/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "linux/delay.h" #include #include #include #include #include "cgs_common.h" #include "power_state.h" #include "hwmgr.h" #include "pppcielanes.h" #include "pp_debug.h" #include "ppatomctrl.h" #include "ppsmc.h" #include "pp_acpi.h" #include "amd_acpi.h" #define VOLTAGE_SCALE 4 extern int cz_hwmgr_init(struct pp_hwmgr *hwmgr); extern int tonga_hwmgr_init(struct pp_hwmgr *hwmgr); extern int fiji_hwmgr_init(struct pp_hwmgr *hwmgr); extern int polaris10_hwmgr_init(struct pp_hwmgr *hwmgr); extern int iceland_hwmgr_init(struct pp_hwmgr *hwmgr); static void hwmgr_init_default_caps(struct pp_hwmgr *hwmgr); static int hwmgr_set_user_specify_caps(struct pp_hwmgr *hwmgr); int hwmgr_init(struct amd_pp_init *pp_init, struct pp_instance *handle) { struct pp_hwmgr *hwmgr; if ((handle == NULL) || (pp_init == NULL)) return -EINVAL; hwmgr = kzalloc(sizeof(struct pp_hwmgr), GFP_KERNEL); if (hwmgr == NULL) return -ENOMEM; handle->hwmgr = hwmgr; hwmgr->smumgr = handle->smu_mgr; hwmgr->device = pp_init->device; hwmgr->chip_family = pp_init->chip_family; hwmgr->chip_id = pp_init->chip_id; hwmgr->usec_timeout = AMD_MAX_USEC_TIMEOUT; hwmgr->power_source = PP_PowerSource_AC; hwmgr_init_default_caps(hwmgr); hwmgr_set_user_specify_caps(hwmgr); switch (hwmgr->chip_family) { case AMDGPU_FAMILY_CZ: cz_hwmgr_init(hwmgr); break; case AMDGPU_FAMILY_VI: switch (hwmgr->chip_id) { case CHIP_TOPAZ: iceland_hwmgr_init(hwmgr); break; case CHIP_TONGA: tonga_hwmgr_init(hwmgr); break; case CHIP_FIJI: fiji_hwmgr_init(hwmgr); break; case CHIP_POLARIS11: case CHIP_POLARIS10: polaris10_hwmgr_init(hwmgr); break; default: return -EINVAL; } break; default: return -EINVAL; } return 0; } int hwmgr_fini(struct pp_hwmgr *hwmgr) { if (hwmgr == NULL || hwmgr->ps == NULL) return -EINVAL; /* do hwmgr finish*/ kfree(hwmgr->hardcode_pp_table); kfree(hwmgr->backend); kfree(hwmgr->start_thermal_controller.function_list); kfree(hwmgr->set_temperature_range.function_list); kfree(hwmgr->ps); kfree(hwmgr->current_ps); kfree(hwmgr->request_ps); kfree(hwmgr); return 0; } int hw_init_power_state_table(struct pp_hwmgr *hwmgr) { int result; unsigned int i; unsigned int table_entries; struct pp_power_state *state; int size; if (hwmgr->hwmgr_func->get_num_of_pp_table_entries == NULL) return -EINVAL; if (hwmgr->hwmgr_func->get_power_state_size == NULL) return -EINVAL; hwmgr->num_ps = table_entries = hwmgr->hwmgr_func->get_num_of_pp_table_entries(hwmgr); hwmgr->ps_size = size = hwmgr->hwmgr_func->get_power_state_size(hwmgr) + sizeof(struct pp_power_state); hwmgr->ps = kzalloc(size * table_entries, GFP_KERNEL); if (hwmgr->ps == NULL) return -ENOMEM; hwmgr->request_ps = kzalloc(size, GFP_KERNEL); if (hwmgr->request_ps == NULL) return -ENOMEM; hwmgr->current_ps = kzalloc(size, GFP_KERNEL); if (hwmgr->current_ps == NULL) return -ENOMEM; state = hwmgr->ps; for (i = 0; i < table_entries; i++) { result = hwmgr->hwmgr_func->get_pp_table_entry(hwmgr, i, state); if (state->classification.flags & PP_StateClassificationFlag_Boot) { hwmgr->boot_ps = state; memcpy(hwmgr->current_ps, state, size); memcpy(hwmgr->request_ps, state, size); } state->id = i + 1; /* assigned unique num for every power state id */ if (state->classification.flags & PP_StateClassificationFlag_Uvd) hwmgr->uvd_ps = state; state = (struct pp_power_state *)((unsigned long)state + size); } return 0; } /** * Returns once the part of the register indicated by the mask has * reached the given value. */ int phm_wait_on_register(struct pp_hwmgr *hwmgr, uint32_t index, uint32_t value, uint32_t mask) { uint32_t i; uint32_t cur_value; if (hwmgr == NULL || hwmgr->device == NULL) { printk(KERN_ERR "[ powerplay ] Invalid Hardware Manager!"); return -EINVAL; } for (i = 0; i < hwmgr->usec_timeout; i++) { cur_value = cgs_read_register(hwmgr->device, index); if ((cur_value & mask) == (value & mask)) break; udelay(1); } /* timeout means wrong logic*/ if (i == hwmgr->usec_timeout) return -1; return 0; } /** * Returns once the part of the register indicated by the mask has * reached the given value.The indirect space is described by giving * the memory-mapped index of the indirect index register. */ void phm_wait_on_indirect_register(struct pp_hwmgr *hwmgr, uint32_t indirect_port, uint32_t index, uint32_t value, uint32_t mask) { if (hwmgr == NULL || hwmgr->device == NULL) { printk(KERN_ERR "[ powerplay ] Invalid Hardware Manager!"); return; } cgs_write_register(hwmgr->device, indirect_port, index); phm_wait_on_register(hwmgr, indirect_port + 1, mask, value); } bool phm_cf_want_uvd_power_gating(struct pp_hwmgr *hwmgr) { return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating); } bool phm_cf_want_vce_power_gating(struct pp_hwmgr *hwmgr) { return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating); } int phm_trim_voltage_table(struct pp_atomctrl_voltage_table *vol_table) { uint32_t i, j; uint16_t vvalue; bool found = false; struct pp_atomctrl_voltage_table *table; PP_ASSERT_WITH_CODE((NULL != vol_table), "Voltage Table empty.", return -EINVAL); table = kzalloc(sizeof(struct pp_atomctrl_voltage_table), GFP_KERNEL); if (NULL == table) return -EINVAL; table->mask_low = vol_table->mask_low; table->phase_delay = vol_table->phase_delay; for (i = 0; i < vol_table->count; i++) { vvalue = vol_table->entries[i].value; found = false; for (j = 0; j < table->count; j++) { if (vvalue == table->entries[j].value) { found = true; break; } } if (!found) { table->entries[table->count].value = vvalue; table->entries[table->count].smio_low = vol_table->entries[i].smio_low; table->count++; } } memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table)); kfree(table); return 0; } int phm_get_svi2_mvdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table, phm_ppt_v1_clock_voltage_dependency_table *dep_table) { uint32_t i; int result; PP_ASSERT_WITH_CODE((0 != dep_table->count), "Voltage Dependency Table empty.", return -EINVAL); PP_ASSERT_WITH_CODE((NULL != vol_table), "vol_table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = dep_table->count; for (i = 0; i < dep_table->count; i++) { vol_table->entries[i].value = dep_table->entries[i].mvdd; vol_table->entries[i].smio_low = 0; } result = phm_trim_voltage_table(vol_table); PP_ASSERT_WITH_CODE((0 == result), "Failed to trim MVDD table.", return result); return 0; } int phm_get_svi2_vddci_voltage_table(struct pp_atomctrl_voltage_table *vol_table, phm_ppt_v1_clock_voltage_dependency_table *dep_table) { uint32_t i; int result; PP_ASSERT_WITH_CODE((0 != dep_table->count), "Voltage Dependency Table empty.", return -EINVAL); PP_ASSERT_WITH_CODE((NULL != vol_table), "vol_table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = dep_table->count; for (i = 0; i < dep_table->count; i++) { vol_table->entries[i].value = dep_table->entries[i].vddci; vol_table->entries[i].smio_low = 0; } result = phm_trim_voltage_table(vol_table); PP_ASSERT_WITH_CODE((0 == result), "Failed to trim VDDCI table.", return result); return 0; } int phm_get_svi2_vdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table, phm_ppt_v1_voltage_lookup_table *lookup_table) { int i = 0; PP_ASSERT_WITH_CODE((0 != lookup_table->count), "Voltage Lookup Table empty.", return -EINVAL); PP_ASSERT_WITH_CODE((NULL != vol_table), "vol_table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = lookup_table->count; for (i = 0; i < vol_table->count; i++) { vol_table->entries[i].value = lookup_table->entries[i].us_vdd; vol_table->entries[i].smio_low = 0; } return 0; } void phm_trim_voltage_table_to_fit_state_table(uint32_t max_vol_steps, struct pp_atomctrl_voltage_table *vol_table) { unsigned int i, diff; if (vol_table->count <= max_vol_steps) return; diff = vol_table->count - max_vol_steps; for (i = 0; i < max_vol_steps; i++) vol_table->entries[i] = vol_table->entries[i + diff]; vol_table->count = max_vol_steps; return; } int phm_reset_single_dpm_table(void *table, uint32_t count, int