// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds * Copyright (C) 1999 Ingo Molnar * Copyright (C) 2002 Andi Kleen * * This handles calls from both 32bit and 64bit mode. * * Lock order: * contex.ldt_usr_sem * mmap_sem * context.lock */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void refresh_ldt_segments(void) { #ifdef CONFIG_X86_64 unsigned short sel; /* * Make sure that the cached DS and ES descriptors match the updated * LDT. */ savesegment(ds, sel); if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) loadsegment(ds, sel); savesegment(es, sel); if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) loadsegment(es, sel); #endif } /* context.lock is held by the task which issued the smp function call */ static void flush_ldt(void *__mm) { struct mm_struct *mm = __mm; if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm) return; load_mm_ldt(mm); refresh_ldt_segments(); } /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */ static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries) { struct ldt_struct *new_ldt; unsigned int alloc_size; if (num_entries > LDT_ENTRIES) return NULL; new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL); if (!new_ldt) return NULL; BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct)); alloc_size = num_entries * LDT_ENTRY_SIZE; /* * Xen is very picky: it requires a page-aligned LDT that has no * trailing nonzero bytes in any page that contains LDT descriptors. * Keep it simple: zero the whole allocation and never allocate less * than PAGE_SIZE. */ if (alloc_size > PAGE_SIZE) new_ldt->entries = vzalloc(alloc_size); else new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL); if (!new_ldt->entries) { kfree(new_ldt); return NULL; } /* The new LDT isn't aliased for PTI yet. */ new_ldt->slot = -1; new_ldt->nr_entries = num_entries; return new_ldt; } #ifdef CONFIG_PAGE_TABLE_ISOLATION static void do_sanity_check(struct mm_struct *mm, bool had_kernel_mapping, bool had_user_mapping) { if (mm->context.ldt) { /* * We already had an LDT. The top-level entry should already * have been allocated and synchronized with the usermode * tables. */ WARN_ON(!had_kernel_mapping); if (static_cpu_has(X86_FEATURE_PTI)) WARN_ON(!had_user_mapping); } else { /* * This is the first time we're mapping an LDT for this process. * Sync the pgd to the usermode tables. */ WARN_ON(had_kernel_mapping); if (static_cpu_has(X86_FEATURE_PTI)) WARN_ON(had_user_mapping); } } static void map_ldt_struct_to_user(struct mm_struct *mm) { pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR); if (static_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt) set_pgd(kernel_to_user_pgdp(pgd), *pgd); } static void sanity_check_ldt_mapping(struct mm_struct *mm) { pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR); bool had_kernel = (pgd->pgd != 0); bool had_user = (kernel_to_user_pgdp(pgd)->pgd != 0); do_sanity_check(mm, had_kernel, had_user); } /* * If PTI is enabled, this maps the LDT into the kernelmode and * usermode tables for the given mm. * * There is no corresponding unmap function. Even if the LDT is freed, we * leave the PTEs around until the slot is reused or the mm is destroyed. * This is harmless: the LDT is always in ordinary memory, and no one will * access the freed slot. * * If we wanted to unmap freed LDTs, we'd also need to do a flush to make * it useful, and the flush would slow down modify_ldt(). */ static int map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) { unsigned long va; bool is_vmalloc; spinlock_t *ptl; pgd_t *pgd; int i; if (!static_cpu_has(X86_FEATURE_PTI)) return 0; /* * Any given ldt_struct should have map_ldt_struct() called at most * once. */ WARN_ON(ldt->slot != -1); /* Check if the current mappings are sane */ sanity_check_ldt_mapping(mm); /* * Did we already have the top level entry