre-aligned to a startino that should match * any pre-existing sparse inode record in the tree. This allows sparse chunks * to fill over time. * * This function supports two modes of handling preexisting records depending on * the merge flag. If merge is true, the provided record is merged with the * existing record and updated in place. The merged record is returned in nrec. * If merge is false, an existing record is replaced with the provided record. * If no preexisting record exists, the provided record is always inserted. * * It is considered corruption if a merge is requested and not possible. Given * the sparse inode alignment constraints, this should never happen. */ STATIC int xfs_inobt_insert_sprec( struct xfs_mount *mp, struct xfs_trans *tp, struct xfs_buf *agbp, int btnum, struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ bool merge) /* merge or replace */ { struct xfs_btree_cur *cur; struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); int error; int i; struct xfs_inobt_rec_incore rec; cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); /* the new record is pre-aligned so we know where to look */ error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); if (error) goto error; /* if nothing there, insert a new record and return */ if (i == 0) { error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, nrec->ir_count, nrec->ir_freecount, nrec->ir_free, &i); if (error) goto error; XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); goto out; } /* * A record exists at this startino. Merge or replace the record * depending on what we've been asked to do. */ if (merge) { error = xfs_inobt_get_rec(cur, &rec, &i); if (error) goto error; XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); XFS_WANT_CORRUPTED_GOTO(mp, rec.ir_startino == nrec->ir_startino, error); /* * This should never fail. If we have coexisting records that * cannot merge, something is seriously wrong. */ XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec), error); trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino, rec.ir_holemask, nrec->ir_startino, nrec->ir_holemask); /* merge to nrec to output the updated record */ __xfs_inobt_rec_merge(nrec, &rec); trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino, nrec->ir_holemask); error = xfs_inobt_rec_check_count(mp, nrec); if (error) goto error; } error = xfs_inobt_update(cur, nrec); if (error) goto error; out: xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); return 0; error: xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } /* * Allocate new inodes in the allocation group specified by agbp. * Return 0 for success, else error code. */ STATIC int /* error code or 0 */ xfs_ialloc_ag_alloc( xfs_trans_t *tp, /* transaction pointer */ xfs_buf_t *agbp, /* alloc group buffer */ int *alloc) { xfs_agi_t *agi; /* allocation group header */ xfs_alloc_arg_t args; /* allocation argument structure */ xfs_agnumber_t agno; int error; xfs_agino_t newino; /* new first inode's number */ xfs_agino_t newlen; /* new number of inodes */ int isaligned = 0; /* inode allocation at stripe unit */ /* boundary */ uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */ struct xfs_inobt_rec_incore rec; struct xfs_perag *pag; int do_sparse = 0; memset(&args, 0, sizeof(args)); args.tp = tp; args.mp = tp->t_mountp; args.fsbno = NULLFSBLOCK; xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES); #ifdef DEBUG /* randomly do sparse inode allocations */ if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) && args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks) do_sparse = prandom_u32() & 1; #endif /* * Locking will ensure that we don't have two callers in here * at one time. */ newlen = args.mp->m_ialloc_inos; if (args.mp->m_maxicount && percpu_counter_read_positive(&args.mp->m_icount) + newlen > args.mp->m_maxicount) return -ENOSPC; args.minlen = args.maxlen = args.mp->m_ialloc_blks; /* * First try to allocate inodes contiguous with the last-allocated * chunk of inodes. If the filesystem is striped, this will fill * an entire stripe unit with inodes. */ agi = XFS_BUF_TO_AGI(agbp); newino = be32_to_cpu(agi->agi_newino); agno = be32_to_cpu(agi->agi_seqno); args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + args.mp->m_ialloc_blks; if (do_sparse) goto sparse_alloc; if (likely(newino != NULLAGINO && (args.agbno < be32_to_cpu(agi->agi_length)))) { args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); args.type = XFS_ALLOCTYPE_THIS_BNO; args.prod = 1; /* * We need to take into account alignment here to ensure that * we don't modify the free list if we fail to have an exact * block. If we don't have an exact match, and every oher * attempt allocation attempt fails, we'll end up cancelling * a dirty transaction and shutting down. * * For an exact allocation, alignment must be 1, * however we need to take cluster alignment into account when * fixing up the freelist. Use the minalignslop field to * indicate that extra blocks might be required for alignment, * but not to use them in the actual exact allocation. */ args.alignment = 1; args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1; /* Allow space for the inode btree to split. */ args.minleft = args.mp->m_in_maxlevels - 1; if ((error = xfs_alloc_vextent(&args))) return error; /* * This request might have dirtied the transaction if the AG can * satisfy the request, but the exact block was not available. * If the allocation did fail, subsequent requests will relax * the exact agbno requirement and increase the alignment * instead. It is critical that the total size of the request * (len + alignment + slop) does not increase from this point * on, so reset minalignslop to ensure it is not included in * subsequent requests. */ args.minalignslop = 0; } if (unlikely(args.fsbno == NULLFSBLOCK)) { /* * Set the alignment for the allocation. * If stripe alignment is turned on then align at stripe unit * boundary. * If the cluster size is smaller than a filesystem block * then we're doing I/O for inodes in filesystem block size * pieces, so don't need alignment anyway. */ isaligned = 0; if (args.mp->m_sinoalign) { ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); args.alignment = args.mp->m_dalign; isaligned = 1; } else args.alignment = xfs_ialloc_cluster_alignment(args.mp); /* * Need to figure out where to allocate the inode blocks. * Ideally they should be spaced out through the a.g. * For now, just allocate blocks up front. */ args.agbno = be32_to_cpu(agi->agi_root); args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); /* * Allocate a fixed-size extent of inodes. */ args.type = XFS_ALLOCTYPE_NEAR_BNO; args.prod = 1; /* * Allow space for the inode btree to split. */ args.minleft = args.mp->m_in_maxlevels - 1; if ((error = xfs_alloc_vextent(&args))) return error; } /* * If stripe alignment is turned on, then try again with cluster * alignment. */ if (isaligned && args.fsbno == NULLFSBLOCK) { args.type = XFS_ALLOCTYPE_NEAR_BNO; args.agbno = be32_to_cpu(agi->agi_root); args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); args.alignment = xfs_ialloc_cluster_alignment(args.mp); if ((error = xfs_alloc_vextent(&args))) return error; } /* * Finally, try a sparse allocation if the filesystem