max) { int i; struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table; PP_ASSERT_WITH_CODE(count <= max, "Fatal error, can not set up single DPM table entries to exceed max number!", ); dpm_table->count = count; for (i = 0; i < max; i++) dpm_table->dpm_level[i].enabled = false; return 0; } void phm_setup_pcie_table_entry( void *table, uint32_t index, uint32_t pcie_gen, uint32_t pcie_lanes) { struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table; dpm_table->dpm_level[index].value = pcie_gen; dpm_table->dpm_level[index].param1 = pcie_lanes; dpm_table->dpm_level[index].enabled = 1; } int32_t phm_get_dpm_level_enable_mask_value(void *table) { int32_t i; int32_t mask = 0; struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table; for (i = dpm_table->count; i > 0; i--) { mask = mask << 1; if (dpm_table->dpm_level[i - 1].enabled) mask |= 0x1; else mask &= 0xFFFFFFFE; } return mask; } uint8_t phm_get_voltage_index( struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage) { uint8_t count = (uint8_t) (lookup_table->count); uint8_t i; PP_ASSERT_WITH_CODE((NULL != lookup_table), "Lookup Table empty.", return 0); PP_ASSERT_WITH_CODE((0 != count), "Lookup Table empty.", return 0); for (i = 0; i < lookup_table->count; i++) { /* find first voltage equal or bigger than requested */ if (lookup_table->entries[i].us_vdd >= voltage) return i; } /* voltage is bigger than max voltage in the table */ return i - 1; } uint16_t phm_find_closest_vddci(struct pp_atomctrl_voltage_table *vddci_table, uint16_t vddci) { uint32_t i; for (i = 0; i < vddci_table->count; i++) { if (vddci_table->entries[i].value >= vddci) return vddci_table->entries[i].value; } PP_ASSERT_WITH_CODE(false, "VDDCI is larger than max VDDCI in VDDCI Voltage Table!", return vddci_table->entries[i-1].value); } int phm_find_boot_level(void *table, uint32_t value, uint32_t *boot_level) { int result = -EINVAL; uint32_t i; struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table; for (i = 0; i < dpm_table->count; i++) { if (value == dpm_table->dpm_level[i].value) { *boot_level = i; result = 0; } } return result; } int phm_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr, phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t virtual_voltage_id, int32_t *sclk) { uint8_t entryId; uint8_t voltageId; struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL); /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */ for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) { voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd; if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id) break; } PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count, "Can't find requested voltage id in vdd_dep_on_sclk table!", return -EINVAL; ); *sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk; return 0; } /** * Initialize Dynamic State Adjustment Rule Settings * * @param hwmgr the address of the powerplay hardware manager. */ int phm_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr) { uint32_t table_size; struct phm_clock_voltage_dependency_table *table_clk_vlt; struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); /* initialize vddc_dep_on_dal_pwrl table */ table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record); table_clk_vlt = kzalloc(table_size, GFP_KERNEL); if (NULL == table_clk_vlt) { printk(KERN_ERR "[ powerplay ] Can not allocate space for vddc_dep_on_dal_pwrl! \n"); return -ENOMEM; } else { table_clk_vlt->count = 4; table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW; table_clk_vlt->entries[0].v = 0; table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW; table_clk_vlt->entries[1].v = 720; table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL; table_clk_vlt->entries[2].v = 810; table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE; table_clk_vlt->entries[3].v = 900; pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt; hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt; } return 