/* * This file is part of the Chelsio T4/T5/T6 Ethernet driver for Linux. * * Copyright (c) 2017 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include "cxgb4.h" #include "cxgb4_filter.h" #include "cxgb4_tc_flower.h" #define STATS_CHECK_PERIOD (HZ / 2) static struct ch_tc_pedit_fields pedits[] = { PEDIT_FIELDS(ETH_, DMAC_31_0, 4, dmac, 0), PEDIT_FIELDS(ETH_, DMAC_47_32, 2, dmac, 4), PEDIT_FIELDS(ETH_, SMAC_15_0, 2, smac, 0), PEDIT_FIELDS(ETH_, SMAC_47_16, 4, smac, 2), PEDIT_FIELDS(IP4_, SRC, 4, nat_fip, 0), PEDIT_FIELDS(IP4_, DST, 4, nat_lip, 0), PEDIT_FIELDS(IP6_, SRC_31_0, 4, nat_fip, 0), PEDIT_FIELDS(IP6_, SRC_63_32, 4, nat_fip, 4), PEDIT_FIELDS(IP6_, SRC_95_64, 4, nat_fip, 8), PEDIT_FIELDS(IP6_, SRC_127_96, 4, nat_fip, 12), PEDIT_FIELDS(IP6_, DST_31_0, 4, nat_lip, 0), PEDIT_FIELDS(IP6_, DST_63_32, 4, nat_lip, 4), PEDIT_FIELDS(IP6_, DST_95_64, 4, nat_lip, 8), PEDIT_FIELDS(IP6_, DST_127_96, 4, nat_lip, 12), PEDIT_FIELDS(TCP_, SPORT, 2, nat_fport, 0), PEDIT_FIELDS(TCP_, DPORT, 2, nat_lport, 0), PEDIT_FIELDS(UDP_, SPORT, 2, nat_fport, 0), PEDIT_FIELDS(UDP_, DPORT, 2, nat_lport, 0), }; static struct ch_tc_flower_entry *allocate_flower_entry(void) { struct ch_tc_flower_entry *new = kzalloc(sizeof(*new), GFP_KERNEL); spin_lock_init(&new->lock); return new; } /* Must be called with either RTNL or rcu_read_lock */ static struct ch_tc_flower_entry *ch_flower_lookup(struct adapter *adap, unsigned long flower_cookie) { return rhashtable_lookup_fast(&adap->flower_tbl, &flower_cookie, adap->flower_ht_params); } static void cxgb4_process_flow_match(struct net_device *dev, struct tc_cls_flower_offload *cls, struct ch_filter_specification *fs) { u16 addr_type = 0; if (dissector_uses_key(cls->dissector, FLOW_DISSECTOR_KEY_CONTROL)) { struct flow_dissector_key_control *key = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_CONTROL, cls->key); addr_type = key->addr_type; } if (dissector_uses_key(cls->dissector, FLOW_DISSECTOR_KEY_BASIC)) { struct flow_dissector_key_basic *key = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_BASIC, cls->key); struct flow_dissector_key_basic *mask = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_BASIC, cls->mask); u16 ethtype_key = ntohs(key->n_proto); u16 ethtype_mask = ntohs(mask->n_proto); if (ethtype_key == ETH_P_ALL) { ethtype_key = 0; ethtype_mask = 0; } if (ethtype_key == ETH_P_IPV6) fs->type = 1; fs->val.ethtype = ethtype_key; fs->mask.ethtype = ethtype_mask; fs->val.proto = key->ip_proto; fs->mask.proto = mask->ip_proto; } if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { struct flow_dissector_key_ipv4_addrs *key = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS, cls->key); struct flow_dissector_key_ipv4_addrs *mask = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS, cls->mask); fs->type = 0; memcpy(&fs->val.lip[0], &key->dst, sizeof(key->dst)); memcpy(&fs->val.fip[0], &key->src, sizeof(key->src)); memcpy(&fs->mask.lip[0], &mask->dst, sizeof(mask->dst)); memcpy(&fs->mask.fip[0], &mask->src, sizeof(mask->src)); /* also initialize nat_lip/fip to same values */ memcpy(&fs->nat_lip[0], &key->dst, sizeof(key->dst)); memcpy(&fs->nat_fip[0], &key->src, sizeof(key->src)); } if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { struct flow_dissector_key_ipv6_addrs *key = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS, cls->key); struct flow_dissector_key_ipv6_addrs *mask = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS, cls->mask); fs->type = 1; memcpy(&fs->val.lip[0], key->dst.s6_addr, sizeof(key->dst)); memcpy(&fs->val.fip[0], key->src.s6_addr, sizeof(key->src)); memcpy(&fs->mask.lip[0], mask->dst.s6_addr, sizeof(mask->dst)); memcpy(&fs->mask.fip[0], mask->src.s6_addr, sizeof(mask->src)); /* also initialize nat_lip/fip to same values */ memcpy(&fs->nat_lip[0], key->dst.s6_addr, sizeof(key->dst)); memcpy(&fs->nat_fip[0], key->src.s6_addr, sizeof(key->src)); } if (dissector_uses_key(cls->dissector, FLOW_DISSECTOR_KEY_PORTS)) { struct flow_dissector_key_ports *key, *mask; key = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_PORTS, cls->key); mask = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_PORTS, cls->mask); fs->val.lport = cpu_to_be16(key->dst); fs->mask.lport = cpu_to_be16(mask->dst); fs->val.fport = cpu_to_be16(key->src); fs->mask.fport = cpu_to_be16(mask->src); /* also initialize nat_lport/fport to same values */ fs->nat_lport = cpu_to_be16(key->dst); fs->nat_fport = cpu_to_be16(key->src); } if (dissector_uses_key(cls->dissector, FLOW_DISSECTOR_KEY_IP)) { struct flow_dissector_key_ip *key, *mask; key = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_IP, cls->key); mask = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_IP, cls->mask); fs->val.tos = key->tos; fs->mask.tos = mask->tos; } if (dissector_uses_key(cls->dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) { struct flow_dissector_key_keyid *key, *mask; key = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_ENC_KEYID, cls->key); mask = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_ENC_KEYID, cls->mask); fs->val.vni = be32_to_cpu(key->keyid); fs->mask.vni = be32_to_cpu(mask->keyid); if (fs->mask.vni) { fs->val.encap_vld = 1; fs->mask.encap_vld = 1; } } if (dissector_uses_key(cls->dissector, FLOW_DISSECTOR_KEY_VLAN)) { struct flow_dissector_key_vlan *key, *mask; u16 vlan_tci, vlan_tci_mask; key = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_VLAN, cls->key); mask = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_VLAN, cls->mask); vlan_tci = key->vlan_id | (key->vlan_priority << VLAN_PRIO_SHIFT); vlan_tci_mask = mask->vlan_id | (mask->vlan_priority << VLAN_PRIO_SHIFT); fs->val.ivlan = vlan_tci; fs->mask.ivlan = vlan_tci_mask; fs->val.ivlan_vld = 1; fs->mask.ivlan_vld = 1; /* Chelsio adapters use ivlan_vld bit to match vlan packets * as 802.1Q. Also, when vlan tag is present in packets, * ethtype match is used then to match on ethtype of inner * header ie. the header following the vlan header. * So, set the ivlan_vld based on ethtype info supplied by * TC for vlan packets if its 802.1Q. And then reset the * ethtype value else, hw will try to match the supplied * ethtype value with ethtype of inner header. */ if (fs->val.ethtype == ETH_P_8021Q) { fs->val.ethtype = 0; fs->mask.ethtype = 0; } } /* Match only packets coming from the ingress port where this * filter will be created. */ fs->val.iport = netdev2pinfo(dev)->port_id; fs->mask.iport = ~0; } static int cxgb4_validate_flow_match(struct net_device *dev, struct tc_cls_flower_offload *cls) { u16 ethtype_mask = 0; u16 ethtype_key = 0; if (cls->dissector->used_keys & ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | BIT(FLOW_DISSECTOR_KEY_BASIC) | BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | BIT(FLOW_DISSECTOR_KEY_PORTS) | BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | BIT(FLOW_DISSECTOR_KEY_VLAN) | BIT(FLOW_DISSECTOR_KEY_IP))) { netdev_warn(dev, "Unsupported