supports it and * the sparse allocation length is smaller than a full chunk. */ if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) && args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks && args.fsbno == NULLFSBLOCK) { sparse_alloc: args.type = XFS_ALLOCTYPE_NEAR_BNO; args.agbno = be32_to_cpu(agi->agi_root); args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); args.alignment = args.mp->m_sb.sb_spino_align; args.prod = 1; args.minlen = args.mp->m_ialloc_min_blks; args.maxlen = args.minlen; /* * The inode record will be aligned to full chunk size. We must * prevent sparse allocation from AG boundaries that result in * invalid inode records, such as records that start at agbno 0 * or extend beyond the AG. * * Set min agbno to the first aligned, non-zero agbno and max to * the last aligned agbno that is at least one full chunk from * the end of the AG. */ args.min_agbno = args.mp->m_sb.sb_inoalignmt; args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, args.mp->m_sb.sb_inoalignmt) - args.mp->m_ialloc_blks; error = xfs_alloc_vextent(&args); if (error) return error; newlen = args.len << args.mp->m_sb.sb_inopblog; ASSERT(newlen <= XFS_INODES_PER_CHUNK); allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; } if (args.fsbno == NULLFSBLOCK) { *alloc = 0; return 0; } ASSERT(args.len == args.minlen); /* * Stamp and write the inode buffers. * * Seed the new inode cluster with a random generation number. This * prevents short-term reuse of generation numbers if a chunk is * freed and then immediately reallocated. We use random numbers * rather than a linear progression to prevent the next generation * number from being easily guessable. */ error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno, args.agbno, args.len, prandom_u32()); if (error) return error; /* * Convert the results. */ newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); if (xfs_inobt_issparse(~allocmask)) { /* * We've allocated a sparse chunk. Align the startino and mask. */ xfs_align_sparse_ino(args.mp, &newino, &allocmask); rec.ir_startino = newino; rec.ir_holemask = ~allocmask; rec.ir_count = newlen; rec.ir_freecount = newlen; rec.ir_free = XFS_INOBT_ALL_FREE; /* * Insert the sparse record into the inobt and allow for a merge * if necessary. If a merge does occur, rec is updated to the * merged record. */ error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO, &rec, true); if (error == -EFSCORRUPTED) { xfs_alert(args.mp, "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", XFS_AGINO_TO_INO(args.mp, agno, rec.ir_startino), rec.ir_holemask, rec.ir_count); xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); } if (error) return error; /* * We can't merge the part we've just allocated as for the inobt * due to finobt semantics. The original record may or may not * exist independent of whether physical inodes exist in this * sparse chunk. * * We must update the finobt record based on the inobt record. * rec contains the fully merged and up to date inobt record * from the previous call. Set merge false to replace any * existing record with this one. */ if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_FINO, &rec, false); if (error) return error; } } else { /* full chunk - insert new records to both btrees */ error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, XFS_BTNUM_INO); if (error) return error; if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, XFS_BTNUM_FINO); if (error) return error; } } /* * Update AGI counts and newino. */ be32_add_cpu(&agi->agi_count, newlen); be32_add_cpu(&agi->agi_freecount, newlen); pag = xfs_perag_get(args.mp, agno); pag->pagi_freecount += newlen; xfs_perag_put(pag); agi->agi_newino = cpu_to_be32(newino); /* * Log allocation group header fields */ xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); /* * Modify/log superblock values for inode count and inode free count. */ xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); *alloc = 1; return 0; } STATIC xfs_agnumber_t xfs_ialloc_next_ag( xfs_mount_t *mp) { xfs_agnumber_t agno; spin_lock(&mp->m_agirotor_lock); agno = mp->m_agirotor; if (++mp->m_agirotor >= mp->m_maxagi) mp->m_agirotor = 0; spin_unlock(&mp->m_agirotor_lock); return agno; } /* * Select an allocation group to look for a free inode in, based on the parent * inode and the mode. Return the allocation group buffer. */ STATIC xfs_agnumber_t xfs_ialloc_ag_select( xfs_trans_t *tp, /* transaction pointer */ xfs_ino_t parent, /* parent directory inode number */ umode_t mode) /* bits set to indicate file type */ { xfs_agnumber_t agcount; /* number of ag's in the filesystem */ xfs_agnumber_t agno; /* current ag number */ int flags; /* alloc buffer locking flags */ xfs_extlen_t ineed; /* blocks needed for inode allocation */ xfs_extlen_t longest = 0; /* longest extent available */ xfs_mount_t *mp; /* mount point structure */ int needspace; /* file mode implies space allocated */ xfs_perag_t *pag; /* per allocation group data */ xfs_agnumber_t pagno; /* parent (starting) ag number */ int error; /* * Files of these types need at least one block if length > 0 * (and they won't fit in the inode, but that's hard to figure out). */ needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); mp = tp->t_mountp; agcount = mp->m_maxagi; if (S_ISDIR(mode)) pagno = xfs_ialloc_next_ag(mp); else { pagno = XFS_INO_TO_AGNO(mp, parent); if (pagno >= agcount) pagno = 0; } ASSERT(pagno < agcount); /* * Loop through allocation groups, looking for one with a little * free space in it. Note we don't look for free inodes, exactly. * Instead, we include whether there is a need to allocate inodes * to mean that blocks must be allocated for them, * if none are currently free. */ agno = pagno; flags = XFS_ALLOC_FLAG_TRYLOCK; for (;;) { pag = xfs_perag_get(mp, agno); if (!pag->pagi_inodeok) { xfs_ialloc_next_ag(mp); goto nextag; } if (!pag->pagi_init) { error = xfs_ialloc_pagi_init(mp, tp, agno); if (error) goto nextag; } if (pag->pagi_freecount) { xfs_perag_put(pag); return agno; } if (!pag->pagf_init) { error = xfs_alloc_pagf_init(mp, tp, agno, flags); if (error) goto nextag; } /* * Check that there is enough free space for the file plus a * chunk of inodes if we need to allocate some. If this is the * first pass across the AGs, take into account the potential * space needed for alignment of inode chunks when checking the * longest contiguous free space in the AG - this prevents us * from getting ENOSPC because we have free space larger than * m_ialloc_blks but alignment constraints prevent us from using * it. * * If we can't find an AG with space for full alignment slack to * be taken into account, we must be near ENOSPC in all AGs. * Hence we don't include alignment for the second pass and so * if we fail allocation due to alignment issues then it is most * likely a real ENOSPC condition. */ ineed = mp->m_ialloc_min_blks; if (flags && ineed > 1) ineed += xfs_ialloc_cluster_alignment(mp); longest = pag->pagf_longest; if (!longest) longest = pag->pagf_flcount > 0; if (pag->pagf_freeblks >= needspace + ineed && longest >= ineed) { xfs_perag_put(pag); return agno; } nextag: xfs_perag_put(pag); /* * No point in iterating over the rest, if we're shutting * down. */ if (XFS_FORCED_SHUTDOWN(mp)) return NULLAGNUMBER; agno++; if (agno >= agcount) agno = 0; if (agno == pagno) { if (flags == 0) return NULLAGNUMBER; flags = 0; } } } /* * Try to retrieve the next record to the left/right from the current one. */ STATIC int xfs_ialloc_next_rec( struct xfs_btree_cur *cur, xfs_inobt_rec_incore_t *rec, int *done, int left) { int error; int i; if (left) error = xfs_btree_decrement(cur, 0, &i); else error = xfs_btree_increment(cur, 0, &i); if (error) return error; *done = !i; if (i) { error = xfs_inobt_get_rec(cur, rec, &i); if (error) return error; XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); } return 0; } STATIC int xfs_ialloc_get_rec( struct xfs_btree_cur *cur, xfs_agino_t agino, xfs_inobt_rec_incore_t *rec, int *done) { int error; int i; error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); if (error) return error; *done = !i; if (i) { error = xfs_inobt_get_rec(cur, rec, &i); if (error) return error; XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); } return 0; } /* * Return the offset of the first free inode in the record. If the inode chunk * is sparsely allocated, we convert the record holemask to inode granularity * and mask off the unallocated regions from the inode free mask. */ STATIC int xfs_inobt_first_free_inode( struct xfs_inobt_rec_incore *rec) { xfs_inofree_t realfree; /* if there are no holes, return the first available offset */ if (!xfs_inobt_issparse(rec->ir_holemask)) return xfs_lowbit64(rec->ir_free); realfree = xfs_inobt_irec_to_allocmask(rec); realfree &= rec->ir_free; return xfs_lowbit64(realfree); } /* * Allocate an inode using the inobt-only algorithm. */ STATIC int xfs_dialloc_ag_inobt( struct xfs_trans *tp, struct xfs_buf *agbp, xfs_ino_t parent, xfs_ino_t *inop) { struct xfs_mount *mp = tp->t_mountp; struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); struct xfs_perag *pag; struct xfs_btree_cur *cur, *tcur; struct xfs_inobt_rec_incore rec, trec; xfs_ino_t ino; int error; int offset; int i, j; int searchdistance = 10; pag = xfs_perag_get(mp, agno); ASSERT(pag->pagi_init); ASSERT(pag->pagi_inodeok); ASSERT(pag->pagi_freecount > 0); restart_pagno: cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); /* * If pagino is 0 (this is the root inode allocation) use newino. * This must work because we've just allocated some. */ if (!pagino) pagino = be32_to_cpu(agi->agi_newino); error = xfs_check_agi_freecount(cur, agi); if (error) goto error0; /* * If in the same AG as the parent, try to get near the parent. */ if (pagno == agno) { int doneleft; /* done, to the left */ int doneright; /* done, to the right */ error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); error = xfs_inobt_get_rec(cur, &rec, &j); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0); if (rec.ir_freecount > 0) { /* * Found a free inode in the same chunk * as the parent, done. */ goto alloc_inode; } /* * In the same AG as parent, but parent's chunk is full. */ /* duplicate the cursor, search left & right simultaneously */ error = xfs_btree_dup_cursor(cur, &tcur); if (error) goto error0; /* * Skip to last blocks looked up if same parent inode. */ if (pagino != NULLAGINO && pag->pagl_pagino == pagino && pag->pagl_leftrec != NULLAGINO && pag->pagl_rightrec != NULLAGINO) { error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, &trec, &doneleft); if (error) goto error1; error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, &rec, &doneright); if (error) goto error1; } else { /* search left with tcur, back up 1 record */ error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); if (error) goto error1; /* search right with cur, go forward 1 record. */ error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); if (error) goto error1; } /* * Loop until we find an inode chunk with a free inode. */ while (--searchdistance > 0 && (!doneleft || !doneright)) { int useleft; /* using left inode chunk this time */ /* figure out the closer block if both are valid. */ if (!doneleft && !doneright) { useleft = pagino - (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < rec.ir_startino - pagino; } else { useleft = !doneleft; } /* free inodes to the left? */ if (useleft && trec.ir_freecount) { xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); cur = tcur; pag->pagl_leftrec = trec.ir_startino; pag->pagl_rightrec = rec.ir_startino; pag->pagl_pagino = pagino; rec = trec; goto alloc_inode; } /* free inodes to the right? */ if (!useleft && rec.ir_freecount) { xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); pag->pagl_leftrec = trec.ir_startino; pag->pagl_rightrec = rec.ir_startino; pag->pagl_pagino = pagino; goto alloc_inode; } /* get next record to check */ if (useleft) { error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); } else { error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); } if (error) goto error1; } if (searchdistance <= 0) { /* * Not in range - save last search * location and allocate a new inode */ xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); pag->pagl_leftrec = trec.ir_startino; pag->pagl_rightrec = rec.ir_startino; pag->pagl_pagino = pagino; } else { /* * We've reached the end of the btree. because * we are only searching a small chunk of the * btree each search, there is obviously free * inodes closer to the parent inode than we * are now. restart the search again. */ pag->pagl_pagino = NULLAGINO; pag->pagl_leftrec = NULLAGINO; pag->pagl_rightrec = NULLAGINO; xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); goto restart_pagno; } } /* * In a different AG from the parent. * See if the most recently allocated block has any free. */ if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), XFS_LOOKUP_EQ, &i); if (error) goto error0; if (i == 1) { error = xfs_inobt_get_rec(cur, &rec, &j); if (error) goto error0; if (j == 1 && rec.ir_freecount > 0) { /* * The last chunk allocated in the group * still has a free inode. */ goto alloc_inode; } } } /* * None left in the last group, search the whole AG */ error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); for (;;) { error = xfs_inobt_get_rec(cur, &rec, &i); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); if (rec.ir_freecount > 0) break; error = xfs_btree_increment(cur, 0, &i); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); } alloc_inode: offset = xfs_inobt_first_free_inode(&rec); ASSERT(offset >= 0); ASSERT(offset < XFS_INODES_PER_CHUNK); ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % XFS_INODES_PER_CHUNK) == 0); ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); rec.ir_free &= ~XFS_INOBT_MASK(offset); rec.ir_freecount--; error = xfs_inobt_update(cur, &rec); if (error) goto error0; be32_add_cpu(&agi->agi_freecount, -1); xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); pag->pagi_freecount--; error = xfs_check_agi_freecount(cur, agi); if (error) goto error0; xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); xfs_perag_put(pag); *inop = ino; return 0; error1: xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); error0: xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); xfs_perag_put(pag); return error; } /* * Use the free inode btree to allocate an inode based on distance from the * parent. Note that the provided