/* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- */ /* * * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #ifndef _I915_DRV_H_ #define _I915_DRV_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for struct drm_dma_handle */ #include #include #include "i915_params.h" #include "i915_reg.h" #include "intel_bios.h" #include "intel_dpll_mgr.h" #include "intel_guc.h" #include "intel_lrc.h" #include "intel_ringbuffer.h" #include "i915_gem.h" #include "i915_gem_gtt.h" #include "i915_gem_render_state.h" #include "i915_gem_request.h" #include "intel_gvt.h" /* General customization: */ #define DRIVER_NAME "i915" #define DRIVER_DESC "Intel Graphics" #define DRIVER_DATE "20160725" #undef WARN_ON /* Many gcc seem to no see through this and fall over :( */ #if 0 #define WARN_ON(x) ({ \ bool __i915_warn_cond = (x); \ if (__builtin_constant_p(__i915_warn_cond)) \ BUILD_BUG_ON(__i915_warn_cond); \ WARN(__i915_warn_cond, "WARN_ON(" #x ")"); }) #else #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")") #endif #undef WARN_ON_ONCE #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")") #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \ (long) (x), __func__); /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and * WARN_ON()) for hw state sanity checks to check for unexpected conditions * which may not necessarily be a user visible problem. This will either * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to * enable distros and users to tailor their preferred amount of i915 abrt * spam. */ #define I915_STATE_WARN(condition, format...) ({ \ int __ret_warn_on = !!(condition); \ if (unlikely(__ret_warn_on)) \ if (!WARN(i915.verbose_state_checks, format)) \ DRM_ERROR(format); \ unlikely(__ret_warn_on); \ }) #define I915_STATE_WARN_ON(x) \ I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")") bool __i915_inject_load_failure(const char *func, int line); #define i915_inject_load_failure() \ __i915_inject_load_failure(__func__, __LINE__) static inline const char *yesno(bool v) { return v ? "yes" : "no"; } static inline const char *onoff(bool v) { return v ? "on" : "off"; } enum pipe { INVALID_PIPE = -1, PIPE_A = 0, PIPE_B, PIPE_C, _PIPE_EDP, I915_MAX_PIPES = _PIPE_EDP }; #define pipe_name(p) ((p) + 'A') enum transcoder { TRANSCODER_A = 0, TRANSCODER_B, TRANSCODER_C, TRANSCODER_EDP, TRANSCODER_DSI_A, TRANSCODER_DSI_C, I915_MAX_TRANSCODERS }; static inline const char *transcoder_name(enum transcoder transcoder) { switch (transcoder) { case TRANSCODER_A: return "A"; case TRANSCODER_B: return "B"; case TRANSCODER_C: return "C"; case TRANSCODER_EDP: return "EDP"; case TRANSCODER_DSI_A: return "DSI A"; case TRANSCODER_DSI_C: return "DSI C"; default: return ""; } } static inline bool transcoder_is_dsi(enum transcoder transcoder) { return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C; } /* * I915_MAX_PLANES in the enum below is the maximum (across all platforms) * number of planes per CRTC. Not all platforms really have this many planes, * which means some arrays of size I915_MAX_PLANES may have unused entries * between the topmost sprite plane and the cursor plane. */ enum plane { PLANE_A = 0, PLANE_B, PLANE_C, PLANE_CURSOR, I915_MAX_PLANES, }; #define plane_name(p) ((p) + 'A') #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A') enum port { PORT_A = 0, PORT_B, PORT_C, PORT_D, PORT_E, I915_MAX_PORTS }; #define port_name(p) ((p) + 'A') #define I915_NUM_PHYS_VLV 2 enum dpio_channel { DPIO_CH0, DPIO_CH1 }; enum dpio_phy { DPIO_PHY0, DPIO_PHY1 }; enum intel_display_power_domain { POWER_DOMAIN_PIPE_A, POWER_DOMAIN_PIPE_B, POWER_DOMAIN_PIPE_C, POWER_DOMAIN_PIPE_A_PANEL_FITTER, POWER_DOMAIN_PIPE_B_PANEL_FITTER, POWER_DOMAIN_PIPE_C_PANEL_FITTER, POWER_DOMAIN_TRANSCODER_A, POWER_DOMAIN_TRANSCODER_B, POWER_DOMAIN_TRANSCODER_C, POWER_DOMAIN_TRANSCODER_EDP, POWER_DOMAIN_TRANSCODER_DSI_A, POWER_DOMAIN_TRANSCODER_DSI_C, POWER_DOMAIN_PORT_DDI_A_LANES, POWER_DOMAIN_PORT_DDI_B_LANES, POWER_DOMAIN_PORT_DDI_C_LANES, POWER_DOMAIN_PORT_DDI_D_LANES, POWER_DOMAIN_PORT_DDI_E_LANES, POWER_DOMAIN_PORT_DSI, POWER_DOMAIN_PORT_CRT, POWER_DOMAIN_PORT_OTHER, POWER_DOMAIN_VGA, POWER_DOMAIN_AUDIO, POWER_DOMAIN_PLLS, POWER_DOMAIN_AUX_A, POWER_DOMAIN_AUX_B, POWER_DOMAIN_AUX_C, POWER_DOMAIN_AUX_D, POWER_DOMAIN_GMBUS, POWER_DOMAIN_MODESET, POWER_DOMAIN_INIT, POWER_DOMAIN_NUM, }; #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A) #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \ ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER) #define POWER_DOMAIN_TRANSCODER(tran) \ ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \ (tran) + POWER_DOMAIN_TRANSCODER_A) enum hpd_pin { HPD_NONE = 0, HPD_TV = HPD_NONE, /* TV is known to be unreliable */ HPD_CRT, HPD_SDVO_B, HPD_SDVO_C, HPD_PORT_A, HPD_PORT_B, HPD_PORT_C, HPD_PORT_D, HPD_PORT_E, HPD_NUM_PINS }; #define for_each_hpd_pin(__pin) \ for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) struct i915_hotplug { struct work_struct hotplug_work; struct { unsigned long last_jiffies; int count; enum { HPD_ENABLED = 0, HPD_DISABLED = 1, HPD_MARK_DISABLED = 2 } state; } stats[HPD_NUM_PINS]; u32 event_bits; struct delayed_work reenable_work; struct intel_digital_port *irq_port[I915_MAX_PORTS]; u32 long_port_mask; u32 short_port_mask; struct work_struct dig_port_work; struct work_struct poll_init_work; bool poll_enabled; /* * if we get a HPD irq from DP and a HPD irq from non-DP * the non-DP HPD could block the workqueue on a mode config * mutex getting, that userspace may have taken. However * userspace is waiting on the DP workqueue to run which is * blocked behind the non-DP one. */ struct workqueue_struct *dp_wq; }; #define I915_GEM_GPU_DOMAINS \ (I915_GEM_DOMAIN_RENDER | \ I915_GEM_DOMAIN_SAMPLER | \ I915_GEM_DOMAIN_COMMAND | \ I915_GEM_DOMAIN_INSTRUCTION | \ I915_GEM_DOMAIN_VERTEX) #define for_each_pipe(__dev_priv, __p) \ for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) #define for_each_pipe_masked(__dev_priv, __p, __mask) \ for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \ for_each_if ((__mask) & (1 << (__p))) #define for_each_plane(__dev_priv, __pipe, __p) \ for ((__p) = 0; \ (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \ (__p)++) #define for_each_sprite(__dev_priv, __p, __s) \ for ((__s) = 0; \ (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \ (__s)++) #define for_each_port_masked(__port, __ports_mask) \ for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \ for_each_if ((__ports_mask) & (1 << (__port))) #define for_each_crtc(dev, crtc) \ list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head) #define for_each_intel_plane(dev, intel_plane) \ list_for_each_entry(intel_plane, \ &(dev)->mode_config.plane_list, \ base.head) #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \ list_for_each_entry(intel_plane, \ &(dev)->mode_config.plane_list, \ base.head) \ for_each_if ((plane_mask) & \ (1 << drm_plane_index(&intel_plane->base))) #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \ list_for_each_entry(intel_plane, \ &(dev)->mode_config.plane_list, \ base.head) \ for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe) #define for_each_intel_crtc(dev, intel_crtc) \ list_for_each_entry(intel_crtc, \ &(dev)->mode_config.crtc_list, \ base.head) #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \ list_for_each_entry(intel_crtc, \ &(dev)->mode_config.crtc_list, \ base.head) \ for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base))) #define for_each_intel_encoder(dev, intel_encoder) \ list_for_each_entry(intel_encoder, \ &(dev)->mode_config.encoder_list, \ base.head) #define for_each_intel_connector(dev, intel_connector) \ list_for_each_entry(intel_connector, \ &(dev)->mode_config.connector_list, \ base.head) #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \ list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \ for_each_if ((intel_encoder)->base.crtc == (__crtc)) #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \ list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \ for_each_if ((intel_connector)->base.encoder == (__encoder)) #define for_each_power_domain(domain, mask) \ for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \ for_each_if ((1 << (domain)) & (mask)) struct drm_i915_private; struct i915_mm_struct; struct i915_mmu_object; struct drm_i915_file_private { struct drm_i915_private *dev_priv; struct drm_file *file; struct { spinlock_t lock; struct list_head request_list; /* 20ms is a fairly arbitrary limit (greater than the average frame time) * chosen to prevent the CPU getting more than a frame ahead of the GPU * (when using lax throttling for the frontbuffer). We also use it to * offer free GPU waitboosts for severely congested workloads. */ #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20) } mm; struct idr context_idr; struct intel_rps_client { struct list_head link; unsigned boosts; } rps; unsigned int bsd_engine; }; /* Used by dp and fdi links */ struct intel_link_m_n { uint32_t tu; uint32_t gmch_m; uint32_t gmch_n; uint32_t link_m; uint32_t link_n; }; void intel_link_compute_m_n(int bpp, int nlanes, int pixel_clock, int link_clock, struct intel_link_m_n *m_n); /* Interface history: * * 1.1: Original. * 1.2: Add Power Management * 1.3: Add vblank support * 1.4: Fix cmdbuffer path, add heap destroy * 1.5: Add vblank pipe configuration * 1.6: - New ioctl for scheduling buffer swaps on vertical blank * - Support vertical blank on secondary display pipe */ #define DRIVER_MAJOR 1 #define DRIVER_MINOR 6 #define DRIVER_PATCHLEVEL 0 struct opregion_header; struct opregion_acpi; struct opregion_swsci; struct opregion_asle; struct intel_opregion { struct opregion_header *header; struct opregion_acpi *acpi; struct opregion_swsci *swsci; u32 swsci_gbda_sub_functions; u32 swsci_sbcb_sub_functions; struct opregion_asle *asle; void *rvda; const void *vbt; u32 vbt_size; u32 *lid_state; struct work_struct asle_work; }; #define OPREGION_SIZE (8*1024) struct intel_overlay; struct intel_overlay_error_state; #define I915_FENCE_REG_NONE -1 #define I915_MAX_NUM_FENCES 32 /* 32 fences + sign bit for FENCE_REG_NONE */ #define I915_MAX_NUM_FENCE_BITS 6 struct drm_i915_fence_reg { struct list_head lru_list; struct drm_i915_gem_object *obj; int pin_count; }; struct sdvo_device_mapping { u8 initialized; u8 dvo_port; u8 slave_addr; u8 dvo_wiring; u8 i2c_pin; u8 ddc_pin; }; struct intel_display_error_state; struct drm_i915_error_state { struct kref ref; struct timeval time; char error_msg[128]; bool simulated; int iommu; u32 reset_count; u32 suspend_count; /* Generic register state */ u32 eir; u32 pgtbl_er; u32 ier; u32 gtier[4]; u32 ccid; u32 derrmr; u32 forcewake; u32 error; /* gen6+ */ u32 err_int; /* gen7 */ u32 fault_data0; /* gen8, gen9 */ u32 fault_data1; /* gen8, gen9 */ u32 done_reg; u32 gac_eco; u32 gam_ecochk; u32 gab_ctl; u32 gfx_mode; u32 extra_instdone[I915_NUM_INSTDONE_REG]; u64 fence[I915_MAX_NUM_FENCES]; struct intel_overlay_error_state *overlay; struct intel_display_error_state *display; struct drm_i915_error_object *semaphore_obj; struct drm_i915_error_engine { int engine_id; /* Software tracked state */ bool waiting; int num_waiters; int hangcheck_score; enum intel_engine_hangcheck_action hangcheck_action; int num_requests; /* our own tracking of ring head and tail */ u32 cpu_ring_head; u32 cpu_ring_tail; u32 last_seqno; u32 semaphore_seqno[I915_NUM_ENGINES - 1]; /* Register state */ u32 start; u32 tail; u32 head; u32 ctl; u32 hws; u32 ipeir; u32 ipehr; u32 instdone; u32 bbstate; u32 instpm; u32 instps; u32 seqno; u64 bbaddr; u64 acthd; u32 fault_reg; u64 faddr; u32 rc_psmi; /* sleep state */ u32 semaphore_mboxes[I915_NUM_ENGINES - 1]; struct drm_i915_error_object { int page_count; u64 gtt_offset; u32 *pages[0]; } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page; struct drm_i915_error_object *wa_ctx; struct drm_i915_error_request { long jiffies; u32 seqno; u32 tail; } *requests; struct drm_i915_error_waiter { char comm[TASK_COMM_LEN]; pid_t pid; u32 seqno; } *waiters; struct { u32 gfx_mode; union { u64 pdp[4]; u32 pp_dir_base; }; } vm_info; pid_t pid; char comm[TASK_COMM_LEN]; } engine[I915_NUM_ENGINES]; struct drm_i915_error_buffer { u32 size; u32 name; u32 rseqno[I915_NUM_ENGINES], wseqno; u64 gtt_offset; u32 read_domains; u32 write_domain; s32 fence_reg:I915_MAX_NUM_FENCE_BITS; s32 pinned:2; u32 tiling:2; u32 dirty:1; u32 purgeable:1; u32 userptr:1; s32 engine:4; u32 cache_level:3; } **active_bo, **pinned_bo; u32 *active_bo_count, *pinned_bo_count; u32 vm_count; }; struct intel_connector; struct intel_encoder; struct intel_crtc_state; struct intel_initial_plane_config; struct intel_crtc; struct intel_limit; struct dpll; struct drm_i915_display_funcs { int (*get_display_clock_speed)(struct drm_device *dev); int (*get_fifo_size)(struct drm_device *dev, int plane); int (*compute_pipe_wm)(struct intel_crtc_state *cstate); int (*compute_intermediate_wm)(struct drm_device *dev, struct intel_crtc *intel_crtc, struct intel_crtc_state *newstate); void (*initial_watermarks)(struct intel_crtc_state *cstate); void (*optimize_watermarks)(struct intel_crtc_state *cstate); int (*compute_global_watermarks)(struct drm_atomic_state *state); void (*update_wm)(struct drm_crtc *crtc); int (*modeset_calc_cdclk)(struct drm_atomic_state *state); void (*modeset_commit_cdclk)(struct drm_atomic_state *state); /* Returns the