0; } int phm_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) { if (NULL != hwmgr->dyn_state.vddc_dep_on_dal_pwrl) { kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; } if (NULL != hwmgr->backend) { kfree(hwmgr->backend); hwmgr->backend = NULL; } return 0; } uint32_t phm_get_lowest_enabled_level(struct pp_hwmgr *hwmgr, uint32_t mask) { uint32_t level = 0; while (0 == (mask & (1 << level))) level++; return level; } void phm_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr) { struct phm_ppt_v1_information *table_info = (struct phm_ppt_v1_information *)hwmgr->pptable; struct phm_clock_voltage_dependency_table *table = table_info->vddc_dep_on_dal_pwrl; struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table; enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level; uint32_t req_vddc = 0, req_volt, i; if (!table || table->count <= 0 || dal_power_level < PP_DAL_POWERLEVEL_ULTRALOW || dal_power_level > PP_DAL_POWERLEVEL_PERFORMANCE) return; for (i = 0; i < table->count; i++) { if (dal_power_level == table->entries[i].clk) { req_vddc = table->entries[i].v; break; } } vddc_table = table_info->vdd_dep_on_sclk; for (i = 0; i < vddc_table->count; i++) { if (req_vddc <= vddc_table->entries[i].vddc) { req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE); smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_VddC_Request, req_volt); return; } } printk(KERN_ERR "DAL requested level can not" " found a available voltage in VDDC DPM Table \n"); } void hwmgr_init_default_caps(struct pp_hwmgr *hwmgr) { phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableVoltageTransition); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableEngineTransition); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableMemoryTransition); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableMGClockGating); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableMGCGTSSM); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableLSClockGating); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_Force3DClockSupport); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableLightSleep); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableMCLS); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisablePowerGating); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableDPM); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableSMUUVDHandshake); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalAutoThrottling); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_NoOD5Support); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UserMaxClockForMultiDisplays); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VpuRecoveryInProgress); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEDPM); if (acpi_atcs_functions_supported(hwmgr->device, ATCS_FUNCTION_PCIE_PERFORMANCE_REQUEST) && acpi_atcs_functions_supported(hwmgr->device, ATCS_FUNCTION_PCIE_DEVICE_READY_NOTIFICATION)) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPatchPowerState); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TablelessHardwareInterface); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableSMU7ThermalManagement); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPowerManagement); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UnTabledHardwareInterface); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SMC); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicUVDState); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_FanSpeedInTableIsRPM); return; } int hwmgr_set_user_specify_caps(struct pp_hwmgr *hwmgr) { if (amdgpu_sclk_deep_sleep_en) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep); else phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep); if (amdgpu_powercontainment) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerContainment); else phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerContainment); hwmgr->feature_mask = amdgpu_pp_feature_mask; return 0; }