cursor may be deleted and replaced. */ STATIC int xfs_dialloc_ag_finobt_near( xfs_agino_t pagino, struct xfs_btree_cur **ocur, struct xfs_inobt_rec_incore *rec) { struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ struct xfs_btree_cur *rcur; /* right search cursor */ struct xfs_inobt_rec_incore rrec; int error; int i, j; error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); if (error) return error; if (i == 1) { error = xfs_inobt_get_rec(lcur, rec, &i); if (error) return error; XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1); /* * See if we've landed in the parent inode record. The finobt * only tracks chunks with at least one free inode, so record * existence is enough. */ if (pagino >= rec->ir_startino && pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) return 0; } error = xfs_btree_dup_cursor(lcur, &rcur); if (error) return error; error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); if (error) goto error_rcur; if (j == 1) { error = xfs_inobt_get_rec(rcur, &rrec, &j); if (error) goto error_rcur; XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur); } XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur); if (i == 1 && j == 1) { /* * Both the left and right records are valid. Choose the closer * inode chunk to the target. */ if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > (rrec.ir_startino - pagino)) { *rec = rrec; xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); *ocur = rcur; } else { xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); } } else if (j == 1) { /* only the right record is valid */ *rec = rrec; xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); *ocur = rcur; } else if (i == 1) { /* only the left record is valid */ xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); } return 0; error_rcur: xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); return error; } /* * Use the free inode btree to find a free inode based on a newino hint. If * the hint is NULL, find the first free inode in the AG. */ STATIC int xfs_dialloc_ag_finobt_newino( struct xfs_agi *agi, struct xfs_btree_cur *cur, struct xfs_inobt_rec_incore *rec) { int error; int i; if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), XFS_LOOKUP_EQ, &i); if (error) return error; if (i == 1) { error = xfs_inobt_get_rec(cur, rec, &i); if (error) return error; XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); return 0; } } /* * Find the first inode available in the AG. */ error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); if (error) return error; XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); error = xfs_inobt_get_rec(cur, rec, &i); if (error) return error; XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); return 0; } /* * Update the inobt based on a modification made to the finobt. Also ensure that * the records from both trees are equivalent post-modification. */ STATIC int xfs_dialloc_ag_update_inobt( struct xfs_btree_cur *cur, /* inobt cursor */ struct xfs_inobt_rec_incore *frec, /* finobt record */ int offset) /* inode offset */ { struct xfs_inobt_rec_incore rec; int error; int i; error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); if (error) return error; XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); error = xfs_inobt_get_rec(cur, &rec, &i); if (error) return error; XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % XFS_INODES_PER_CHUNK) == 0); rec.ir_free &= ~XFS_INOBT_MASK(offset); rec.ir_freecount--; XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) && (rec.ir_freecount == frec->ir_freecount)); return xfs_inobt_update(cur, &rec); } /* * Allocate an inode using the free inode btree, if available. Otherwise, fall * back to the inobt search algorithm. * * The caller selected an AG for us, and made sure that free inodes are * available. */ STATIC int xfs_dialloc_ag( struct xfs_trans *tp, struct xfs_buf *agbp, xfs_ino_t parent, xfs_ino_t *inop) { struct xfs_mount *mp = tp->t_mountp; struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); struct xfs_perag *pag; struct xfs_btree_cur *cur; /* finobt cursor */ struct xfs_btree_cur *icur; /* inobt cursor */ struct xfs_inobt_rec_incore rec; xfs_ino_t ino; int error; int offset; int i; if (!xfs_sb_version_hasfinobt(&mp->m_sb)) return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); pag = xfs_perag_get(mp, agno); /* * If pagino is 0 (this is the root inode allocation) use newino. * This must work because we've just allocated some. */ if (!pagino) pagino = be32_to_cpu(agi->agi_newino); cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); error = xfs_check_agi_freecount(cur, agi); if (error) goto error_cur; /* * The search algorithm depends on whether we're in the same AG as the * parent. If so, find the closest available inode to the parent. If * not, consider the agi hint or find the first free inode in the AG. */ if (agno == pagno) error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); else error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); if (error) goto error_cur; offset = xfs_inobt_first_free_inode(&rec); ASSERT(offset >= 0); ASSERT(offset < XFS_INODES_PER_CHUNK); ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % XFS_INODES_PER_CHUNK) == 0); ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); /* * Modify or remove the finobt record. */ rec.ir_free &= ~XFS_INOBT_MASK(offset); rec.ir_freecount--; if (rec.ir_freecount) error = xfs_inobt_update(cur, &rec); else error = xfs_btree_delete(cur, &i); if (error) goto error_cur; /* * The finobt has now been updated appropriately. We haven't updated the * agi and superblock yet, so we can create an inobt cursor and validate * the original freecount. If all is well, make the equivalent update to * the inobt using the finobt record and offset information. */ icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); error = xfs_check_agi_freecount(icur, agi); if (error) goto error_icur; error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); if (error) goto error_icur; /* * Both trees have now been updated. We must update the perag and * superblock before we can check the freecount for each btree. */ be32_add_cpu(&agi->agi_freecount, -1); xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); pag->pagi_freecount--; xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); error = xfs_check_agi_freecount(icur, agi); if (error) goto error_icur; error = xfs_check_agi_freecount(cur, agi); if (error) goto error_icur; xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); xfs_perag_put(pag); *inop = ino; return 0; error_icur: xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); error_cur: xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); xfs_perag_put(pag); return error; } /* * Allocate an inode on disk. * * Mode is used to tell whether the new inode will need space, and whether it * is a directory. * * This function is designed to be called twice if it has to do an allocation * to make more free inodes. On the first call, *IO_agbp should be set to NULL. * If an inode is available without having to performn an allocation, an inode * number is returned. In this case, *IO_agbp is set to NULL. If an allocation * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. * The