active state of the crtc, and if the crtc is active, * fills out the pipe-config with the hw state. */ bool (*get_pipe_config)(struct intel_crtc *, struct intel_crtc_state *); void (*get_initial_plane_config)(struct intel_crtc *, struct intel_initial_plane_config *); int (*crtc_compute_clock)(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state); void (*crtc_enable)(struct drm_crtc *crtc); void (*crtc_disable)(struct drm_crtc *crtc); void (*audio_codec_enable)(struct drm_connector *connector, struct intel_encoder *encoder, const struct drm_display_mode *adjusted_mode); void (*audio_codec_disable)(struct intel_encoder *encoder); void (*fdi_link_train)(struct drm_crtc *crtc); void (*init_clock_gating)(struct drm_device *dev); int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj, struct drm_i915_gem_request *req, uint32_t flags); void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); /* clock updates for mode set */ /* cursor updates */ /* render clock increase/decrease */ /* display clock increase/decrease */ /* pll clock increase/decrease */ void (*load_csc_matrix)(struct drm_crtc_state *crtc_state); void (*load_luts)(struct drm_crtc_state *crtc_state); }; enum forcewake_domain_id { FW_DOMAIN_ID_RENDER = 0, FW_DOMAIN_ID_BLITTER, FW_DOMAIN_ID_MEDIA, FW_DOMAIN_ID_COUNT }; enum forcewake_domains { FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER), FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER), FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA), FORCEWAKE_ALL = (FORCEWAKE_RENDER | FORCEWAKE_BLITTER | FORCEWAKE_MEDIA) }; #define FW_REG_READ (1) #define FW_REG_WRITE (2) enum forcewake_domains intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv, i915_reg_t reg, unsigned int op); struct intel_uncore_funcs { void (*force_wake_get)(struct drm_i915_private *dev_priv, enum forcewake_domains domains); void (*force_wake_put)(struct drm_i915_private *dev_priv, enum forcewake_domains domains); uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace); void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r, uint8_t val, bool trace); void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r, uint16_t val, bool trace); void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r, uint32_t val, bool trace); void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r, uint64_t val, bool trace); }; struct intel_uncore { spinlock_t lock; /** lock is also taken in irq contexts. */ struct intel_uncore_funcs funcs; unsigned fifo_count; enum forcewake_domains fw_domains; struct intel_uncore_forcewake_domain { struct drm_i915_private *i915; enum forcewake_domain_id id; enum forcewake_domains mask; unsigned wake_count; struct hrtimer timer; i915_reg_t reg_set; u32 val_set; u32 val_clear; i915_reg_t reg_ack; i915_reg_t reg_post; u32 val_reset; } fw_domain[FW_DOMAIN_ID_COUNT]; int unclaimed_mmio_check; }; /* Iterate over initialised fw domains */ #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \ for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \ (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \ (domain__)++) \ for_each_if ((mask__) & (domain__)->mask) #define for_each_fw_domain(domain__, dev_priv__) \ for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__) #define CSR_VERSION(major, minor) ((major) << 16 | (minor)) #define CSR_VERSION_MAJOR(version) ((version) >> 16) #define CSR_VERSION_MINOR(version) ((version) & 0xffff) struct intel_csr { struct work_struct work; const char *fw_path; uint32_t *dmc_payload; uint32_t dmc_fw_size; uint32_t version; uint32_t mmio_count; i915_reg_t mmioaddr[8]; uint32_t mmiodata[8]; uint32_t dc_state; uint32_t allowed_dc_mask; }; #define DEV_INFO_FOR_EACH_FLAG(func, sep) \ func(is_mobile) sep \ func(is_i85x) sep \ func(is_i915g) sep \ func(is_i945gm) sep \ func(is_g33) sep \ func(need_gfx_hws) sep \ func(is_g4x) sep \ func(is_pineview) sep \ func(is_broadwater) sep \ func(is_crestline) sep \ func(is_ivybridge) sep \ func(is_valleyview) sep \ func(is_cherryview) sep \ func(is_haswell) sep \ func(is_broadwell) sep \ func(is_skylake) sep \ func(is_broxton) sep \ func(is_kabylake) sep \ func(is_preliminary) sep \ func(has_fbc) sep \ func(has_pipe_cxsr) sep \ func(has_hotplug) sep \ func(cursor_needs_physical) sep \ func(has_overlay) sep \ func(overlay_needs_physical) sep \ func(supports_tv) sep \ func(has_llc) sep \ func(has_snoop) sep \ func(has_ddi) sep \ func(has_fpga_dbg) sep \ func(has_pooled_eu) #define DEFINE_FLAG(name) u8 name:1 #define SEP_SEMICOLON ; struct intel_device_info { u32 display_mmio_offset; u16 device_id; u8 num_pipes; u8 num_sprites[I915_MAX_PIPES]; u8 gen; u16 gen_mask; u8 ring_mask; /* Rings supported by the HW */ DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON); /* Register offsets for the various display pipes and transcoders */ int pipe_offsets[I915_MAX_TRANSCODERS]; int trans_offsets[I915_MAX_TRANSCODERS]; int palette_offsets[I915_MAX_PIPES]; int cursor_offsets[I915_MAX_PIPES]; /* Slice/subslice/EU info */ u8 slice_total; u8 subslice_total; u8 subslice_per_slice; u8 eu_total; u8 eu_per_subslice; u8 min_eu_in_pool; /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */ u8 subslice_7eu[3]; u8 has_slice_pg:1; u8 has_subslice_pg:1; u8 has_eu_pg:1; struct color_luts { u16 degamma_lut_size; u16 gamma_lut_size; } color; }; #undef DEFINE_FLAG #undef SEP_SEMICOLON enum i915_cache_level { I915_CACHE_NONE = 0, I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */ I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc caches, eg sampler/render caches, and the large Last-Level-Cache. LLC is coherent with the CPU, but L3 is only visible to the GPU. */ I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */ }; struct i915_ctx_hang_stats { /* This context had batch pending when hang was declared */ unsigned batch_pending; /* This context had batch active when hang was declared */ unsigned batch_active; /* Time when this context was last blamed for a GPU reset */ unsigned long guilty_ts; /* If the contexts causes a second GPU hang within this time, * it is permanently banned from submitting any more work. */ unsigned long ban_period_seconds; /* This context is banned to submit more work */ bool banned; }; /* This must match up with the value previously used for execbuf2.rsvd1. */ #define DEFAULT_CONTEXT_HANDLE 0 /** * struct i915_gem_context - as the name implies, represents a context. * @ref: reference count. * @user_handle: userspace tracking identity for this context. * @remap_slice: l3 row remapping information. * @flags: context specific flags: * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0. * @file_priv: filp associated with this context (NULL for global default * context). * @hang_stats: information about the role of this context in possible GPU * hangs. * @ppgtt: virtual memory space used by this context. * @legacy_hw_ctx: render context backing object and whether it is correctly * initialized (legacy ring submission mechanism only). * @link: link in the global list of contexts. * * Contexts are memory images used by the hardware to store copies of their * internal state. */ struct i915_gem_context { struct kref ref; struct drm_i915_private *i915; struct drm_i915_file_private *file_priv; struct i915_hw_ppgtt *ppgtt; struct i915_ctx_hang_stats hang_stats; /* Unique identifier for this context, used by the hw for tracking */ unsigned long flags; #define CONTEXT_NO_ZEROMAP BIT(0) #define CONTEXT_NO_ERROR_CAPTURE BIT(1) unsigned hw_id; u32 user_handle; u32 ggtt_alignment; struct intel_context { struct drm_i915_gem_object *state; struct intel_ring *ring; struct i915_vma *lrc_vma; uint32_t *lrc_reg_state; u64 lrc_desc; int pin_count; bool initialised; } engine[I915_NUM_ENGINES]; u32 ring_size; u32 desc_template; struct atomic_notifier_head status_notifier; bool execlists_force_single_submission; struct list_head link; u8 remap_slice; bool closed:1; }; enum fb_op_origin { ORIGIN_GTT, ORIGIN_CPU, ORIGIN_CS, ORIGIN_FLIP, ORIGIN_DIRTYFB, }; struct intel_fbc { /* This is always the inner lock when overlapping with struct_mutex and * it's the outer lock when overlapping with stolen_lock. */ struct mutex lock; unsigned threshold; unsigned int possible_framebuffer_bits; unsigned int busy_bits; unsigned int visible_pipes_mask; struct intel_crtc *crtc; struct drm_mm_node compressed_fb; struct drm_mm_node *compressed_llb; bool false_color; bool enabled; bool active; struct intel_fbc_state_cache { struct { unsigned int mode_flags; uint32_t hsw_bdw_pixel_rate; } crtc; struct { unsigned int rotation; int src_w; int src_h; bool visible; } plane; struct { u64 ilk_ggtt_offset; uint32_t pixel_format; unsigned int stride; int fence_reg; unsigned int tiling_mode; } fb; } state_cache; struct intel_fbc_reg_params { struct { enum pipe pipe; enum plane plane; unsigned int fence_y_offset; } crtc; struct { u64 ggtt_offset; uint32_t pixel_format; unsigned int stride; int fence_reg; } fb; int cfb_size; } params; struct intel_fbc_work { bool scheduled; u32 scheduled_vblank; struct work_struct work; } work; const char *no_fbc_reason; }; /** * HIGH_RR is the highest eDP panel refresh rate read from EDID * LOW_RR is the lowest eDP panel refresh rate found from EDID * parsing for same resolution. */ enum drrs_refresh_rate_type { DRRS_HIGH_RR, DRRS_LOW_RR, DRRS_MAX_RR, /* RR count */ }; enum drrs_support_type { DRRS_NOT_SUPPORTED = 0, STATIC_DRRS_SUPPORT = 1, SEAMLESS_DRRS_SUPPORT = 2 }; struct intel_dp; struct i915_drrs { struct mutex mutex; struct delayed_work work; struct intel_dp *dp; unsigned busy_frontbuffer_bits; enum drrs_refresh_rate_type refresh_rate_type; enum drrs_support_type type; }; struct i915_psr { struct mutex lock; bool sink_support; bool source_ok; struct intel_dp *enabled; bool active; struct delayed_work work; unsigned busy_frontbuffer_bits; bool psr2_support; bool aux_frame_sync; bool link_standby; }; enum intel_pch { PCH_NONE = 0, /* No PCH present */ PCH_IBX, /* Ibexpeak PCH */ PCH_CPT, /* Cougarpoint PCH */ PCH_LPT, /* Lynxpoint PCH */ PCH_SPT, /* Sunrisepoint PCH */ PCH_KBP, /* Kabypoint PCH */ PCH_NOP, }; enum intel_sbi_destination { SBI_ICLK, SBI_MPHY, }; #define QUIRK_PIPEA_FORCE (1<<0) #define QUIRK_LVDS_SSC_DISABLE (1<<1) #define QUIRK_INVERT_BRIGHTNESS (1<<2) #define QUIRK_BACKLIGHT_PRESENT (1<<3) #define QUIRK_PIPEB_FORCE (1<<4) #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) struct intel_fbdev; struct intel_fbc_work; struct intel_gmbus { struct i2c_adapter adapter; #define GMBUS_FORCE_BIT_RETRY (1U << 31) u32 force_bit; u32 reg0; i915_reg_t gpio_reg; struct i2c_algo_bit_data bit_algo; struct drm_i915_private *dev_priv; }; struct i915_suspend_saved_registers { u32 saveDSPARB; u32 saveLVDS; u32 savePP_ON_DELAYS; u32 savePP_OFF_DELAYS; u32 savePP_ON; u32 savePP_OFF; u32 savePP_CONTROL; u32 savePP_DIVISOR; u32 saveFBC_CONTROL; u32 saveCACHE_MODE_0; u32 saveMI_ARB_STATE; u32 saveSWF0[16]; u32 saveSWF1[16]; u32 saveSWF3[3]; uint64_t saveFENCE[I915_MAX_NUM_FENCES]; u32 savePCH_PORT_HOTPLUG; u16 saveGCDGMBUS; }; struct vlv_s0ix_state { /* GAM */ u32 wr_watermark; u32 gfx_prio_ctrl; u32 arb_mode; u32 gfx_pend_tlb0; u32 gfx_pend_tlb1; u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM]; u32 media_max_req_count; u32 gfx_max_req_count; u32 render_hwsp; u32 ecochk; u32 bsd_hwsp; u32 blt_hwsp; u32 tlb_rd_addr; /* MBC */ u32 g3dctl; u32 gsckgctl; u32 mbctl; /* GCP */ u32 ucgctl1; u32 ucgctl3; u32 rcgctl1; u32 rcgctl2; u32 rstctl; u32 misccpctl; /* GPM */ u32 gfxpause; u32 rpdeuhwtc; u32 rpdeuc; u32 ecobus; u32 pwrdwnupctl; u32 rp_down_timeout; u32 rp_deucsw; u32 rcubmabdtmr; u32 rcedata; u32 spare2gh; /* Display 1 CZ domain */ u32 gt_imr; u32 gt_ier; u32 pm_imr; u32 pm_ier; u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM]; /* GT SA CZ domain */ u32 tilectl; u32 gt_fifoctl; u32 gtlc_wake_ctrl; u32 gtlc_survive; u32 pmwgicz; /* Display 2 CZ domain */ u32 gu_ctl0; u32 gu_ctl1; u32 pcbr; u32 clock_gate_dis2; }; struct intel_rps_ei { u32 cz_clock; u32 render_c0; u32 media_c0; }; struct intel_gen6_power_mgmt { /* * work, interrupts_enabled and pm_iir are protected by * dev_priv->irq_lock */ struct work_struct work; bool interrupts_enabled; u32 pm_iir; u32 pm_intr_keep; /* Frequencies are stored in potentially platform dependent multiples. * In other words, *_freq needs to be multiplied by X to be interesting. * Soft limits are those which are used for the dynamic reclocking done * by the driver (raise frequencies under heavy loads, and lower for * lighter loads). Hard limits are those imposed by the hardware. * * A distinction is made for overclocking, which is never enabled by * default, and is considered to be above the hard limit if it's * possible at all. */ u8 cur_freq; /* Current frequency (cached, may not == HW) */ u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */ u8 max_freq_softlimit; /* Max frequency permitted by the driver */ u8 max_freq; /* Maximum frequency, RP0 if not overclocking */ u8 min_freq; /* AKA RPn. Minimum frequency */ u8 boost_freq; /* Frequency to request when wait boosting */ u8 idle_freq; /* Frequency to request when we are idle */ u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */ u8 rp1_freq; /* "less than" RP0 power/freqency */ u8 rp0_freq; /* Non-overclocked max frequency. */ u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */ u8 up_threshold; /* Current %busy required to uplock */ u8 down_threshold; /* Current %busy required to downclock */ int last_adj; enum { LOW_POWER, BETWEEN, HIGH_POWER } power; spinlock_t client_lock; struct list_head clients; bool client_boost; bool enabled; struct delayed_work autoenable_work; unsigned boosts; /* manual wa residency calculations */ struct intel_rps_ei up_ei, down_ei; /* * Protects RPS/RC6 register access and PCU communication. * Must be taken after struct_mutex if nested. Note that * this lock may be held for long periods of time when * talking to hw - so only take it when talking to hw! */ struct mutex hw_lock; }; /* defined intel_pm.c */ extern spinlock_t mchdev_lock; struct intel_ilk_power_mgmt { u8 cur_delay; u8 min_delay; u8 max_delay; u8 fmax; u8 fstart; u64 last_count1; unsigned long last_time1; unsigned long chipset_power; u64 last_count2; u64 last_time2; unsigned long gfx_power; u8 corr; int c_m; int r_t; }; struct drm_i915_private; struct i915_power_well; struct i915_power_well_ops { /* * Synchronize the well's hw state to match the current sw state, for * example enable/disable it based on the current refcount. Called * during driver init and resume time, possibly after first calling * the enable/disable handlers. */ void (*sync_hw)(struct drm_i915_private *dev_priv, struct i915_power_well *power_well); /* * Enable the well and resources that depend on it (for example * interrupts located on the well). Called after the 0->1 refcount * transition. */ void (*enable)(struct drm_i915_private *dev_priv, struct i915_power_well *power_well); /* * Disable the well and resources that depend on it. Called after * the 1->0 refcount transition. */ void (*disable)(struct drm_i915_private *dev_priv, struct i915_power_well *power_well); /* Returns the hw enabled state. */ bool (*is_enabled)(struct drm_i915_private *dev_priv, struct i915_power_well *power_well); }; /* Power well structure for haswell */ struct i915_power_well { const char *name; bool always_on; /* power well enable/disable usage count */ int count; /* cached hw enabled state */ bool hw_enabled; unsigned long domains; unsigned long data; const struct i915_power_well_ops *ops; }; struct i915_power_domains { /* * Power wells needed for initialization at driver init and suspend * time are on. They are kept on until after the first modeset. */ bool init_power_on; bool initializing; int power_well_count; struct mutex lock; int domain_use_count[POWER_DOMAIN_NUM]; struct i915_power_well *power_wells; }; #define MAX_L3_SLICES 2 struct intel_l3_parity { u32 *remap_info[MAX_L3_SLICES]; struct work_struct error_work; int which_slice; }; struct i915_gem_mm { /** Memory allocator for GTT stolen memory */ struct drm_mm stolen; /** Protects the usage of the GTT stolen memory allocator. This is * always the inner lock when overlapping with struct_mutex. */ struct mutex stolen_lock; /** List of all objects in gtt_space. Used to restore gtt * mappings on resume */ struct list_head bound_list; /** * List of objects which are not bound to the GTT (thus * are idle and not used by the GPU) but still have * (presumably uncached) pages still attached. */ struct list_head unbound_list; /** Usable portion of the GTT for GEM */ unsigned long stolen_base; /* limited to low memory (32-bit) */ /** PPGTT used for aliasing the PPGTT with the GTT */ struct i915_hw_ppgtt *aliasing_ppgtt; struct notifier_block oom_notifier; struct notifier_block vmap_notifier; struct shrinker shrinker; /** LRU list of objects with fence regs on them. */ struct list_head fence_list; /** * Are we in a non-interruptible section of code like * modesetting? */ bool interruptible; /* the indicator for dispatch video commands on two BSD rings */ unsigned int bsd_engine_dispatch_index; /** Bit 6 swizzling required for X tiling */ uint32_t bit_6_swizzle_x; /** Bit 6 swizzling required for Y tiling */ uint32_t bit_6_swizzle_y; /* accounting, useful for userland debugging */ spinlock_t object_stat_lock; size_t object_memory; u32 object_count; }; struct drm_i915_error_state_buf { struct drm_i915_private *i915; unsigned bytes; unsigned size; int err; u8 *buf; loff_t start; loff_t pos; }; struct i915_error_state_file_priv { struct drm_device *dev; struct drm_i915_error_state *error; }; struct i915_gpu_error { /* For hangcheck timer */ #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */ #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD) /* Hang gpu twice in this window and your context gets banned */ #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000) struct delayed_work hangcheck_work; /* For reset and error_state handling. */ spinlock_t lock; /* Protected by the above dev->gpu_error.lock. */ struct drm_i915_error_state *first_error; unsigned long missed_irq_rings; /** * State variable controlling the reset flow and count * * This is a counter which gets incremented when reset is triggered, * and again when reset has been handled. So odd values (lowest bit set) * means that reset is in progress and even values that * (reset_counter >> 1):th reset was successfully completed. * * If reset is not completed succesfully, the I915_WEDGE bit is * set meaning that hardware is terminally sour and there is no * recovery. All waiters on the reset_queue will be woken when * that happens. * * This counter is used by the wait_seqno code to notice that reset * event happened and it needs to restart the entire ioctl (since most * likely the seqno it waited for won't ever signal anytime soon). * * This is important for lock-free wait paths, where no contended lock * naturally enforces the correct ordering between the bail-out of the * waiter and the gpu reset work code. */ atomic_t reset_counter; #define I915_RESET_IN_PROGRESS_FLAG 1 #define I915_WEDGED (1 << 31) /** * Waitqueue to signal when a hang is detected. Used to for waiters * to release the struct_mutex for the reset to procede. */ wait_queue_head_t wait_queue; /** * Waitqueue to signal when the reset has completed. Used by clients * that wait for dev_priv->mm.wedged to settle. */ wait_queue_head_t reset_queue; /* For missed irq/seqno simulation. */ unsigned long test_irq_rings; }; enum modeset_restore { MODESET_ON_LID_OPEN, MODESET_DONE, MODESET_SUSPENDED, }; #define DP_AUX_A 0x40 #define DP_AUX_B 0x10 #define DP_AUX_C 0x20 #define DP_AUX_D 0x30 #define DDC_PIN_B 0x05 #define DDC_PIN_C 0x04 #define DDC_PIN_D 0x06 struct ddi_vbt_port_info { /* * This is an index in the HDMI/DVI DDI buffer translation table. * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't * populate this field. */ #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff uint8_t hdmi_level_shift; uint8_t supports_dvi:1; uint8_t supports_hdmi:1; uint8_t supports_dp:1; uint8_t alternate_aux_channel; uint8_t alternate_ddc_pin; uint8_t dp_boost_level; uint8_t hdmi_boost_level; }; enum psr_lines_to_wait { PSR_0_LINES_TO_WAIT = 0, PSR_1_LINE_TO_WAIT, PSR_4_LINES_TO_WAIT, PSR_8_LINES_TO_WAIT }; struct intel_vbt_data { struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ /* Feature bits */ unsigned int int_tv_support:1; unsigned int lvds_dither:1; unsigned int lvds_vbt:1; unsigned int int_crt_support:1; unsigned int lvds_use_ssc:1; unsigned int display_clock_mode:1; unsigned int fdi_rx_polarity_inverted:1; unsigned int panel_type:4; int lvds_ssc_freq; unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ enum drrs_support_type drrs_type; struct { int rate; int lanes; int preemphasis; int vswing; bool low_vswing; bool initialized; bool support; int bpp; struct edp_power_seq pps; } edp; struct { bool full_link; bool require_aux_wakeup; int idle_frames; enum psr_lines_to_wait lines_to_wait; int tp1_wakeup_time; int tp2_tp3_wakeup_time; } psr; struct { u16 pwm_freq_hz; bool present; bool active_low_pwm; u8 min_brightness; /* min_brightness/255 of max */ enum intel_backlight_type type; } backlight; /* MIPI DSI */ struct { u16 panel_id; struct mipi_config *config; struct mipi_pps_data *pps; u8 seq_version; u32 size; u8 *data; const u8 *sequence[MIPI_SEQ_MAX]; } dsi; int crt_ddc_pin; int child_dev_num; union child_device_config *child_dev; struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; struct sdvo_device_mapping sdvo_mappings[2]; }; enum intel_ddb_partitioning { INTEL_DDB_PART_1_2, INTEL_DDB_PART_5_6, /* IVB+ */ }; struct intel_wm_level { bool enable; uint32_t pri_val; uint32_t spr_val; uint32_t cur_val; uint32_t fbc_val; }; struct ilk_wm_values { uint32_t wm_pipe[3]; uint32_t wm_lp[3]; uint32_t wm_lp_spr[3]; uint32_t wm_linetime[3]; bool enable_fbc_wm; enum intel_ddb_partitioning partitioning; }; struct vlv_pipe_wm { uint16_t primary; uint16_t sprite[2]; uint8_t cursor; }; struct vlv_sr_wm { uint16_t plane; uint8_t cursor; }; struct vlv_wm_values { struct vlv_pipe_wm pipe[3]; struct vlv_sr_wm sr; struct { uint8_t cursor; uint8_t sprite[2]; uint8_t primary; } ddl[3]; uint8_t level; bool cxsr; }; struct skl_ddb_entry { uint16_t start, end; /* in number of blocks, 'end' is exclusive */ }; static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry) { return entry->end - entry->start; } static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, const struct skl_ddb_entry *e2) { if (e1->start == e2->start && e1->end == e2->end) return true; return false; } struct skl_ddb_allocation { struct skl_ddb_entry pipe[I915_MAX_PIPES]; struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */ struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES]; }; struct skl_wm_values { unsigned dirty_pipes; struct skl_ddb_allocation ddb; uint32_t wm_linetime[I915_MAX_PIPES]; uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8]; uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES]; }; struct skl_wm_level { bool plane_en[I915_MAX_PLANES]; uint16_t plane_res_b[I915_MAX_PLANES]; uint8_t plane_res_l[I915_MAX_PLANES]; }; /* * This struct helps tracking the state needed for runtime PM, which puts the * device in PCI D3 state. Notice that when this happens, nothing on the * graphics device works, even register access, so we don't get interrupts nor * anything else. * * Every piece of our code that needs to actually touch the hardware needs to * either call intel_runtime_pm_get or call intel_display_power_get with the * appropriate power domain. * * Our driver uses the autosuspend delay feature, which means we'll only really * suspend if we stay with zero refcount for a certain amount of time. The * default value is currently very conservative (see intel_runtime_pm_enable), but * it can be changed with the standard runtime PM files from sysfs. * * The irqs_disabled variable becomes true exactly after we disable the IRQs and * goes back to false exactly before we reenable the IRQs. We use this variable * to check if someone is trying to enable/disable IRQs while they're supposed * to be disabled. This shouldn't happen and we'll print some error messages in * case it happens. * * For more, read the Documentation/power/runtime_pm.txt. */ struct i915_runtime_pm { atomic_t wakeref_count; atomic_t atomic_seq; bool suspended; bool irqs_enabled; }; enum intel_pipe_crc_source { INTEL_PIPE_CRC_SOURCE_NONE, INTEL_PIPE_CRC_SOURCE_PLANE1, INTEL_PIPE_CRC_SOURCE_PLANE2, INTEL_PIPE_CRC_SOURCE_PF, INTEL_PIPE_CRC_SOURCE_PIPE, /* TV/DP on pre-gen5/vlv can't use the pipe source. */ INTEL_PIPE_CRC_SOURCE_TV, INTEL_PIPE_CRC_SOURCE_DP_B, INTEL_PIPE_CRC_SOURCE_DP_C, INTEL_PIPE_CRC_SOURCE_DP_D, INTEL_PIPE_CRC_SOURCE_AUTO, INTEL_PIPE_CRC_SOURCE_MAX, }; struct intel_pipe_crc_entry { uint32_t frame; uint32_t crc[5]; }; #define INTEL_PIPE_CRC_ENTRIES_NR 128 struct intel_pipe_crc { spinlock_t lock; bool opened; /* exclusive access to the result file */ struct intel_pipe_crc_entry *entries; enum intel_pipe_crc_source source; int head, tail; wait_queue_head_t wq; }; struct i915_frontbuffer_tracking { spinlock_t lock; /* * Tracking bits for delayed frontbuffer flushing du to gpu activity or * scheduled flips. */ unsigned busy_bits; unsigned flip_bits; }; struct i915_wa_reg { i915_reg_t addr; u32 value; /* bitmask representing WA bits */ u32 mask; }; /* * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only * allowing it for RCS as we don't foresee any requirement of having * a whitelist for other engines. When it is really required for * other engines then the limit need to be increased. */ #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS) struct i915_workarounds { struct i915_wa_reg reg[I915_MAX_WA_REGS]; u32 count; u32 hw_whitelist_count[I915_NUM_ENGINES]; }; struct i915_virtual_gpu { bool active; }; /* used in computing the new watermarks state */ struct intel_wm_config { unsigned int num_pipes_active; bool sprites_enabled; bool sprites_scaled; }; struct drm_i915_private { struct drm_device drm; struct kmem_cache *objects; struct kmem_cache *vmas; struct kmem_cache *requests; const struct intel_device_info info; int relative_constants_mode; void __iomem *regs; struct intel_uncore uncore; struct i915_virtual_gpu vgpu; struct intel_gvt gvt; struct intel_guc guc; struct intel_csr csr; struct intel_gmbus gmbus[GMBUS_NUM_PINS]; /** gmbus_mutex protects against concurrent usage of the single hw gmbus * controller on different i2c buses. */ struct mutex gmbus_mutex; /** * Base address of the gmbus and gpio block. */ uint32_t gpio_mmio_base; /* MMIO base address for MIPI regs */ uint32_t mipi_mmio_base; uint32_t psr_mmio_base; wait_queue_head_t gmbus_wait_queue; struct