key used: 0x%x\n", cls->dissector->used_keys); return -EOPNOTSUPP; } if (dissector_uses_key(cls->dissector, FLOW_DISSECTOR_KEY_BASIC)) { struct flow_dissector_key_basic *key = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_BASIC, cls->key); struct flow_dissector_key_basic *mask = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_BASIC, cls->mask); ethtype_key = ntohs(key->n_proto); ethtype_mask = ntohs(mask->n_proto); } if (dissector_uses_key(cls->dissector, FLOW_DISSECTOR_KEY_IP)) { u16 eth_ip_type = ethtype_key & ethtype_mask; struct flow_dissector_key_ip *mask; if (eth_ip_type != ETH_P_IP && eth_ip_type != ETH_P_IPV6) { netdev_err(dev, "IP Key supported only with IPv4/v6"); return -EINVAL; } mask = skb_flow_dissector_target(cls->dissector, FLOW_DISSECTOR_KEY_IP, cls->mask); if (mask->ttl) { netdev_warn(dev, "ttl match unsupported for offload"); return -EOPNOTSUPP; } } return 0; } static void offload_pedit(struct ch_filter_specification *fs, u32 val, u32 mask, u8 field) { u32 set_val = val & ~mask; u32 offset = 0; u8 size = 1; int i; for (i = 0; i < ARRAY_SIZE(pedits); i++) { if (pedits[i].field == field) { offset = pedits[i].offset; size = pedits[i].size; break; } } memcpy((u8 *)fs + offset, &set_val, size); } static void process_pedit_field(struct ch_filter_specification *fs, u32 val, u32 mask, u32 offset, u8 htype) { switch (htype) { case TCA_PEDIT_KEY_EX_HDR_TYPE_ETH: switch (offset) { case PEDIT_ETH_DMAC_31_0: fs->newdmac = 1; offload_pedit(fs, val, mask, ETH_DMAC_31_0); break; case PEDIT_ETH_DMAC_47_32_SMAC_15_0: if (~mask & PEDIT_ETH_DMAC_MASK) offload_pedit(fs, val, mask, ETH_DMAC_47_32); else offload_pedit(fs, val >> 16, mask >> 16, ETH_SMAC_15_0); break; case PEDIT_ETH_SMAC_47_16: fs->newsmac = 1; offload_pedit(fs, val, mask, ETH_SMAC_47_16); } break; case TCA_PEDIT_KEY_EX_HDR_TYPE_IP4: switch (offset) { case PEDIT_IP4_SRC: offload_pedit(fs, val, mask, IP4_SRC); break; case PEDIT_IP4_DST: offload_pedit(fs, val, mask, IP4_DST); } fs->nat_mode = NAT_MODE_ALL; break; case TCA_PEDIT_KEY_EX_HDR_TYPE_IP6: switch (offset) { case PEDIT_IP6_SRC_31_0: offload_pedit(fs, val, mask, IP6_SRC_31_0); break; case PEDIT_IP6_SRC_63_32: offload_pedit(fs, val, mask, IP6_SRC_63_32); break; case PEDIT_IP6_SRC_95_64: offload_pedit(fs, val, mask, IP6_SRC_95_64); break; case PEDIT_IP6_SRC_127_96: offload_pedit(fs, val, mask, IP6_SRC_127_96); break; case PEDIT_IP6_DST_31_0: offload_pedit(fs, val, mask, IP6_DST_31_0); break; case PEDIT_IP6_DST_63_32: offload_pedit(fs, val, mask, IP6_DST_63_32); break; case PEDIT_IP6_DST_95_64: offload_pedit(fs, val, mask, IP6_DST_95_64); break; case PEDIT_IP6_DST_127_96: offload_pedit(fs, val, mask, IP6_DST_127_96); } fs->nat_mode = NAT_MODE_ALL; break; case TCA_PEDIT_KEY_EX_HDR_TYPE_TCP: switch (offset) { case PEDIT_TCP_SPORT_DPORT: if (~mask & PEDIT_TCP_UDP_SPORT_MASK) offload_pedit(fs, cpu_to_be32(val) >> 16, cpu_to_be32(mask) >> 16, TCP_SPORT); else offload_pedit(fs, cpu_to_be32(val), cpu_to_be32(mask), TCP_DPORT); } fs->nat_mode = NAT_MODE_ALL; break; case TCA_PEDIT_KEY_EX_HDR_TYPE_UDP: switch (offset) { case PEDIT_UDP_SPORT_DPORT: if (~mask & PEDIT_TCP_UDP_SPORT_MASK) offload_pedit(fs, cpu_to_be32(val) >> 16, cpu_to_be32(mask) >> 16, UDP_SPORT); else offload_pedit(fs, cpu_to_be32(val), cpu_to_be32(mask), UDP_DPORT); } fs->nat_mode = NAT_MODE_ALL; } } static void cxgb4_process_flow_actions(struct net_device *in, struct tc_cls_flower_offload *cls, struct