caller should then commit the current transaction, allocate a * new transaction, and call xfs_dialloc() again, passing in the previous value * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI * buffer is locked across the two calls, the second call is guaranteed to have * a free inode available. * * Once we successfully pick an inode its number is returned and the on-disk * data structures are updated. The inode itself is not read in, since doing so * would break ordering constraints with xfs_reclaim. */ int xfs_dialloc( struct xfs_trans *tp, xfs_ino_t parent, umode_t mode, struct xfs_buf **IO_agbp, xfs_ino_t *inop) { struct xfs_mount *mp = tp->t_mountp; struct xfs_buf *agbp; xfs_agnumber_t agno; int error; int ialloced; int noroom = 0; xfs_agnumber_t start_agno; struct xfs_perag *pag; int okalloc = 1; if (*IO_agbp) { /* * If the caller passes in a pointer to the AGI buffer, * continue where we left off before. In this case, we * know that the allocation group has free inodes. */ agbp = *IO_agbp; goto out_alloc; } /* * We do not have an agbp, so select an initial allocation * group for inode allocation. */ start_agno = xfs_ialloc_ag_select(tp, parent, mode); if (start_agno == NULLAGNUMBER) { *inop = NULLFSINO; return 0; } /* * If we have already hit the ceiling of inode blocks then clear * okalloc so we scan all available agi structures for a free * inode. * * Read rough value of mp->m_icount by percpu_counter_read_positive, * which will sacrifice the preciseness but improve the performance. */ if (mp->m_maxicount && percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos > mp->m_maxicount) { noroom = 1; okalloc = 0; } /* * Loop until we find an allocation group that either has free inodes * or in which we can allocate some inodes. Iterate through the * allocation groups upward, wrapping at the end. */ agno = start_agno; for (;;) { pag = xfs_perag_get(mp, agno); if (!pag->pagi_inodeok) { xfs_ialloc_next_ag(mp); goto nextag; } if (!pag->pagi_init) { error = xfs_ialloc_pagi_init(mp, tp, agno); if (error) goto out_error; } /* * Do a first racy fast path check if this AG is usable. */ if (!pag->pagi_freecount && !okalloc) goto nextag; /* * Then read in the AGI buffer and recheck with the AGI buffer * lock held. */ error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); if (error) goto out_error; if (pag->pagi_freecount) { xfs_perag_put(pag); goto out_alloc; } if (!okalloc) goto nextag_relse_buffer; error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); if (error) { xfs_trans_brelse(tp, agbp); if (error != -ENOSPC) goto out_error; xfs_perag_put(pag); *inop = NULLFSINO; return 0; } if (ialloced) { /* * We successfully allocated some inodes, return * the current context to the caller so that it * can commit the current transaction and call * us again where we left off. */ ASSERT(pag->pagi_freecount > 0); xfs_perag_put(pag); *IO_agbp = agbp; *inop = NULLFSINO; return 0; } nextag_relse_buffer: xfs_trans_brelse(tp, agbp); nextag: xfs_perag_put(pag); if (++agno == mp->m_sb.sb_agcount) agno = 0; if (agno == start_agno) { *inop = NULLFSINO; return noroom ? -ENOSPC : 0; } } out_alloc: *IO_agbp = NULL; return xfs_dialloc_ag(tp, agbp, parent, inop); out_error: xfs_perag_put(pag); return error; } /* * Free the blocks of an inode chunk. We must consider that the inode chunk * might be sparse and only free the regions that are allocated as part of the * chunk. */ STATIC void xfs_difree_inode_chunk( struct xfs_mount *mp, xfs_agnumber_t agno, struct xfs_inobt_rec_incore *rec, struct xfs_defer_ops *dfops) { xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino); int startidx, endidx; int nextbit; xfs_agblock_t agbno; int contigblk; struct xfs_owner_info oinfo; DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES); if (!xfs_inobt_issparse(rec->ir_holemask)) { /* not sparse, calculate extent info directly */ xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno), mp->m_ialloc_blks, &oinfo); return; } /* holemask is only 16-bits (fits in an unsigned long) */ ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); holemask[0] = rec->ir_holemask; /* * Find contiguous ranges of zeroes (i.e., allocated regions) in the * holemask and convert the start/end index of each range to an extent. * We start with the start and end index both pointing at the first 0 in * the mask. */ startidx = endidx = find_first_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS); nextbit = startidx + 1; while (startidx < XFS_INOBT_HOLEMASK_BITS) { nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, nextbit); /* * If the next zero bit is contiguous, update the end index of * the current range and continue. */ if (nextbit != XFS_INOBT_HOLEMASK_BITS && nextbit == endidx + 1) { endidx = nextbit; goto next; } /* * nextbit is not contiguous with the current end index. Convert * the current start/end to an extent and add it to the free * list. */ agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / mp->m_sb.sb_inopblock; contigblk = ((endidx - startidx + 1) * XFS_INODES_PER_HOLEMASK_BIT) / mp->m_sb.sb_inopblock; ASSERT(agbno % mp->m_sb.sb_spino_align == 0); ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno), contigblk, &oinfo); /* reset range to current bit and carry on... */ startidx = endidx = nextbit; next: nextbit++; } } STATIC int xfs_difree_inobt( struct xfs_mount *mp, struct xfs_trans *tp, struct xfs_buf *agbp, xfs_agino_t agino, struct xfs_defer_ops *dfops, struct xfs_icluster *xic, struct xfs_inobt_rec_incore *orec) { struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); struct xfs_perag *pag; struct xfs_btree_cur *cur; struct xfs_inobt_rec_incore rec; int ilen; int error; int i; int off; ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); /* * Initialize the cursor. */ cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); error = xfs_check_agi_freecount(cur, agi); if (error) goto error0; /* * Look for the entry describing this inode. */ if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", __func__, error); goto error0; } XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); error = xfs_inobt_get_rec(cur, &rec, &i); if (error) { xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", __func__, error); goto error0; } XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); /* * Get the offset in the inode chunk. */ off = agino - rec.ir_startino; ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); /* * Mark the inode free & increment the count. */ rec.ir_free |= XFS_INOBT_MASK(off); rec.ir_freecount++; /* * When an inode chunk is free, it becomes eligible for removal. Don't * remove the chunk if the block size is large enough for multiple inode * chunks (that might not be free). */ if (!