pci_dev *bridge_dev; struct i915_gem_context *kernel_context; struct intel_engine_cs engine[I915_NUM_ENGINES]; struct drm_i915_gem_object *semaphore_obj; u32 next_seqno; struct drm_dma_handle *status_page_dmah; struct resource mch_res; /* protects the irq masks */ spinlock_t irq_lock; /* protects the mmio flip data */ spinlock_t mmio_flip_lock; bool display_irqs_enabled; /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */ struct pm_qos_request pm_qos; /* Sideband mailbox protection */ struct mutex sb_lock; /** Cached value of IMR to avoid reads in updating the bitfield */ union { u32 irq_mask; u32 de_irq_mask[I915_MAX_PIPES]; }; u32 gt_irq_mask; u32 pm_irq_mask; u32 pm_rps_events; u32 pipestat_irq_mask[I915_MAX_PIPES]; struct i915_hotplug hotplug; struct intel_fbc fbc; struct i915_drrs drrs; struct intel_opregion opregion; struct intel_vbt_data vbt; bool preserve_bios_swizzle; /* overlay */ struct intel_overlay *overlay; /* backlight registers and fields in struct intel_panel */ struct mutex backlight_lock; /* LVDS info */ bool no_aux_handshake; /* protects panel power sequencer state */ struct mutex pps_mutex; struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */ int num_fence_regs; /* 8 on pre-965, 16 otherwise */ unsigned int fsb_freq, mem_freq, is_ddr3; unsigned int skl_preferred_vco_freq; unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq; unsigned int max_dotclk_freq; unsigned int rawclk_freq; unsigned int hpll_freq; unsigned int czclk_freq; struct { unsigned int vco, ref; } cdclk_pll; /** * wq - Driver workqueue for GEM. * * NOTE: Work items scheduled here are not allowed to grab any modeset * locks, for otherwise the flushing done in the pageflip code will * result in deadlocks. */ struct workqueue_struct *wq; /* Display functions */ struct drm_i915_display_funcs display; /* PCH chipset type */ enum intel_pch pch_type; unsigned short pch_id; unsigned long quirks; enum modeset_restore modeset_restore; struct mutex modeset_restore_lock; struct drm_atomic_state *modeset_restore_state; struct list_head vm_list; /* Global list of all address spaces */ struct i915_ggtt ggtt; /* VM representing the global address space */ struct i915_gem_mm mm; DECLARE_HASHTABLE(mm_structs, 7); struct mutex mm_lock; /* The hw wants to have a stable context identifier for the lifetime * of the context (for OA, PASID, faults, etc). This is limited * in execlists to 21 bits. */ struct ida context_hw_ida; #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */ /* Kernel Modesetting */ struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; wait_queue_head_t pending_flip_queue; #ifdef CONFIG_DEBUG_FS struct intel_pipe_crc pipe_crc[I915_MAX_PIPES]; #endif /* dpll and cdclk state is protected by connection_mutex */ int num_shared_dpll; struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; const struct intel_dpll_mgr *dpll_mgr; /* * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll. * Must be global rather than per dpll, because on some platforms * plls share registers. */ struct mutex dpll_lock; unsigned int active_crtcs; unsigned int min_pixclk[I915_MAX_PIPES]; int dpio_phy_iosf_port[I915_NUM_PHYS_VLV]; struct i915_workarounds workarounds; struct i915_frontbuffer_tracking fb_tracking; u16 orig_clock; bool mchbar_need_disable; struct intel_l3_parity l3_parity; /* Cannot be determined by PCIID. You must always read a register. */ u32 edram_cap; /* gen6+ rps state */ struct intel_gen6_power_mgmt rps; /* ilk-only ips/rps state. Everything in here is protected by the global * mchdev_lock in intel_pm.c */ struct intel_ilk_power_mgmt ips; struct i915_power_domains power_domains; struct i915_psr psr; struct i915_gpu_error gpu_error; struct drm_i915_gem_object *vlv_pctx; #ifdef CONFIG_DRM_FBDEV_EMULATION /* list of fbdev register on this device */ struct intel_fbdev *fbdev; struct work_struct fbdev_suspend_work; #endif struct drm_property *broadcast_rgb_property; struct drm_property *force_audio_property; /* hda/i915 audio component */ struct i915_audio_component *audio_component; bool audio_component_registered; /** * av_mutex - mutex for audio/video sync * */ struct mutex av_mutex; uint32_t hw_context_size; struct list_head context_list; u32 fdi_rx_config; /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ u32 chv_phy_control; /* * Shadows for CHV DPLL_MD regs to keep the state * checker somewhat working in the presence hardware * crappiness (can't read out DPLL_MD for pipes B & C). */ u32 chv_dpll_md[I915_MAX_PIPES]; u32 bxt_phy_grc; u32 suspend_count; bool suspended_to_idle; struct i915_suspend_saved_registers regfile; struct vlv_s0ix_state vlv_s0ix_state; struct { /* * Raw watermark latency values: * in 0.1us units for WM0, * in 0.5us units for WM1+. */ /* primary */ uint16_t pri_latency[5]; /* sprite */ uint16_t spr_latency[5]; /* cursor */ uint16_t cur_latency[5]; /* * Raw watermark memory latency values * for SKL for all 8 levels * in 1us units. */ uint16_t skl_latency[8]; /* * The skl_wm_values structure is a bit too big for stack * allocation, so we keep the staging struct where we store * intermediate results here instead. */ struct skl_wm_values skl_results; /* current hardware state */ union { struct ilk_wm_values hw; struct skl_wm_values skl_hw; struct vlv_wm_values vlv; }; uint8_t max_level; /* * Should be held around atomic WM register writing; also * protects * intel_crtc->wm.active and * cstate->wm.need_postvbl_update. */ struct mutex wm_mutex; /* * Set during HW readout of watermarks/DDB. Some platforms * need to know when we're still using BIOS-provided values * (which we don't fully trust). */ bool distrust_bios_wm; } wm; struct i915_runtime_pm pm; /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ struct { void (*cleanup_engine)(struct intel_engine_cs *engine); /** * Is the GPU currently considered idle, or busy executing * userspace requests? Whilst idle, we allow runtime power * management to power down the hardware and display clocks. * In order to reduce the effect on performance, there * is a slight delay before we do so. */ unsigned int active_engines; bool awake; /** * We leave the user IRQ off as much as possible, * but this means that requests will finish and never * be retired once the system goes idle. Set a timer to * fire periodically while the ring is running. When it * fires, go retire requests. */ struct delayed_work retire_work; /** * When we detect an idle GPU, we want to turn on * powersaving features. So once we see that there * are no more requests outstanding and no more * arrive within a small period of time, we fire * off the idle_work. */ struct delayed_work idle_work; } gt; /* perform PHY state sanity checks? */ bool chv_phy_assert[2]; struct intel_encoder *dig_port_map[I915_MAX_PORTS]; /* * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch * will be rejected. Instead look for a better place. */ }; static inline struct drm_i915_private *to_i915(const struct drm_device *dev) { return container_of(dev, struct drm_i915_private, drm); } static inline struct drm_i915_private *dev_to_i915(struct device *dev) { return to_i915(dev_get_drvdata(dev)); } static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc) { return container_of(guc, struct drm_i915_private, guc); } /* Simple iterator over all initialised engines */ #define for_each_engine(engine__, dev_priv__) \ for ((engine__) = &(dev_priv__)->engine[0]; \ (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \ (engine__)++) \ for_each_if (intel_engine_initialized(engine__)) /* Iterator with engine_id */ #define for_each_engine_id(engine__, dev_priv__, id__) \ for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \ (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \ (engine__)++) \ for_each_if (((id__) = (engine__)->id, \ intel_engine_initialized(engine__))) /* Iterator over subset of engines selected by mask */ #define for_each_engine_masked(engine__, dev_priv__, mask__) \ for ((engine__) = &(dev_priv__)->engine[0]; \ (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \ (engine__)++) \ for_each_if (((mask__) & intel_engine_flag(engine__)) && \ intel_engine_initialized(engine__)) enum hdmi_force_audio { HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */ HDMI_AUDIO_OFF, /* force turn off HDMI audio */ HDMI_AUDIO_AUTO, /* trust EDID */ HDMI_AUDIO_ON, /* force turn on HDMI audio */ }; #define I915_GTT_OFFSET_NONE ((u32)-1) struct drm_i915_gem_object_ops { unsigned int flags; #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1 /* Interface between the GEM object and its backing storage. * get_pages() is called once prior to the use of the associated set * of pages before to binding them into the GTT, and put_pages() is * called after we no longer need them. As we expect there to be * associated cost with migrating pages between the backing storage * and making them available for the GPU (e.g. clflush), we may hold * onto the pages after they are no longer referenced by the GPU * in case they may be used again shortly (for example migrating the * pages to a different memory domain within the GTT). put_pages() * will therefore most likely be called when the object itself is * being released or under memory pressure (where we attempt to * reap pages for the shrinker). */ int (*get_pages)(struct drm_i915_gem_object *); void (*put_pages)(struct drm_i915_gem_object *); int (*dmabuf_export)(struct drm_i915_gem_object *); void (*release)(struct drm_i915_gem_object *); }; /* * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is * considered to be the frontbuffer for the given plane interface-wise. This * doesn't mean that the hw necessarily already scans it out, but that any * rendering (by the cpu or gpu) will land in the frontbuffer eventually. * * We have one bit per pipe and per scanout plane type. */ #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \ (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) #define INTEL_FRONTBUFFER_CURSOR(pipe) \ (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \ (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))) #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))) struct drm_i915_gem_object { struct drm_gem_object base; const struct drm_i915_gem_object_ops *ops; /** List of VMAs backed by this object */ struct list_head vma_list; /** Stolen memory for this object, instead of being backed by shmem. */ struct drm_mm_node *stolen; struct list_head global_list; /** Used in execbuf to temporarily hold a ref */ struct list_head obj_exec_link; struct list_head batch_pool_link; unsigned long flags; /** * This is set if the object is on the active lists (has pending * rendering and so a non-zero seqno), and is not set if it i s on * inactive (ready to be unbound) list. */ #define I915_BO_ACTIVE_SHIFT 0 #define I915_BO_ACTIVE_MASK ((1 << I915_NUM_ENGINES) - 1) #define __I915_BO_ACTIVE(bo) \ ((READ_ONCE((bo)->flags) >> I915_BO_ACTIVE_SHIFT) & I915_BO_ACTIVE_MASK) /** * This is set if the object has been written to since last bound * to the GTT */ unsigned int dirty:1; /** * Fence register bits (if any) for this object. Will be set * as needed when mapped into the GTT. * Protected by dev->struct_mutex. */ signed int fence_reg:I915_MAX_NUM_FENCE_BITS; /** * Advice: are the backing pages purgeable? */ unsigned int madv:2; /** * Whether the tiling parameters for the currently associated fence * register have changed. Note that for the purposes of tracking * tiling changes we also treat the unfenced register, the register * slot that the object occupies whilst it executes a fenced * command (such as BLT on gen2/3), as a "fence". */ unsigned int fence_dirty:1; /** * Is the object at the current location in the gtt mappable and * fenceable? Used to avoid costly recalculations. */ unsigned int map_and_fenceable:1; /** * Whether the current gtt mapping needs to be mappable (and isn't just * mappable by accident). Track pin and fault separate for a more * accurate mappable working set. */ unsigned int fault_mappable:1; /* * Is the object to be mapped as read-only to the GPU * Only honoured if hardware has relevant pte bit */ unsigned long gt_ro:1; unsigned int cache_level:3; unsigned int cache_dirty:1; atomic_t frontbuffer_bits; /** * Current tiling mode for the object. */ unsigned int tiling_mode; /** Current tiling stride for the object, if it's tiled. */ uint32_t stride; unsigned int has_wc_mmap; /** Count of VMA actually bound by this object */ unsigned int bind_count; unsigned int pin_display; struct sg_table *pages; int pages_pin_count; struct get_page { struct scatterlist *sg; int last; } get_page; void *mapping; /** Breadcrumb of last rendering to the buffer. * There can only be one writer, but we allow for multiple readers. * If there is a writer that necessarily implies that all other * read requests are complete - but we may only be lazily clearing * the read requests. A read request is naturally the most recent * request on a ring, so we may have two different write and read * requests on one ring where the write request is older than the * read request. This allows for the CPU to read from an active * buffer by only waiting for the write to complete. */ struct i915_gem_active last_read[I915_NUM_ENGINES]; struct i915_gem_active last_write; struct i915_gem_active last_fence; /** References from framebuffers, locks out tiling changes. */ unsigned long framebuffer_references; /** Record