allocated? We can't * use pgd_none() for this because it doens't do anything on * 4-level page table kernels. */ pgd = pgd_offset(mm, LDT_BASE_ADDR); is_vmalloc = is_vmalloc_addr(ldt->entries); for (i = 0; i * PAGE_SIZE < ldt->nr_entries * LDT_ENTRY_SIZE; i++) { unsigned long offset = i << PAGE_SHIFT; const void *src = (char *)ldt->entries + offset; unsigned long pfn; pgprot_t pte_prot; pte_t pte, *ptep; va = (unsigned long)ldt_slot_va(slot) + offset; pfn = is_vmalloc ? vmalloc_to_pfn(src) : page_to_pfn(virt_to_page(src)); /* * Treat the PTI LDT range as a *userspace* range. * get_locked_pte() will allocate all needed pagetables * and account for them in this mm. */ ptep = get_locked_pte(mm, va, &ptl); if (!ptep) return -ENOMEM; /* * Map it RO so the easy to find address is not a primary * target via some kernel interface which misses a * permission check. */ pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL); /* Filter out unsuppored __PAGE_KERNEL* bits: */ pgprot_val(pte_prot) &= __supported_pte_mask; pte = pfn_pte(pfn, pte_prot); set_pte_at(mm, va, ptep, pte); pte_unmap_unlock(ptep, ptl); } /* Propagate LDT mapping to the user page-table */ map_ldt_struct_to_user(mm); va = (unsigned long)ldt_slot_va(slot); flush_tlb_mm_range(mm, va, va + LDT_SLOT_STRIDE, 0); ldt->slot = slot; return 0; } #else /* !CONFIG_PAGE_TABLE_ISOLATION */ static int map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) { return 0; } #endif /* CONFIG_PAGE_TABLE_ISOLATION */ static void free_ldt_pgtables(struct mm_struct *mm) { #ifdef CONFIG_PAGE_TABLE_ISOLATION struct mmu_gather tlb; unsigned long start = LDT_BASE_ADDR; unsigned long end = LDT_END_ADDR; if (!static_cpu_has(X86_FEATURE_PTI)) return; tlb_gather_mmu(&tlb, mm, start, end); free_pgd_range(&tlb, start, end, start, end); tlb_finish_mmu(&tlb, start, end); #endif } /* After calling this, the LDT is immutable. */ static void finalize_ldt_struct(struct ldt_struct *ldt) { paravirt_alloc_ldt(ldt->entries, ldt->nr_entries); } static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt) { mutex_lock(&mm->context.lock); /* Synchronizes with READ_ONCE in load_mm_ldt. */ smp_store_release(&mm->context.ldt, ldt); /* Activate the LDT for all CPUs using currents mm. */ on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true); mutex_unlock(&mm->context.lock); } static void free_ldt_struct(struct ldt_struct *ldt) { if (likely(!ldt)) return; paravirt_free_ldt(ldt->entries, ldt->nr_entries); if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE) vfree_atomic(ldt->entries); else free_page((unsigned long)ldt->entries); kfree(ldt); } /* * Called on fork from arch_dup_mmap(). Just copy the current LDT state, * the new task is not running, so nothing can be installed. */ int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm) { struct ldt_struct *new_ldt; int retval = 0; if (!old_mm) return 0; mutex_lock(&old_mm->context.lock); if (!old_mm->context.ldt) goto out_unlock; new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries); if (!new_ldt) { retval = -ENOMEM; goto out_unlock; } memcpy(new_ldt->entries, old_mm->context.ldt->entries, new_ldt->nr_entries * LDT_ENTRY_SIZE); finalize_ldt_struct(new_ldt); retval = map_ldt_struct(mm, new_ldt, 0); if (retval) { free_ldt_pgtables(mm); free_ldt_struct(new_ldt); goto out_unlock; } mm->context.ldt = new_ldt; out_unlock: mutex_unlock(&old_mm->context.lock); return retval; } /* * No need to lock the MM as we are the last user * * 64bit: Don't touch the LDT register - we're already in the next thread. */ void destroy_context_ldt(struct mm_struct *mm) { free_ldt_struct(mm->context.ldt); mm->context.ldt = NULL; } void ldt_arch_exit_mmap(struct mm_struct *mm) { free_ldt_pgtables(mm); } static int read_ldt(void __user *ptr, unsigned long bytecount) { struct mm_struct *mm = current->mm; unsigned