(mp->m_flags & XFS_MOUNT_IKEEP) && rec.ir_free == XFS_INOBT_ALL_FREE && mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { xic->deleted = true; xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); xic->alloc = xfs_inobt_irec_to_allocmask(&rec); /* * Remove the inode cluster from the AGI B+Tree, adjust the * AGI and Superblock inode counts, and mark the disk space * to be freed when the transaction is committed. */ ilen = rec.ir_freecount; be32_add_cpu(&agi->agi_count, -ilen); be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); pag = xfs_perag_get(mp, agno); pag->pagi_freecount -= ilen - 1; xfs_perag_put(pag); xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); if ((error = xfs_btree_delete(cur, &i))) { xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", __func__, error); goto error0; } xfs_difree_inode_chunk(mp, agno, &rec, dfops); } else { xic->deleted = false; error = xfs_inobt_update(cur, &rec); if (error) { xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", __func__, error); goto error0; } /* * Change the inode free counts and log the ag/sb changes. */ be32_add_cpu(&agi->agi_freecount, 1); xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); pag = xfs_perag_get(mp, agno); pag->pagi_freecount++; xfs_perag_put(pag); xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); } error = xfs_check_agi_freecount(cur, agi); if (error) goto error0; *orec = rec; xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); return 0; error0: xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } /* * Free an inode in the free inode btree. */ STATIC int xfs_difree_finobt( struct xfs_mount *mp, struct xfs_trans *tp, struct xfs_buf *agbp, xfs_agino_t agino, struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ { struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); struct xfs_btree_cur *cur; struct xfs_inobt_rec_incore rec; int offset = agino - ibtrec->ir_startino; int error; int i; cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); if (error) goto error; if (i == 0) { /* * If the record does not exist in the finobt, we must have just * freed an inode in a previously fully allocated chunk. If not, * something is out of sync. */ XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error); error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, ibtrec->ir_count, ibtrec->ir_freecount, ibtrec->ir_free, &i); if (error) goto error; ASSERT(i == 1); goto out; } /* * Read and update the existing record. We could just copy the ibtrec * across here, but that would defeat the purpose of having redundant * metadata. By making the modifications independently, we can catch * corruptions that we wouldn't see if we just copied from one record * to another. */ error = xfs_inobt_get_rec(cur, &rec, &i); if (error) goto error; XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); rec.ir_free |= XFS_INOBT_MASK(offset); rec.ir_freecount++; XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) && (rec.ir_freecount == ibtrec->ir_freecount), error); /* * The content of inobt records should always match between the inobt * and finobt. The lifecycle of records in the finobt is different from * the inobt in that the finobt only tracks records with at least one * free inode. Hence, if all of the inodes are free and we aren't * keeping inode chunks permanently on disk, remove the record. * Otherwise, update the record with the new information. * * Note that we currently can't free chunks when the block size is large * enough for multiple chunks. Leave the finobt record to remain in sync * with the inobt. */ if (rec.ir_free == XFS_INOBT_ALL_FREE && mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK && !(mp->m_flags & XFS_MOUNT_IKEEP)) { error = xfs_btree_delete(cur, &i); if (error) goto error; ASSERT(i == 1); } else { error = xfs_inobt_update(cur, &rec); if (error) goto error; } out: error = xfs_check_agi_freecount(cur, agi); if (error) goto error; xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); return 0; error: xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } /* * Free disk inode. Carefully avoids touching the incore inode, all * manipulations incore are the caller's responsibility. * The on-disk inode is not changed by this operation, only the * btree (free inode mask) is changed. */ int xfs_difree( struct xfs_trans *tp, /* transaction pointer */ xfs_ino_t inode, /* inode to be freed */ struct xfs_defer_ops *dfops, /* extents to free */ struct xfs_icluster *xic) /* cluster info if deleted */ { /* REFERENCED */ xfs_agblock_t agbno; /* block number containing inode */ struct xfs_buf *agbp; /* buffer for allocation group header */ xfs_agino_t agino; /* allocation group inode number */ xfs_agnumber_t agno; /* allocation group number */ int error; /* error return value */ struct xfs_mount *mp; /* mount structure for filesystem */ struct xfs_inobt_rec_incore rec;/* btree record */ mp = tp->t_mountp; /* * Break up inode number into its components. */ agno = XFS_INO_TO_AGNO(mp, inode); if (agno >= mp->m_sb.sb_agcount) { xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", __func__, agno, mp->m_sb.sb_agcount); ASSERT(0); return -EINVAL; } agino = XFS_INO_TO_AGINO(mp, inode); if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", __func__, (unsigned long long)inode, (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); ASSERT(0); return -EINVAL; } agbno = XFS_AGINO_TO_AGBNO(mp, agino); if (agbno >= mp->m_sb.sb_agblocks) { xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", __func__, agbno, mp->m_sb.sb_agblocks); ASSERT(0); return -EINVAL; } /* * Get the allocation group header. */ error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); if (error) { xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", __func__, error); return error; } /* * Fix up the inode allocation btree. */ error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec); if (error) goto error0; /* * Fix up the free inode btree. */ if (xfs_sb_version_hasfinobt(&mp->m_sb)) { error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); if (error) goto error0; } return 0; error0: return error; } STATIC int xfs_imap_lookup( struct xfs_mount *mp, struct xfs_trans *tp, xfs_agnumber_t agno, xfs_agino_t agino, xfs_agblock_t agbno, xfs_agblock_t *chunk_agbno, xfs_agblock_t *offset_agbno, int flags) { struct xfs_inobt_rec_incore rec; struct xfs_btree_cur *cur; struct xfs_buf *agbp; int error; int i; error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); if (error) { xfs_alert(mp, "%s: xfs_ialloc_read_agi() returned error %d, agno %d", __func__, error, agno); return error; } /* * Lookup the inode record for the given agino. If the record cannot be * found, then it's an invalid inode number and we should abort. Once * we have a record, we need to ensure it contains the inode number * we are looking up. */ cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); if (!error) { if (i) error = xfs_inobt_get_rec(cur, &rec, &i); if (!error && i == 0) error = -EINVAL; } xfs_trans_brelse(tp, agbp); xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); if (error) return error; /* check that the returned record contains the required inode */ if (rec.ir_startino > agino || rec.ir_startino + mp->m_ialloc_inos <= agino) return -EINVAL; /* for untrusted inodes check it is allocated first */ if ((flags & XFS_IGET_UNTRUSTED) && (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) return -EINVAL; *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); *offset_agbno = agbno - *chunk_agbno; return 0; } /* * Return the location of the inode in imap, for mapping it into a buffer. */ int xfs_imap( xfs_mount_t *mp, /* file system mount structure */ xfs_trans_t *tp, /* transaction pointer */ xfs_ino_t ino, /* inode to locate */ struct