of address bit 17 of each page at last unbind. */ unsigned long *bit_17; union { /** for phy allocated objects */ struct drm_dma_handle *phys_handle; struct i915_gem_userptr { uintptr_t ptr; unsigned read_only :1; unsigned workers :4; #define I915_GEM_USERPTR_MAX_WORKERS 15 struct i915_mm_struct *mm; struct i915_mmu_object *mmu_object; struct work_struct *work; } userptr; }; }; static inline struct drm_i915_gem_object * to_intel_bo(struct drm_gem_object *gem) { /* Assert that to_intel_bo(NULL) == NULL */ BUILD_BUG_ON(offsetof(struct drm_i915_gem_object, base)); return container_of(gem, struct drm_i915_gem_object, base); } static inline struct drm_i915_gem_object * i915_gem_object_lookup(struct drm_file *file, u32 handle) { return to_intel_bo(drm_gem_object_lookup(file, handle)); } __deprecated extern struct drm_gem_object * drm_gem_object_lookup(struct drm_file *file, u32 handle); __attribute__((nonnull)) static inline struct drm_i915_gem_object * i915_gem_object_get(struct drm_i915_gem_object *obj) { drm_gem_object_reference(&obj->base); return obj; } __deprecated extern void drm_gem_object_reference(struct drm_gem_object *); __attribute__((nonnull)) static inline void i915_gem_object_put(struct drm_i915_gem_object *obj) { drm_gem_object_unreference(&obj->base); } __deprecated extern void drm_gem_object_unreference(struct drm_gem_object *); __attribute__((nonnull)) static inline void i915_gem_object_put_unlocked(struct drm_i915_gem_object *obj) { drm_gem_object_unreference_unlocked(&obj->base); } __deprecated extern void drm_gem_object_unreference_unlocked(struct drm_gem_object *); static inline bool i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj) { return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE; } static inline unsigned long i915_gem_object_get_active(const struct drm_i915_gem_object *obj) { return (obj->flags >> I915_BO_ACTIVE_SHIFT) & I915_BO_ACTIVE_MASK; } static inline bool i915_gem_object_is_active(const struct drm_i915_gem_object *obj) { return i915_gem_object_get_active(obj); } static inline void i915_gem_object_set_active(struct drm_i915_gem_object *obj, int engine) { obj->flags |= BIT(engine + I915_BO_ACTIVE_SHIFT); } static inline void i915_gem_object_clear_active(struct drm_i915_gem_object *obj, int engine) { obj->flags &= ~BIT(engine + I915_BO_ACTIVE_SHIFT); } static inline bool i915_gem_object_has_active_engine(const struct drm_i915_gem_object *obj, int engine) { return obj->flags & BIT(engine + I915_BO_ACTIVE_SHIFT); } /* * Optimised SGL iterator for GEM objects */ static __always_inline struct sgt_iter { struct scatterlist *sgp; union { unsigned long pfn; dma_addr_t dma; }; unsigned int curr; unsigned int max; } __sgt_iter(struct scatterlist *sgl, bool dma) { struct sgt_iter s = { .sgp = sgl }; if (s.sgp) { s.max = s.curr = s.sgp->offset; s.max += s.sgp->length; if (dma) s.dma = sg_dma_address(s.sgp); else s.pfn = page_to_pfn(sg_page(s.sgp)); } return s; } /** * __sg_next - return the next scatterlist entry in a list * @sg: The current sg entry * * Description: * If the entry is the last, return NULL; otherwise, step to the next * element in the array (@sg@+1). If that's a chain pointer, follow it; * otherwise just return the pointer to the current element. **/ static inline struct scatterlist *__sg_next(struct scatterlist *sg) { #ifdef CONFIG_DEBUG_SG BUG_ON(sg->sg_magic != SG_MAGIC); #endif return sg_is_last(sg) ? NULL : likely(!sg_is_chain(++sg)) ? sg : sg_chain_ptr(sg); } /** * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table * @__dmap: DMA address (output) * @__iter: 'struct sgt_iter' (iterator state, internal) * @__sgt: sg_table to iterate over (input) */ #define for_each_sgt_dma(__dmap, __iter, __sgt) \ for ((__iter) = __sgt_iter((__sgt)->sgl, true); \ ((__dmap) = (__iter).dma + (__iter).curr); \ (((__iter).curr += PAGE_SIZE) < (__iter).max) || \ ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0)) /** * for_each_sgt_page - iterate over the pages of the given sg_table * @__pp: page pointer (output) * @__iter: 'struct sgt_iter' (iterator state, internal) * @__sgt: sg_table to iterate over (input) */ #define for_each_sgt_page(__pp, __iter, __sgt) \ for ((__iter) = __sgt_iter((__sgt)->sgl, false); \ ((__pp) = (__iter).pfn == 0 ? NULL : \ pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \ (((__iter).curr += PAGE_SIZE) < (__iter).max) || \ ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0)) /* * A command that requires special handling by the command parser. */ struct drm_i915_cmd_descriptor { /* * Flags describing how the command parser processes the command. * * CMD_DESC_FIXED: The command has a fixed length if this is set, * a length mask if not set * CMD_DESC_SKIP: The command is allowed but does not follow the * standard length encoding for the opcode range in * which it falls * CMD_DESC_REJECT: The command is never allowed * CMD_DESC_REGISTER: The command should be checked against the * register whitelist for the appropriate ring * CMD_DESC_MASTER: The command is allowed if the submitting process * is the DRM master */ u32 flags; #define CMD_DESC_FIXED (1<<0) #define CMD_DESC_SKIP (1<<1) #define CMD_DESC_REJECT (1<<2) #define CMD_DESC_REGISTER (1<<3) #define CMD_DESC_BITMASK (1<<4) #define CMD_DESC_MASTER (1<<5) /* * The command's unique identification bits and the bitmask to get them. * This isn't strictly the opcode field as defined in the spec and may * also include type, subtype, and/or subop fields. */ struct { u32 value; u32 mask; } cmd; /* * The command's length. The command is either fixed length (i.e. does * not include a length field) or has a length field mask. The flag * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has * a length mask. All command entries in a command table must include * length information. */ union { u32 fixed; u32 mask; } length; /* * Describes where to find a register address in the command to check * against the ring's register whitelist. Only valid if flags has the * CMD_DESC_REGISTER bit set. * * A non-zero step value implies that the command may access multiple * registers in sequence (e.g. LRI), in that case step gives the * distance in dwords between individual offset fields. */ struct { u32 offset; u32 mask; u32 step; } reg; #define MAX_CMD_DESC_BITMASKS 3 /* * Describes command checks where a particular dword is masked and * compared against an expected value. If the command does not match * the expected value, the parser rejects it. Only valid if flags has * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero * are valid. * * If the check specifies a non-zero condition_mask then the parser * only performs the check when the bits specified by condition_mask * are non-zero. */ struct { u32 offset; u32 mask; u32 expected; u32 condition_offset; u32 condition_mask; } bits[MAX_CMD_DESC_BITMASKS]; }; /* * A table of commands requiring special handling by the command parser. * * Each engine has an array of tables. Each table consists of an array of * command descriptors, which must be sorted with command opcodes in * ascending order. */ struct drm_i915_cmd_table { const struct drm_i915_cmd_descriptor *table; int count; }; /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */ #define __I915__(p) ({ \ struct drm_i915_private *__p; \ if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \ __p = (struct drm_i915_private *)p; \ else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \ __p = to_i915((struct drm_device *)p); \ else \ BUILD_BUG(); \ __p; \ }) #define INTEL_INFO(p) (&__I915__(p)->info) #define INTEL_GEN(p) (INTEL_INFO(p)->gen) #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id) #define REVID_FOREVER 0xff #define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision) #define GEN_FOREVER (0) /* * Returns true if Gen is in inclusive range [Start, End]. * * Use GEN_FOREVER for unbound start and or end. */ #define IS_GEN(p, s, e) ({ \ unsigned int __s = (s), __e = (e); \ BUILD_BUG_ON(!__builtin_constant_p(s)); \ BUILD_BUG_ON(!__builtin_constant_p(e)); \ if ((__s) != GEN_FOREVER) \ __s = (s) - 1; \ if ((__e) == GEN_FOREVER) \ __e = BITS_PER_LONG - 1; \ else \ __e = (e) - 1; \ !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \ }) /* * Return true if revision is in range [since,until] inclusive. * * Use 0 for open-ended since, and REVID_FOREVER for open-ended until. */ #define IS_REVID(p, since, until) \ (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until)) #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577) #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562) #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x) #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572) #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g) #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592) #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772) #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm) #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater) #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline) #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42) #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x) #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001) #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011) #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview) #define IS_G33(dev) (INTEL_INFO(dev)->is_g33) #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046) #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge) #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \ INTEL_DEVID(dev) == 0x0152 || \ INTEL_DEVID(dev) == 0x015a) #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview) #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview) #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell) #define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell) #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake) #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton) #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake) #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile) #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \ (INTEL_DEVID(dev) & 0xFF00) == 0x0C00) #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \ ((INTEL_DEVID(dev) & 0xf) == 0x6 || \ (INTEL_DEVID(dev) & 0xf) == 0xb || \ (INTEL_DEVID(dev) & 0xf) == 0xe)) /* ULX machines are also considered ULT. */ #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \ (INTEL_DEVID(dev) & 0xf) == 0xe) #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \ (INTEL_DEVID(dev) & 0x00F0) == 0x0020) #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \ (INTEL_DEVID(dev) & 0xFF00) == 0x0A00) #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \ (INTEL_DEVID(dev) & 0x00F0) == 0x0020) /* ULX machines are also considered ULT. */ #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \ INTEL_DEVID(dev) == 0x0A1E) #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \ INTEL_DEVID(dev) == 0x1913 || \ INTEL_DEVID(dev) == 0x1916 || \ INTEL_DEVID(dev) == 0x1921 || \ INTEL_DEVID(dev) == 0x1926) #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \ INTEL_DEVID(dev) == 0x1915 || \ INTEL_DEVID(dev) == 0x191E) #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \ INTEL_DEVID(dev) == 0x5913 || \ INTEL_DEVID(dev) == 0x5916 || \ INTEL_DEVID(dev) == 0x5921 || \ INTEL_DEVID(dev) == 0x5926) #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \ INTEL_DEVID(dev) == 0x5915 || \ INTEL_DEVID(dev) == 0x591E) #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \ (INTEL_DEVID(dev) & 0x00F0) == 0x0020) #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \ (INTEL_DEVID(dev) & 0x00F0) == 0x0030) #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary) #define SKL_REVID_A0 0x0 #define SKL_REVID_B0 0x1 #define SKL_REVID_C0 0x2 #define SKL_REVID_D0 0x3 #define SKL_REVID_E0 0x4 #define SKL_REVID_F0 0x5 #define SKL_REVID_G0 0x6 #define SKL_REVID_H0 0x7 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until)) #define BXT_REVID_A0 0x0 #define BXT_REVID_A1 0x1 #define BXT_REVID_B0 0x3 #define BXT_REVID_C0 0x9 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until)) #define KBL_REVID_A0 0x0 #define KBL_REVID_B0 0x1 #define KBL_REVID_C0 0x2 #define KBL_REVID_D0 0x3 #define KBL_REVID_E0 0x4 #define IS_KBL_REVID(p, since, until) \ (IS_KABYLAKE(p) && IS_REVID(p, since, until)) /* * The genX designation typically refers to the render engine, so render * capability related checks should use IS_GEN, while display and other checks * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular * chips, etc.). */ #define IS_GEN2(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(1))) #define IS_GEN3(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(2))) #define IS_GEN4(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(3))) #define IS_GEN5(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(4))) #define IS_GEN6(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(5))) #define IS_GEN7(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(6))) #define IS_GEN8(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(7))) #define IS_GEN9(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(8))) #define ENGINE_MASK(id) BIT(id) #define RENDER_RING ENGINE_MASK(RCS) #define BSD_RING ENGINE_MASK(VCS) #define BLT_RING ENGINE_MASK(BCS) #define VEBOX_RING ENGINE_MASK(VECS) #define BSD2_RING ENGINE_MASK(VCS2) #define ALL_ENGINES (~0) #define HAS_ENGINE(dev_priv, id) \ (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id))) #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS) #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2) #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS) #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS) #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc) #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop) #define HAS_EDRAM(dev) (!!