ch_filter_specification *fs) { const struct tc_action *a; int i; tcf_exts_for_each_action(i, a, cls->exts) { if (is_tcf_gact_ok(a)) { fs->action = FILTER_PASS; } else if (is_tcf_gact_shot(a)) { fs->action = FILTER_DROP; } else if (is_tcf_mirred_egress_redirect(a)) { struct net_device *out = tcf_mirred_dev(a); struct port_info *pi = netdev_priv(out); fs->action = FILTER_SWITCH; fs->eport = pi->port_id; } else if (is_tcf_vlan(a)) { u32 vlan_action = tcf_vlan_action(a); u8 prio = tcf_vlan_push_prio(a); u16 vid = tcf_vlan_push_vid(a); u16 vlan_tci = (prio << VLAN_PRIO_SHIFT) | vid; switch (vlan_action) { case TCA_VLAN_ACT_POP: fs->newvlan |= VLAN_REMOVE; break; case TCA_VLAN_ACT_PUSH: fs->newvlan |= VLAN_INSERT; fs->vlan = vlan_tci; break; case TCA_VLAN_ACT_MODIFY: fs->newvlan |= VLAN_REWRITE; fs->vlan = vlan_tci; break; default: break; } } else if (is_tcf_pedit(a)) { u32 mask, val, offset; int nkeys, i; u8 htype; nkeys = tcf_pedit_nkeys(a); for (i = 0; i < nkeys; i++) { htype = tcf_pedit_htype(a, i); mask = tcf_pedit_mask(a, i); val = tcf_pedit_val(a, i); offset = tcf_pedit_offset(a, i); process_pedit_field(fs, val, mask, offset, htype); } } } } static bool valid_l4_mask(u32 mask) { u16 hi, lo; /* Either the upper 16-bits (SPORT) OR the lower * 16-bits (DPORT) can be set, but NOT BOTH. */ hi = (mask >> 16) & 0xFFFF; lo = mask & 0xFFFF; return hi && lo ? false : true; } static bool valid_pedit_action(struct net_device *dev, const struct tc_action *a) { u32 mask, offset; u8 cmd, htype; int nkeys, i; nkeys = tcf_pedit_nkeys(a); for (i = 0; i < nkeys; i++) { htype = tcf_pedit_htype(a, i); cmd = tcf_pedit_cmd(a, i); mask = tcf_pedit_mask(a, i); offset = tcf_pedit_offset(a, i); if (cmd != TCA_PEDIT_KEY_EX_CMD_SET) { netdev_err(dev, "%s: Unsupported pedit cmd\n", __func__); return false; } switch (htype) { case TCA_PEDIT_KEY_EX_HDR_TYPE_ETH: switch (offset) { case PEDIT_ETH_DMAC_31_0: case PEDIT_ETH_DMAC_47_32_SMAC_15_0: case PEDIT_ETH_SMAC_47_16: break; default: netdev_err(dev, "%s: Unsupported pedit field\n", __func__); return false; } break; case TCA_PEDIT_KEY_EX_HDR_TYPE_IP4: switch (offset) { case PEDIT_IP4_SRC: case PEDIT_IP4_DST: break; default: netdev_err(dev, "%s: Unsupported pedit field\n", __func__); return false; } break; case TCA_PEDIT_KEY_EX_HDR_TYPE_IP6: switch (offset) { case PEDIT_IP6_SRC_31_0: case PEDIT_IP6_SRC_63_32: case PEDIT_IP6_SRC_95_64: case PEDIT_IP6_SRC_127_96: case PEDIT_IP6_DST_31_0: case PEDIT_IP6_DST_63_32: case PEDIT_IP6_DST_95_64: case PEDIT_IP6_DST_127_96: break; default: netdev_err(dev, "%s: Unsupported pedit field\n", __func__); return false; } break; case TCA_PEDIT_KEY_EX_HDR_TYPE_TCP: switch (offset) { case PEDIT_TCP_SPORT_DPORT: if (!valid_l4_mask(~mask)) { netdev_err(dev, "%s: Unsupported mask for TCP L4 ports\n", __func__); return false; } break; default: netdev_err(dev, "%s: Unsupported pedit field\n", __func__); return false; } break; case TCA_PEDIT_KEY_EX_HDR_TYPE_UDP: switch (offset) { case PEDIT_UDP_SPORT_DPORT: if (!valid_l4_mask(~mask)) { netdev_err(dev, "%s: Unsupported mask for UDP L4 ports\n", __func__); return false; } break; default: netdev_err(dev, "%s: Unsupported pedit field\n", __func__); return false; } break; default: netdev_err(dev, "%s: Unsupported pedit type\n", __func__); return false; } } return true; } static int cxgb4_validate_flow_actions(struct net_device *dev, struct tc_cls_flower_offload *cls) { const struct tc_action *a; bool act_redir = false; bool