xfs_imap *imap, /* location map structure */ uint flags) /* flags for inode btree lookup */ { xfs_agblock_t agbno; /* block number of inode in the alloc group */ xfs_agino_t agino; /* inode number within alloc group */ xfs_agnumber_t agno; /* allocation group number */ int blks_per_cluster; /* num blocks per inode cluster */ xfs_agblock_t chunk_agbno; /* first block in inode chunk */ xfs_agblock_t cluster_agbno; /* first block in inode cluster */ int error; /* error code */ int offset; /* index of inode in its buffer */ xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ ASSERT(ino != NULLFSINO); /* * Split up the inode number into its parts. */ agno = XFS_INO_TO_AGNO(mp, ino); agino = XFS_INO_TO_AGINO(mp, ino); agbno = XFS_AGINO_TO_AGBNO(mp, agino); if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || ino != XFS_AGINO_TO_INO(mp, agno, agino)) { #ifdef DEBUG /* * Don't output diagnostic information for untrusted inodes * as they can be invalid without implying corruption. */ if (flags & XFS_IGET_UNTRUSTED) return -EINVAL; if (agno >= mp->m_sb.sb_agcount) { xfs_alert(mp, "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", __func__, agno, mp->m_sb.sb_agcount); } if (agbno >= mp->m_sb.sb_agblocks) { xfs_alert(mp, "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", __func__, (unsigned long long)agbno, (unsigned long)mp->m_sb.sb_agblocks); } if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { xfs_alert(mp, "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", __func__, ino, XFS_AGINO_TO_INO(mp, agno, agino)); } xfs_stack_trace(); #endif /* DEBUG */ return -EINVAL; } blks_per_cluster = xfs_icluster_size_fsb(mp); /* * For bulkstat and handle lookups, we have an untrusted inode number * that we have to verify is valid. We cannot do this just by reading * the inode buffer as it may have been unlinked and removed leaving * inodes in stale state on disk. Hence we have to do a btree lookup * in all cases where an untrusted inode number is passed. */ if (flags & XFS_IGET_UNTRUSTED) { error = xfs_imap_lookup(mp, tp, agno, agino, agbno, &chunk_agbno, &offset_agbno, flags); if (error) return error; goto out_map; } /* * If the inode cluster size is the same as the blocksize or * smaller we get to the buffer by simple arithmetics. */ if (blks_per_cluster == 1) { offset = XFS_INO_TO_OFFSET(mp, ino); ASSERT(offset < mp->m_sb.sb_inopblock); imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); imap->im_len = XFS_FSB_TO_BB(mp, 1); imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); return 0; } /* * If the inode chunks are aligned then use simple maths to * find the location. Otherwise we have to do a btree * lookup to find the location. */ if (mp->m_inoalign_mask) { offset_agbno = agbno & mp->m_inoalign_mask; chunk_agbno = agbno - offset_agbno; } else { error = xfs_imap_lookup(mp, tp, agno, agino, agbno, &chunk_agbno, &offset_agbno, flags); if (error) return error; } out_map: ASSERT(agbno >= chunk_agbno); cluster_agbno = chunk_agbno + ((offset_agbno / blks_per_cluster) * blks_per_cluster); offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + XFS_INO_TO_OFFSET(mp, ino); imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster); imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); /* * If the inode number maps to a block outside the bounds * of the file system then return NULL rather than calling * read_buf and panicing when we get an error from the * driver. */ if ((imap->im_blkno + imap->im_len) > XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { xfs_alert(mp, "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", __func__, (unsigned long long) imap->im_blkno, (unsigned long long) imap->im_len, XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); return -EINVAL; } return 0; } /* * Compute and fill in value of m_in_maxlevels. */ void xfs_ialloc_compute_maxlevels( xfs_mount_t *mp) /* file system mount structure */ { uint inodes; inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp->m_inobt_mnr, inodes); } /* * Log specified fields for the ag hdr (inode section). The growth of the agi * structure over time requires that we interpret the buffer as two logical * regions delineated by the end of the unlinked list. This is due to the size * of the hash table and its location in the middle of the agi. * * For example, a request to log a field before agi_unlinked and a field after * agi_unlinked could cause us to log the entire hash table and use an excessive * amount of log space. To avoid this behavior, log the region up through * agi_unlinked in one call and the region after agi_unlinked through the end of * the structure in another. */ void xfs_ialloc_log_agi( xfs_trans_t *tp, /* transaction pointer */ xfs_buf_t *bp, /* allocation group header buffer */ int fields) /* bitmask of fields to log */ { int first; /* first byte number */ int last; /* last byte number */ static const short offsets[] = { /* field starting offsets */ /* keep in sync with bit definitions */ offsetof(xfs_agi_t, agi_magicnum), offsetof(xfs_agi_t, agi_versionnum), offsetof(xfs_agi_t, agi_seqno), offsetof(xfs_agi_t, agi_length), offsetof(xfs_agi_t, agi_count), offsetof(xfs_agi_t, agi_root), offsetof(xfs_agi_t, agi_level), offsetof(xfs_agi_t, agi_freecount), offsetof(xfs_agi_t, agi_newino), offsetof(xfs_agi_t, agi_dirino), offsetof(xfs_agi_t, agi_unlinked), offsetof(xfs_agi_t, agi_free_root), offsetof(xfs_agi_t, agi_free_level), sizeof(xfs_agi_t) }; #ifdef DEBUG xfs_agi_t *agi; /* allocation group header */ agi = XFS_BUF_TO_AGI(bp); ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); #endif /* * Compute byte offsets for the first and last fields in the first * region and log the agi buffer. This only logs up through * agi_unlinked. */ if (fields & XFS_AGI_ALL_BITS_R1) { xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, &first, &last); xfs_trans_log_buf(tp, bp, first, last); } /* * Mask off the bits in the first region and calculate the first and * last field offsets for any bits in the second region. */ fields &= ~XFS_AGI_ALL_BITS_R1; if (fields) { xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, &first, &last); xfs_trans_log_buf(tp, bp, first, last); } } static xfs_failaddr_t xfs_agi_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_target->bt_mount; struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); int i; if (xfs_sb_version_hascrc(&mp->m_sb)) { if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) return __this_address; if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn))) return __this_address; } /* * Validate the magic number of the agi block. */ if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC)) return __this_address; if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) return __this_address; if (be32_to_cpu(agi->agi_level) < 1 || be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS) return __this_address; if (xfs_sb_version_hasfinobt(&mp->m_sb) && (be32_to_cpu(agi->agi_free_level) < 1 || be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS)) return __this_address; /* * during growfs operations, the perag is not fully initialised, * so we can't use it for any useful checking. growfs ensures we can't * use it by using uncached buffers that don't have the perag attached * so we can detect and avoid this problem. */ if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) return __this_address; for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { if (agi->agi_unlinked[i] == NULLAGINO) continue; if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i]))) return __this_address; } return NULL; } static void xfs_agi_read_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_target->bt_mount; xfs_failaddr_t fa; if (xfs_sb_version_hascrc(&mp->m_sb) && !