long entries_size; int retval; down_read(&mm->context.ldt_usr_sem); if (!mm->context.ldt) { retval = 0; goto out_unlock; } if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES) bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES; entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE; if (entries_size > bytecount) entries_size = bytecount; if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) { retval = -EFAULT; goto out_unlock; } if (entries_size != bytecount) { /* Zero-fill the rest and pretend we read bytecount bytes. */ if (clear_user(ptr + entries_size, bytecount - entries_size)) { retval = -EFAULT; goto out_unlock; } } retval = bytecount; out_unlock: up_read(&mm->context.ldt_usr_sem); return retval; } static int read_default_ldt(void __user *ptr, unsigned long bytecount) { /* CHECKME: Can we use _one_ random number ? */ #ifdef CONFIG_X86_32 unsigned long size = 5 * sizeof(struct desc_struct); #else unsigned long size = 128; #endif if (bytecount > size) bytecount = size; if (clear_user(ptr, bytecount)) return -EFAULT; return bytecount; } static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode) { struct mm_struct *mm = current->mm; struct ldt_struct *new_ldt, *old_ldt; unsigned int old_nr_entries, new_nr_entries; struct user_desc ldt_info; struct desc_struct ldt; int error; error = -EINVAL; if (bytecount != sizeof(ldt_info)) goto out; error = -EFAULT; if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info))) goto out; error = -EINVAL; if (ldt_info.entry_number >= LDT_ENTRIES) goto out; if (ldt_info.contents == 3) { if (oldmode) goto out; if (ldt_info.seg_not_present == 0) goto out; } if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) || LDT_empty(&ldt_info)) { /* The user wants to clear the entry. */ memset(&ldt, 0, sizeof(ldt)); } else { if (!IS_ENABLED(CONFIG_X86_16BIT) && !ldt_info.seg_32bit) { error = -EINVAL; goto out; } fill_ldt(&ldt, &ldt_info); if (oldmode) ldt.avl = 0; } if (down_write_killable(&mm->context.ldt_usr_sem)) return -EINTR; old_ldt = mm->context.ldt; old_nr_entries = old_ldt ? old_ldt->nr_entries : 0; new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries); error = -ENOMEM; new_ldt = alloc_ldt_struct(new_nr_entries); if (!new_ldt) goto out_unlock; if (old_ldt) memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE); new_ldt->entries[ldt_info.entry_number] = ldt; finalize_ldt_struct(new_ldt); /* * If we are using PTI, map the new LDT into the userspace pagetables. * If there is already an LDT, use the other slot so that other CPUs * will continue to use the old LDT until install_ldt() switches * them over to the new LDT. */ error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0); if (error) { /* * This only can fail for the first LDT setup. If an LDT is * already installed then the PTE page is already * populated. Mop up a half populated page table. */ if (!WARN_ON_ONCE(old_ldt)) free_ldt_pgtables(mm); free_ldt_struct(new_ldt); goto out_unlock; } install_ldt(mm, new_ldt); free_ldt_struct(old_ldt); error = 0; out_unlock: up_write(&mm->context.ldt_usr_sem); out: return error; } SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr , unsigned long , bytecount) { int ret = -ENOSYS; switch (func) { case 0: ret = read_ldt(ptr, bytecount); break; case 1: ret = write_ldt(ptr, bytecount, 1); break; case 2: ret = read_default_ldt(ptr, bytecount); break; case 0x11: ret = write_ldt(ptr, bytecount, 0); break; } /* * The SYSCALL_DEFINE() macros give us an 'unsigned long' * return type, but tht ABI for sys_modify_ldt() expects * 'int'. This cast gives us an int-sized value in %rax * for the return code. The 'unsigned' is necessary so * the compiler does not try to sign-extend the negative * return codes into the high half of the register when * taking the value from int->long. */ return (unsigned int)ret; }