act_pedit = false; bool act_vlan = false; int i; tcf_exts_for_each_action(i, a, cls->exts) { if (is_tcf_gact_ok(a)) { /* Do nothing */ } else if (is_tcf_gact_shot(a)) { /* Do nothing */ } else if (is_tcf_mirred_egress_redirect(a)) { struct adapter *adap = netdev2adap(dev); struct net_device *n_dev, *target_dev; unsigned int i; bool found = false; target_dev = tcf_mirred_dev(a); for_each_port(adap, i) { n_dev = adap->port[i]; if (target_dev == n_dev) { found = true; break; } } /* If interface doesn't belong to our hw, then * the provided output port is not valid */ if (!found) { netdev_err(dev, "%s: Out port invalid\n", __func__); return -EINVAL; } act_redir = true; } else if (is_tcf_vlan(a)) { u16 proto = be16_to_cpu(tcf_vlan_push_proto(a)); u32 vlan_action = tcf_vlan_action(a); switch (vlan_action) { case TCA_VLAN_ACT_POP: break; case TCA_VLAN_ACT_PUSH: case TCA_VLAN_ACT_MODIFY: if (proto != ETH_P_8021Q) { netdev_err(dev, "%s: Unsupported vlan proto\n", __func__); return -EOPNOTSUPP; } break; default: netdev_err(dev, "%s: Unsupported vlan action\n", __func__); return -EOPNOTSUPP; } act_vlan = true; } else if (is_tcf_pedit(a)) { bool pedit_valid = valid_pedit_action(dev, a); if (!pedit_valid) return -EOPNOTSUPP; act_pedit = true; } else { netdev_err(dev, "%s: Unsupported action\n", __func__); return -EOPNOTSUPP; } } if ((act_pedit || act_vlan) && !act_redir) { netdev_err(dev, "%s: pedit/vlan rewrite invalid without egress redirect\n", __func__); return -EINVAL; } return 0; } int cxgb4_tc_flower_replace(struct net_device *dev, struct tc_cls_flower_offload *cls) { struct adapter *adap = netdev2adap(dev); struct ch_tc_flower_entry *ch_flower; struct ch_filter_specification *fs; struct filter_ctx ctx; int fidx; int ret; if (cxgb4_validate_flow_actions(dev, cls)) return -EOPNOTSUPP; if (cxgb4_validate_flow_match(dev, cls)) return -EOPNOTSUPP; ch_flower = allocate_flower_entry(); if (!ch_flower) { netdev_err(dev, "%s: ch_flower alloc failed.\n", __func__); return -ENOMEM; } fs = &ch_flower->fs; fs->hitcnts = 1; cxgb4_process_flow_match(dev, cls, fs); cxgb4_process_flow_actions(dev, cls, fs); fs->hash = is_filter_exact_match(adap, fs); if (fs->hash) { fidx = 0; } else { fidx = cxgb4_get_free_ftid(dev, fs->type ? PF_INET6 : PF_INET); if (fidx < 0) { netdev_err(dev, "%s: No fidx for offload.\n", __func__); ret = -ENOMEM; goto free_entry; } } init_completion(&ctx.completion); ret = __cxgb4_set_filter(dev, fidx, fs, &ctx); if (ret) { netdev_err(dev, "%s: filter creation err %d\n", __func__, ret); goto free_entry; } /* Wait for reply */ ret = wait_for_completion_timeout(&ctx.completion, 10 * HZ); if (!ret) { ret = -ETIMEDOUT; goto free_entry; } ret = ctx.result; /* Check if hw returned error for filter creation */ if (ret) { netdev_err(dev, "%s: filter creation err %d\n", __func__, ret); goto free_entry; } ch_flower->tc_flower_cookie = cls->cookie; ch_flower->filter_id = ctx.tid; ret = rhashtable_insert_fast(&adap->flower_tbl, &ch_flower->node, adap->flower_ht_params); if (ret) goto del_filter; return 0; del_filter: cxgb4_del_filter(dev, ch_flower->filter_id, &ch_flower->fs); free_entry: kfree(ch_flower); return ret; } int cxgb4_tc_flower_destroy(struct net_device *dev, struct tc_cls_flower_offload *cls) { struct adapter *adap = netdev2adap(dev); struct ch_tc_flower_entry *ch_flower; int ret; ch_flower = ch_flower_lookup(adap, cls->cookie); if (!ch_flower) return -ENOENT; ret = cxgb4_del_filter(dev, ch_flower->filter_id, &ch_flower->fs); if (ret) goto err; ret = rhashtable_remove_fast(&adap->flower_tbl, &ch_flower->node, adap->flower_ht_params); if (ret) { netdev_err(dev, "Flow remove from rhashtable failed"); goto err; } kfree_rcu(ch_flower, rcu); err: return ret; } static void ch_flower_stats_handler(struct work_struct *work) { struct adapter *adap = container_of(work, struct adapter, flower_stats_work); struct ch_tc_flower_entry *flower_entry; struct ch_tc_flower_stats *ofld_stats; struct rhashtable_iter iter; u64 packets; u64 bytes; int ret; rhashtable_walk_enter(&adap->flower_tbl, &iter); do { rhashtable_walk_start(&iter); while ((flower_entry = rhashtable_walk_next(&iter)) && !IS_ERR(flower_entry)) { ret = cxgb4_get_filter_counters(adap->port[0], flower_entry->filter_id, &packets, &bytes, flower_entry->fs.hash); if (!ret) { spin_lock(&flower_entry->lock); ofld_stats = &flower_entry->stats; if (ofld_stats->prev_packet_count != packets) { ofld_stats->prev_packet_count = packets; ofld_stats->last_used = jiffies; } spin_unlock(&flower_entry->lock); } } rhashtable_walk_stop(&iter); } while (flower_entry == ERR_PTR(-EAGAIN)); rhashtable_walk_exit(&iter); mod_timer(&adap->flower_stats_timer, jiffies + STATS_CHECK_PERIOD); } static void ch_flower_stats_cb(struct timer_list *t) { struct adapter *adap = from_timer(adap, t, flower_stats_timer); schedule_work(&adap->flower_stats_work); } int cxgb4_tc_flower_stats(struct net_device *dev, struct tc_cls_flower_offload *cls) { struct adapter *adap = netdev2adap(dev); struct ch_tc_flower_stats *ofld_stats; struct ch_tc_flower_entry *ch_flower; u64 packets; u64 bytes; int ret; ch_flower = ch_flower_lookup(adap, cls->cookie); if (!ch_flower) { ret = -ENOENT; goto err; } ret = cxgb4_get_filter_counters(dev, ch_flower->filter_id, &packets, &bytes, ch_flower->fs.hash); if (ret < 0) goto err; spin_lock_bh(&ch_flower->lock); ofld_stats = &ch_flower->stats; if (ofld_stats->packet_count != packets) { if (ofld_stats->prev_packet_count != packets) ofld_stats->last_used = jiffies; tcf_exts_stats_update(cls->exts, bytes - ofld_stats->byte_count, packets - ofld_stats->packet_count, ofld_stats->last_used); ofld_stats->packet_count = packets; ofld_stats->byte_count = bytes; ofld_stats->prev_packet_count = packets; } spin_unlock_bh(&ch_flower->lock); return 0; err: return ret; } static const struct rhashtable_params cxgb4_tc_flower_ht_params = { .nelem_hint = 384, .head_offset = offsetof(struct ch_tc_flower_entry, node), .key_offset = offsetof(struct ch_tc_flower_entry, tc_flower_cookie), .key_len = sizeof(((struct ch_tc_flower_entry *)0)->tc_flower_cookie), .max_size = 524288, .min_size = 512, .automatic_shrinking = true }; int cxgb4_init_tc_flower(struct adapter *adap) { int ret; if (adap->tc_flower_initialized) return -EEXIST; adap->flower_ht_params = cxgb4_tc_flower_ht_params; ret = rhashtable_init(&adap->flower_tbl, &adap->flower_ht_params); if (ret) return ret; INIT_WORK(&adap->flower_stats_work, ch_flower_stats_handler); timer_setup(&adap->flower_stats_timer, ch_flower_stats_cb, 0); mod_timer(&adap->flower_stats_timer, jiffies + STATS_CHECK_PERIOD); adap->tc_flower_initialized = true; return 0; } void cxgb4_cleanup_tc_flower(struct adapter *adap) { if (!adap->tc_flower_initialized) return; if (adap->flower_stats_timer.function) del_timer_sync(&adap->flower_stats_timer); cancel_work_sync(&adap->flower_stats_work); rhashtable_destroy(&adap->flower_tbl); adap->tc_flower_initialized = false; }