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) xfs_verifier_error(bp, -EFSBADCRC, __this_address); else { fa = xfs_agi_verify(bp); if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI)) xfs_verifier_error(bp, -EFSCORRUPTED, fa); } } static void xfs_agi_write_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_target->bt_mount; struct xfs_buf_log_item *bip = bp->b_log_item; xfs_failaddr_t fa; fa = xfs_agi_verify(bp); if (fa) { xfs_verifier_error(bp, -EFSCORRUPTED, fa); return; } if (!xfs_sb_version_hascrc(&mp->m_sb)) return; if (bip) XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); } const struct xfs_buf_ops xfs_agi_buf_ops = { .name = "xfs_agi", .verify_read = xfs_agi_read_verify, .verify_write = xfs_agi_write_verify, .verify_struct = xfs_agi_verify, }; /* * Read in the allocation group header (inode allocation section) */ int xfs_read_agi( struct xfs_mount *mp, /* file system mount structure */ struct xfs_trans *tp, /* transaction pointer */ xfs_agnumber_t agno, /* allocation group number */ struct xfs_buf **bpp) /* allocation group hdr buf */ { int error; trace_xfs_read_agi(mp, agno); ASSERT(agno != NULLAGNUMBER); error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); if (error) return error; if (tp) xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF); xfs_buf_set_ref(*bpp, XFS_AGI_REF); return 0; } int xfs_ialloc_read_agi( struct xfs_mount *mp, /* file system mount structure */ struct xfs_trans *tp, /* transaction pointer */ xfs_agnumber_t agno, /* allocation group number */ struct xfs_buf **bpp) /* allocation group hdr buf */ { struct xfs_agi *agi; /* allocation group header */ struct xfs_perag *pag; /* per allocation group data */ int error; trace_xfs_ialloc_read_agi(mp, agno); error = xfs_read_agi(mp, tp, agno, bpp); if (error) return error; agi = XFS_BUF_TO_AGI(*bpp); pag = xfs_perag_get(mp, agno); if (!pag->pagi_init) { pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); pag->pagi_count = be32_to_cpu(agi->agi_count); pag->pagi_init = 1; } /* * It's possible for these to be out of sync if * we are in the middle of a forced shutdown. */ ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || XFS_FORCED_SHUTDOWN(mp)); xfs_perag_put(pag); return 0; } /* * Read in the agi to initialise the per-ag data in the mount structure */ int xfs_ialloc_pagi_init( xfs_mount_t *mp, /* file system mount structure */ xfs_trans_t *tp, /* transaction pointer */ xfs_agnumber_t agno) /* allocation group number */ { xfs_buf_t *bp = NULL; int error; error = xfs_ialloc_read_agi(mp, tp, agno, &bp); if (error) return error; if (bp) xfs_trans_brelse(tp, bp); return 0; } /* Calculate the first and last possible inode number in an AG. */ void xfs_ialloc_agino_range( struct xfs_mount *mp, xfs_agnumber_t agno, xfs_agino_t *first, xfs_agino_t *last) { xfs_agblock_t bno; xfs_agblock_t eoag; eoag = xfs_ag_block_count(mp, agno); /* * Calculate the first inode, which will be in the first * cluster-aligned block after the AGFL. */ bno = round_up(XFS_AGFL_BLOCK(mp) + 1, xfs_ialloc_cluster_alignment(mp)); *first = XFS_OFFBNO_TO_AGINO(mp, bno, 0); /* * Calculate the last inode, which will be at the end of the * last (aligned) cluster that can be allocated in the AG. */ bno = round_down(eoag, xfs_ialloc_cluster_alignment(mp)); *last = XFS_OFFBNO_TO_AGINO(mp, bno, 0) - 1; } /* * Verify that an AG inode number pointer neither points outside the AG * nor points at static metadata. */ bool xfs_verify_agino( struct xfs_mount *mp, xfs_agnumber_t agno, xfs_agino_t agino) { xfs_agino_t first; xfs_agino_t last; xfs_ialloc_agino_range(mp, agno, &first, &last); return agino >= first && agino <= last; } /* * Verify that an FS inode number pointer neither points outside the * filesystem nor points at static AG metadata. */ bool xfs_verify_ino( struct xfs_mount *mp, xfs_ino_t ino) { xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ino); xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); if (agno >= mp->m_sb.sb_agcount) return false; if (XFS_AGINO_TO_INO(mp, agno, agino) != ino) return false; return xfs_verify_agino(mp, agno, agino); } /* Is this an internal inode number? */ bool xfs_internal_inum( struct xfs_mount *mp, xfs_ino_t ino) { return ino == mp->m_sb.sb_rbmino || ino == mp->m_sb.sb_rsumino || (xfs_sb_version_hasquota(&mp->m_sb) && xfs_is_quota_inode(&mp->m_sb, ino)); } /* * Verify that a directory entry's inode number doesn't point at an internal * inode, empty space, or static AG metadata. */ bool xfs_verify_dir_ino( struct xfs_mount *mp, xfs_ino_t ino) { if (xfs_internal_inum(mp, ino)) return false; return xfs_verify_ino(mp, ino); } /* Is there an inode record covering a given range of inode numbers? */ int xfs_ialloc_has_inode_record( struct xfs_btree_cur *cur, xfs_agino_t low, xfs_agino_t high, bool *exists) { struct xfs_inobt_rec_incore irec; xfs_agino_t agino; uint16_t holemask; int has_record; int i; int error; *exists = false; error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record); while (error == 0 && has_record) { error = xfs_inobt_get_rec(cur, &irec, &has_record); if (error || irec.ir_startino > high) break; agino = irec.ir_startino; holemask = irec.ir_holemask; for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1, i++, agino += XFS_INODES_PER_HOLEMASK_BIT) { if (holemask & 1) continue; if (agino + XFS_INODES_PER_HOLEMASK_BIT > low && agino <= high) { *exists = true; return 0; } } error = xfs_btree_increment(cur, 0, &has_record); } return error; } /* Is there an inode record covering a given extent? */ int xfs_ialloc_has_inodes_at_extent( struct xfs_btree_cur *cur, xfs_agblock_t bno, xfs_extlen_t len, bool *exists) { xfs_agino_t low; xfs_agino_t high; low = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno, 0); high = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno + len, 0) - 1; return xfs_ialloc_has_inode_record(cur, low, high, exists); } struct xfs_ialloc_count_inodes { xfs_agino_t count; xfs_agino_t freecount; }; /* Record inode counts across all inobt records. */ STATIC int xfs_ialloc_count_inodes_rec( struct xfs_btree_cur *cur, union xfs_btree_rec *rec, void *priv) { struct xfs_inobt_rec_incore irec; struct xfs_ialloc_count_inodes *ci = priv; xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec); ci->count += irec.ir_count; ci->freecount += irec.ir_freecount; return 0; } /* Count allocated and free inodes under an inobt. */ int xfs_ialloc_count_inodes( struct xfs_btree_cur *cur, xfs_agino_t *count, xfs_agino_t *freecount) { struct xfs_ialloc_count_inodes ci = {0}; int error; ASSERT(cur->bc_btnum == XFS_BTNUM_INO); error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci); if (error) return error; *count = ci.count; *freecount = ci.freecount; return 0; }