(__I915__(dev)->edram_cap & EDRAM_ENABLED)) #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \ HAS_EDRAM(dev)) #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws) #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6) #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8) #define USES_PPGTT(dev) (i915.enable_ppgtt) #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2) #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3) #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay) #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical) /* Early gen2 have a totally busted CS tlb and require pinned batches. */ #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev)) /* WaRsDisableCoarsePowerGating:skl,bxt */ #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \ IS_SKL_GT3(dev_priv) || \ IS_SKL_GT4(dev_priv)) /* * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts * even when in MSI mode. This results in spurious interrupt warnings if the * legacy irq no. is shared with another device. The kernel then disables that * interrupt source and so prevents the other device from working properly. */ #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5) #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5) /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte * rows, which changed the alignment requirements and fence programming. */ #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \ IS_I915GM(dev))) #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv) #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug) #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2) #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr) #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc) #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev)) #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \ INTEL_INFO(dev)->gen >= 9) #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi) #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg) #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \ IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \ IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \ IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \ IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \ IS_KABYLAKE(dev) || IS_BROXTON(dev)) #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6) #define HAS_RC6p(dev) (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) #define HAS_CSR(dev) (IS_GEN9(dev)) /* * For now, anything with a GuC requires uCode loading, and then supports * command submission once loaded. But these are logically independent * properties, so we have separate macros to test them. */ #define HAS_GUC(dev) (IS_GEN9(dev)) #define HAS_GUC_UCODE(dev) (HAS_GUC(dev)) #define HAS_GUC_SCHED(dev) (HAS_GUC(dev)) #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \ INTEL_INFO(dev)->gen >= 8) #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \ !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \ !IS_BROXTON(dev)) #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu) #define INTEL_PCH_DEVICE_ID_MASK 0xff00 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */ #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type) #define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP) #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT) #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT) #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT) #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX) #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP) #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE) #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \ IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) /* DPF == dynamic parity feature */ #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev)) #define GT_FREQUENCY_MULTIPLIER 50 #define GEN9_FREQ_SCALER 3 #include "i915_trace.h" static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) { #ifdef CONFIG_INTEL_IOMMU if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped) return true; #endif return false; } extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state); extern int i915_resume_switcheroo(struct drm_device *dev); int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, int enable_ppgtt); bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value); /* i915_drv.c */ void __printf(3, 4) __i915_printk(struct drm_i915_private *dev_priv, const char *level, const char *fmt, ...); #define i915_report_error(dev_priv, fmt, ...) \ __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__) #ifdef CONFIG_COMPAT extern long i915_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); #endif extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask); extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv); extern int i915_reset(struct drm_i915_private *dev_priv); extern int intel_guc_reset(struct drm_i915_private *dev_priv); extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine); extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv); extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv); extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv); extern void i915_update_gfx_val(struct drm_i915_private *dev_priv); int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on); /* intel_hotplug.c */ void intel_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 pin_mask, u32 long_mask); void intel_hpd_init(struct drm_i915_private *dev_priv); void intel_hpd_init_work(struct drm_i915_private *dev_priv); void intel_hpd_cancel_work(struct drm_i915_private *dev_priv); bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port); bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin); void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin); /* i915_irq.c */ static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv) { unsigned long delay; if (unlikely(!i915.enable_hangcheck)) return; /* Don't continually defer the hangcheck so that it is always run at * least once after work has been scheduled on any ring. Otherwise, * we will ignore a hung ring if a second ring is kept busy. */ delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES); queue_delayed_work(system_long_wq, &dev_priv->gpu_error.hangcheck_work, delay); } __printf(3, 4) void i915_handle_error(struct drm_i915_private *dev_priv, u32 engine_mask, const char *fmt, ...); extern void intel_irq_init(struct drm_i915_private *dev_priv); int intel_irq_install(struct drm_i915_private *dev_priv); void intel_irq_uninstall(struct drm_i915_private *dev_priv); extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv); extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv, bool restore_forcewake); extern void intel_uncore_init(struct drm_i915_private *dev_priv); extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv); extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv); extern void intel_uncore_fini(struct drm_i915_private *dev_priv); extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv, bool restore); const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id); void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv, enum forcewake_domains domains); void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv, enum forcewake_domains domains); /* Like above but the caller must manage the uncore.lock itself. * Must be used with I915_READ_FW and friends. */ void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv, enum forcewake_domains domains); void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv, enum forcewake_domains domains); u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv); void assert_forcewakes_inactive(struct drm_i915_private *dev_priv); int intel_wait_for_register(struct drm_i915_private *dev_priv, i915_reg_t reg, const u32 mask, const u32 value, const unsigned long timeout_ms); int intel_wait_for_register_fw(struct drm_i915_private *dev_priv, i915_reg_t reg, const u32 mask, const u32 value, const unsigned long timeout_ms); static inline bool intel_gvt_active(struct drm_i915_private *dev_priv) { return dev_priv->gvt.initialized; } static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv) { return dev_priv->vgpu.active; } void i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, u32 status_mask); void i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe, u32 status_mask); void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv); void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv); void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv, uint32_t mask, uint32_t bits); void ilk_update_display_irq(struct drm_i915_private *dev_priv, uint32_t interrupt_mask, uint32_t enabled_irq_mask); static inline void ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) { ilk_update_display_irq(dev_priv, bits, bits); } static inline void ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits) { ilk_update_display_irq(dev_priv, bits, 0); } void bdw_update_pipe_irq(struct drm_i915_private *dev_priv, enum pipe pipe, uint32_t interrupt_mask, uint32_t enabled_irq_mask); static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv, enum pipe pipe, uint32_t bits) { bdw_update_pipe_irq(dev_priv, pipe, bits, bits); } static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv, enum pipe pipe, uint32_t bits) { bdw_update_pipe_irq(dev_priv, pipe, bits, 0); } void ibx_display_interrupt_update(struct drm_i915_private *dev_priv, uint32_t interrupt_mask, uint32_t enabled_irq_mask); static inline void ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) { ibx_display_interrupt_update(dev_priv, bits, bits); } static inline void ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits) { ibx_display_interrupt_update(dev_priv, bits, 0); } /* i915_gem.c */ int i915_gem_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_pread_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_mmap_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_execbuffer(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_execbuffer2(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_busy_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, struct drm_file *file); int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, struct drm_file *file); int i915_gem_throttle_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_madvise_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_set_tiling(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_get_tiling(struct drm_device *dev, void *data, struct drm_file *file_priv); void i915_gem_init_userptr(struct drm_i915_private *dev_priv); int i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file); int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); void i915_gem_load_init(struct drm_device *dev); void i915_gem_load_cleanup(struct drm_device *dev); void i915_gem_load_init_fences(struct drm_i915_private *dev_priv); int i915_gem_freeze_late(struct drm_i915_private *dev_priv); void *i915_gem_object_alloc(struct drm_device *dev); void i915_gem_object_free(struct drm_i915_gem_object *obj); void i915_gem_object_init(struct drm_i915_gem_object *obj, const struct drm_i915_gem_object_ops *ops); struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev, size_t size); struct drm_i915_gem_object *i915_gem_object_create_from_data( struct drm_device *dev, const void *data, size_t size); void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file); void i915_gem_free_object(struct drm_gem_object *obj); int __must_check i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, const struct i915_ggtt_view *view, u64 size, u64 alignment, u64 flags); int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags); void __i915_vma_set_map_and_fenceable(struct i915_vma *vma); int __must_check i915_vma_unbind(struct i915_vma *vma); void i915_vma_close(struct i915_vma *vma); void i915_vma_destroy(struct i915_vma *vma); int i915_gem_object_unbind(struct drm_i915_gem_object *obj); int i915_gem_object_put_pages(struct drm_i915_gem_object *obj); void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv); void i915_gem_release_mmap(struct drm_i915_gem_object *obj); int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, int *needs_clflush); int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj); static inline int __sg_page_count(struct scatterlist *sg) { return sg->length >> PAGE_SHIFT; } struct page * i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n); static inline dma_addr_t i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n) { if (n < obj->get_page.last) { obj->get_page.sg = obj->pages->sgl; obj->get_page.last = 0; } while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) { obj->get_page.last += __sg_page_count(obj->get_page.sg++); if (unlikely(sg_is_chain(obj->get_page.sg))) obj->get_page.sg = sg_chain_ptr(obj->get_page.sg); } return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT); } static inline struct page * i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n) { if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT)) return NULL; if (n < obj->get_page.last) { obj->get_page.sg = obj->pages->sgl; obj->get_page.last = 0; } while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) { obj->get_page.last += __sg_page_count(obj->get_page.sg++); if (unlikely(sg_is_chain(obj->get_page.sg))) obj->get_page.sg = sg_chain_ptr(obj->get_page.sg); } return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last); } static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj) { BUG_ON(obj->pages == NULL); obj->pages_pin_count++; } static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj) { BUG_ON(obj->pages_pin_count == 0); obj->pages_pin_count--; } /** * i915_gem_object_pin_map - return a contiguous mapping of the entire object * @obj - the object to map into kernel address space * * Calls i915_gem_object_pin_pages() to prevent reaping of the object's * pages and then returns a contiguous mapping of the backing storage into * the kernel address space. * * The caller must hold the struct_mutex, and is responsible for calling * i915_gem_object_unpin_map() when the mapping is no longer required. * * Returns the pointer through which to access the mapped object, or an * ERR_PTR() on error. */ void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj); /** * i915_gem_object_unpin_map - releases an earlier mapping * @obj - the object to unmap * * After pinning the object and mapping its pages, once you are finished * with your access, call i915_gem_object_unpin_map() to release the pin * upon the mapping. Once the pin count reaches zero, that mapping may be * removed. * * The caller must hold the struct_mutex. */ static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj) { lockdep_assert_held(&obj->base.dev->struct_mutex); i915_gem_object_unpin_pages(obj); } int __must_check i915_mutex_lock_interruptible(struct drm_device *dev); int i915_gem_object_sync(struct drm_i915_gem_object *obj, struct drm_i915_gem_request *to); void i915_vma_move_to_active(struct i915_vma *vma, struct drm_i915_gem_request *req, unsigned int flags); int i915_gem_dumb_create(struct drm_file *file_priv, struct drm_device *dev, struct drm_mode_create_dumb *args); int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev, uint32_t handle, uint64_t *offset); void i915_gem_track_fb(struct drm_i915_gem_object *old, struct drm_i915_gem_object *new, unsigned frontbuffer_bits); int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno); struct drm_i915_gem_request * i915_gem_find_active_request(struct intel_engine_cs *engine); void i915_gem_retire_requests(struct drm_i915_private *dev_priv); static inline u32 i915_reset_counter(struct i915_gpu_error *error) { return atomic_read(&error->reset_counter); } static inline bool __i915_reset_in_progress(u32 reset) { return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG); } static inline bool __i915_reset_in_progress_or_wedged(u32 reset) { return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED)); } static inline bool __i915_terminally_wedged(u32 reset) { return unlikely(reset & I915_WEDGED); } static inline bool i915_reset_in_progress(struct i915_gpu_error *error) { return __i915_reset_in_progress(i915_reset_counter(error)); } static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error) { return __i915_reset_in_progress_or_wedged(i915_reset_counter(error)); } static inline bool i915_terminally_wedged(struct i915_gpu_error *error) { return __i915_terminally_wedged(i915_reset_counter(error)); } static inline u32 i915_reset_count(struct i915_gpu_error *error) { return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2; } void i915_gem_reset(struct drm_device *dev); bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force); int __must_check i915_gem_init(struct drm_device *dev); int __must_check i915_gem_init_hw(struct drm_device *dev); void i915_gem_init_swizzling(struct drm_device *dev); void i915_gem_cleanup_engines(struct drm_device *dev); int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv, bool interruptible); int __must_check i915_gem_suspend(struct drm_device *dev); void i915_gem_resume(struct drm_device *dev); int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf); int __must_check i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj, bool readonly); int __must_check i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write); int __must_check i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write); int __must_check i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, u32 alignment, const struct i915_ggtt_view *view); void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj, const struct i915_ggtt_view *view); int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align); int i915_gem_open(struct drm_device *dev, struct drm_file *file); void i915_gem_release(struct drm_device *dev, struct drm_file *file); u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv, u64 size, int tiling_mode); u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size, int tiling_mode, bool fenced); int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, enum i915_cache_level cache_level); struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf); struct dma_buf *i915_gem_prime_export(struct drm_device *dev, struct drm_gem_object *gem_obj, int flags); u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o, const struct i915_ggtt_view *view); u64 i915_gem_obj_offset(struct drm_i915_gem_object *o, struct i915_address_space *vm); static inline u64 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o) { return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal); } bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o, const struct i915_ggtt_view *view); bool i915_gem_obj_bound(struct drm_i915_gem_object *o, struct i915_address_space *vm); struct i915_vma * i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, struct i915_address_space *vm); struct i915_vma * i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj, const struct i915_ggtt_view *view); struct i915_vma * i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj, struct i915_address_space *vm); struct i915_vma * i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj, const struct i915_ggtt_view *view); static inline struct i915_vma * i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj) { return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal); } bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj); /* Some GGTT VM helpers */ static inline struct i915_hw_ppgtt * i915_vm_to_ppgtt(struct i915_address_space *vm) { return container_of(vm, struct i915_hw_ppgtt, base); } static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj) { return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal); } unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj); void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj, const struct i915_ggtt_view *view); static inline void i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj) { i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal); } /* i915_gem_fence.c */ int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj); int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj); bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj); void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj); void i915_gem_restore_fences(struct drm_device *dev); void i915_gem_detect_bit_6_swizzle(struct drm_device *dev); void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj); void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj); /* i915_gem_context.c */ int __must_check i915_gem_context_init(struct drm_device *dev); void i915_gem_context_lost(struct drm_i915_private *dev_priv); void i915_gem_context_fini(struct drm_device *dev); void i915_gem_context_reset(struct drm_device *dev); int i915_gem_context_open(struct drm_device *dev, struct drm_file *file); void i915_gem_context_close(struct drm_device *dev, struct drm_file *file); int i915_switch_context(struct drm_i915_gem_request *req); int i915_gem_switch_to_kernel_context(struct drm_i915_private *dev_priv); void i915_gem_context_free(struct kref *ctx_ref); struct drm_i915_gem_object * i915_gem_alloc_context_obj(struct drm_device *dev, size_t size); struct i915_gem_context * i915_gem_context_create_gvt(struct drm_device *dev); static inline struct i915_gem_context * i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id) { struct i915_gem_context *ctx; lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex); ctx = idr_find(&file_priv->context_idr, id); if (!ctx) return ERR_PTR(-ENOENT); return ctx; } static inline struct i915_gem_context * i915_gem_context_get(struct i915_gem_context *ctx) { kref_get(&ctx->ref); return ctx; } static inline void i915_gem_context_put(struct i915_gem_context *ctx) { lockdep_assert_held(&ctx->i915->drm.struct_mutex); kref_put(&ctx->ref, i915_gem_context_free); } static inline bool i915_gem_context_is_default(const struct i915_gem_context *c) { return c->user_handle == DEFAULT_CONTEXT_HANDLE; } int i915_gem_context_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file); int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data, struct drm_file *file); int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data, struct drm_file *file); /* i915_gem_evict.c */ int __must_check i915_gem_evict_something(struct i915_address_space *vm, u64 min_size, u64 alignment, unsigned cache_level, u64 start, u64 end, unsigned flags); int __must_check i915_gem_evict_for_vma(struct i915_vma *target); int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle); /* belongs in i915_gem_gtt.h */ static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) < 6) intel_gtt_chipset_flush(); } /* i915_gem_stolen.c */ int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv, struct drm_mm_node *node, u64 size, unsigned alignment); int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv, struct drm_mm_node *node, u64 size, unsigned alignment, u64 start, u64 end); void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv, struct drm_mm_node *node); int i915_gem_init_stolen(struct drm_device *dev); void i915_gem_cleanup_stolen(struct drm_device *dev); struct drm_i915_gem_object * i915_gem_object_create_stolen(struct drm_device *dev, u32 size); struct drm_i915_gem_object * i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev, u32 stolen_offset, u32 gtt_offset, u32 size); /* i915_gem_shrinker.c */ unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv, unsigned long target, unsigned flags); #define I915_SHRINK_PURGEABLE 0x1 #define I915_SHRINK_UNBOUND 0x2 #define I915_SHRINK_BOUND 0x4 #define I915_SHRINK_ACTIVE 0x8 #define I915_SHRINK_VMAPS 0x10 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv); void i915_gem_shrinker_init(struct drm_i915_private *dev_priv); void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv); /* i915_gem_tiling.c */ static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) { struct drm_i915_private *dev_priv = to_i915(obj->base.dev); return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && obj->tiling_mode != I915_TILING_NONE; } /* i915_debugfs.c */ #ifdef CONFIG_DEBUG_FS int i915_debugfs_register(struct drm_i915_private *dev_priv); void i915_debugfs_unregister(struct drm_i915_private *dev_priv); int i915_debugfs_connector_add(struct drm_connector *connector); void intel_display_crc_init(struct drm_device *dev); #else static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;} static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {} static inline int i915_debugfs_connector_add(struct drm_connector *connector) { return 0; } static inline void intel_display_crc_init(struct drm_device *dev) {} #endif /* i915_gpu_error.c */ __printf(2, 3) void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...); int i915_error_state_to_str(struct drm_i915_error_state_buf *estr, const struct i915_error_state_file_priv *error); int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb, struct drm_i915_private *i915, size_t count, loff_t pos); static inline void i915_error_state_buf_release( struct drm_i915_error_state_buf *eb) { kfree(eb->buf); } void i915_capture_error_state(struct drm_i915_private *dev_priv, u32 engine_mask, const char *error_msg); void i915_error_state_get(struct drm_device *dev, struct i915_error_state_file_priv *error_priv); void i915_error_state_put(struct i915_error_state_file_priv *error_priv); void i915_destroy_error_state(struct drm_device *dev); void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone); const char *i915_cache_level_str(struct drm_i915_private *i915, int type); /* i915_cmd_parser.c */ int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); int intel_engine_init_cmd_parser(struct intel_engine_cs *engine); void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); bool intel_engine_needs_cmd_parser(struct intel_engine_cs *engine); int intel_engine_cmd_parser(struct intel_engine_cs *engine, struct drm_i915_gem_object *batch_obj, struct drm_i915_gem_object *shadow_batch_obj, u32 batch_start_offset, u32 batch_len, bool is_master); /* i915_suspend.c */ extern int i915_save_state(struct drm_device *dev); extern int i915_restore_state(struct drm_device *dev); /* i915_sysfs.c */ void i915_setup_sysfs(struct drm_device *dev_priv); void i915_teardown_sysfs(struct drm_device *dev_priv); /* intel_i2c.c */ extern int intel_setup_gmbus(struct drm_device *dev); extern void intel_teardown_gmbus(struct drm_device *dev); extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv, unsigned int pin); extern struct i2c_adapter * intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin); extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed); extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit); static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter) { return container_of(adapter, struct intel_gmbus, adapter)->force_bit; } extern void intel_i2c_reset(struct drm_device *dev); /* intel_bios.c */ int intel_bios_init(struct drm_i915_private *dev_priv); bool intel_bios_is_valid_vbt(const void *buf, size_t size); bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv); bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin); bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port); bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port); bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port); bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port); bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv, enum port port); /* intel_opregion.c */ #ifdef CONFIG_ACPI extern int intel_opregion_setup(struct drm_i915_private *dev_priv); extern void intel_opregion_register(struct drm_i915_private *dev_priv); extern void intel_opregion_unregister(struct drm_i915_private *dev_priv); extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv); extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable); extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv, pci_power_t state); extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv); #else static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; } static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { } static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { } static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv) { } static inline int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable) { return 0; } static inline int intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state) { return 0; } static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev) { return -ENODEV; } #endif /* intel_acpi.c */ #ifdef CONFIG_ACPI extern void intel_register_dsm_handler(void); extern void intel_unregister_dsm_handler(void); #else static inline void intel_register_dsm_handler(void) { return; } static inline void intel_unregister_dsm_handler(void) { return; } #endif /* CONFIG_ACPI */ /* intel_device_info.c */ static inline struct intel_device_info * mkwrite_device_info(struct drm_i915_private *dev_priv) { return (struct intel_device_info *)&dev_priv->info; } void intel_device_info_runtime_init(struct drm_i915_private *dev_priv); void intel_device_info_dump(struct drm_i915_private *dev_priv); /* modesetting */ extern void intel_modeset_init_hw(struct drm_device *dev); extern void intel_modeset_init(struct drm_device *dev); extern void intel_modeset_gem_init(struct drm_device *dev); extern void intel_modeset_cleanup(struct drm_device *dev); extern int intel_connector_register(struct drm_connector *); extern void intel_connector_unregister(struct drm_connector *); extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state); extern void intel_display_resume(struct drm_device *dev); extern void i915_redisable_vga(struct drm_device *dev); extern void i915_redisable_vga_power_on(struct drm_device *dev); extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val); extern void intel_init_pch_refclk(struct drm_device *dev); extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val); extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable); int i915_reg_read_ioctl(struct drm_device *dev, void *data, struct drm_file *file); /* overlay */ extern struct intel_overlay_error_state * intel_overlay_capture_error_state(struct drm_i915_private *dev_priv); extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e, struct intel_overlay_error_state *error); extern struct intel_display_error_state * intel_display_capture_error_state(struct drm_i915_private *dev_priv); extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e, struct drm_device *dev, struct intel_display_error_state *error); int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val); int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val); /* intel_sideband.c */ u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr); void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val); u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr); u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg); void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val); u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg); void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg); void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg); void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg); void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val); u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg, enum intel_sbi_destination destination); void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value, enum intel_sbi_destination destination); u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg); void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val); /* intel_dpio_phy.c */ void chv_set_phy_signal_level(struct intel_encoder *encoder, u32 deemph_reg_value, u32 margin_reg_value, bool uniq_trans_scale); void chv_data_lane_soft_reset(struct intel_encoder *encoder, bool reset); void chv_phy_pre_pll_enable(struct intel_encoder *encoder); void chv_phy_pre_encoder_enable(struct intel_encoder *encoder); void chv_phy_release_cl2_override(struct intel_encoder *encoder); void chv_phy_post_pll_disable(struct intel_encoder *encoder); void vlv_set_phy_signal_level(struct intel_encoder *encoder, u32 demph_reg_value, u32 preemph_reg_value, u32 uniqtranscale_reg_value, u32 tx3_demph); void vlv_phy_pre_pll_enable(struct intel_encoder *encoder); void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder); void vlv_phy_reset_lanes(struct intel_encoder *encoder); int intel_gpu_freq(struct drm_i915_private *dev_priv, int val); int intel_freq_opcode(struct drm_i915_private *dev_priv, int val); #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true) #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true) #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true) #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true) #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false) #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false) #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true) #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true) #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false) #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false) /* Be very careful with read/write 64-bit values. On 32-bit machines, they * will be implemented using 2 32-bit writes in an arbitrary order with * an arbitrary delay between them. This can cause the hardware to * act upon the intermediate value, possibly leading to corruption and * machine death. You have been warned. */ #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true) #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true) #define I915_READ64_2x32(lower_reg, upper_reg) ({ \ u32 upper, lower, old_upper, loop = 0; \ upper = I915_READ(upper_reg); \ do { \ old_upper = upper; \ lower = I915_READ(lower_reg); \ upper = I915_READ(upper_reg); \ } while (upper != old_upper && loop++ < 2); \ (u64)upper << 32 | lower; }) #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg) #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg) #define __raw_read(x, s) \ static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \ i915_reg_t reg) \ { \ return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \ } #define __raw_write(x, s) \ static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \ i915_reg_t reg, uint##x##_t val) \ { \ write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \ } __raw_read(8, b) __raw_read(16, w) __raw_read(32, l) __raw_read(64, q) __raw_write(8, b) __raw_write(16, w) __raw_write(32, l) __raw_write(64, q) #undef __raw_read #undef __raw_write /* These are untraced mmio-accessors that are only valid to be used inside * criticial sections inside IRQ handlers where forcewake is explicitly * controlled. * Think twice, and think again, before using these. * Note: Should only be used between intel_uncore_forcewake_irqlock() and * intel_uncore_forcewake_irqunlock(). */ #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__)) #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__)) #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__)) #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__) /* "Broadcast RGB" property */ #define INTEL_BROADCAST_RGB_AUTO 0 #define INTEL_BROADCAST_RGB_FULL 1 #define INTEL_BROADCAST_RGB_LIMITED 2 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev) { if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) return VLV_VGACNTRL; else if (INTEL_INFO(dev)->gen >= 5) return CPU_VGACNTRL; else return VGACNTRL; } static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m) { unsigned long j = msecs_to_jiffies(m); return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); } static inline unsigned long nsecs_to_jiffies_timeout(const u64 n) { return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1); } static inline unsigned long timespec_to_jiffies_timeout(const struct timespec *value) { unsigned long j = timespec_to_jiffies(value); return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1); } /* * If you need to wait X milliseconds between events A and B, but event B * doesn't happen exactly after event A, you record the timestamp (jiffies) of * when event A happened, then just before event B you call this function and * pass the timestamp as the first argument, and X as the second argument. */ static inline void wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms) { unsigned long target_jiffies, tmp_jiffies, remaining_jiffies; /* * Don't re-read the value of "jiffies" every time since it may change * behind our back and break the math. */ tmp_jiffies = jiffies; target_jiffies = timestamp_jiffies + msecs_to_jiffies_timeout(to_wait_ms); if (time_after(target_jiffies, tmp_jiffies)) { remaining_jiffies = target_jiffies - tmp_jiffies; while (remaining_jiffies) remaining_jiffies = schedule_timeout_uninterruptible(remaining_jiffies); } } static inline bool __i915_request_irq_complete(struct drm_i915_gem_request *req) { struct intel_engine_cs *engine = req->engine; /* Before we do the heavier coherent read of the seqno, * check the value (hopefully) in the CPU cacheline. */ if (i915_gem_request_completed(req)) return true; /* Ensure our read of the seqno is coherent so that we * do not "miss an interrupt" (i.e. if this is the last * request and the seqno write from the GPU is not visible * by the time the interrupt fires, we will see that the * request is incomplete and go back to sleep awaiting * another interrupt that will never come.) * * Strictly, we only need to do this once after an interrupt, * but it is easier and safer to do it every time the waiter * is woken. */ if (engine->irq_seqno_barrier && READ_ONCE(engine->breadcrumbs.irq_seqno_bh) == current && cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) { struct task_struct *tsk; /* The ordering of irq_posted versus applying the barrier * is crucial. The clearing of the current irq_posted must * be visible before we perform the barrier operation, * such that if a subsequent interrupt arrives, irq_posted * is reasserted and our task rewoken (which causes us to * do another __i915_request_irq_complete() immediately * and reapply the barrier). Conversely, if the clear * occurs after the barrier, then an interrupt that arrived * whilst we waited on the barrier would not trigger a * barrier on the next pass, and the read may not see the * seqno update. */ engine->irq_seqno_barrier(engine); /* If we consume the irq, but we are no longer the bottom-half, * the real bottom-half may not have serialised their own * seqno check with the irq-barrier (i.e. may have inspected * the seqno before we believe it coherent since they see * irq_posted == false but we are still running). */ rcu_read_lock(); tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh); if (tsk && tsk != current) /* Note that if the bottom-half is changed as we * are sending the wake-up, the new bottom-half will * be woken by whomever made the change. We only have * to worry about when we steal the irq-posted for * ourself. */ wake_up_process(tsk); rcu_read_unlock(); if (i915_gem_request_completed(req)) return true; } /* We need to check whether any gpu reset happened in between * the request being submitted and now. If a reset has occurred, * the seqno will have been advance past ours and our request * is complete. If we are in the process of handling a reset, * the request is effectively complete as the rendering will * be discarded, but we need to return in order to drop the * struct_mutex. */ if (i915_reset_in_progress(&req->i915->gpu_error)) return true; return false; } #endif