/* * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Rafał Miłecki * Alex Deucher */ #include "drmP.h" #include "radeon.h" #include "avivod.h" #define RADEON_IDLE_LOOP_MS 100 #define RADEON_RECLOCK_DELAY_MS 200 #define RADEON_WAIT_VBLANK_TIMEOUT 200 #define RADEON_WAIT_IDLE_TIMEOUT 200 static void radeon_pm_idle_work_handler(struct work_struct *work); static int radeon_debugfs_pm_init(struct radeon_device *rdev); static void radeon_unmap_vram_bos(struct radeon_device *rdev) { struct radeon_bo *bo, *n; if (list_empty(&rdev->gem.objects)) return; list_for_each_entry_safe(bo, n, &rdev->gem.objects, list) { if (bo->tbo.mem.mem_type == TTM_PL_VRAM) ttm_bo_unmap_virtual(&bo->tbo); } if (rdev->gart.table.vram.robj) ttm_bo_unmap_virtual(&rdev->gart.table.vram.robj->tbo); if (rdev->stollen_vga_memory) ttm_bo_unmap_virtual(&rdev->stollen_vga_memory->tbo); if (rdev->r600_blit.shader_obj) ttm_bo_unmap_virtual(&rdev->r600_blit.shader_obj->tbo); } static void radeon_pm_set_clocks(struct radeon_device *rdev, int static_switch) { int i; mutex_lock(&rdev->cp.mutex); /* wait for GPU idle */ rdev->pm.gui_idle = false; rdev->irq.gui_idle = true; radeon_irq_set(rdev); wait_event_interruptible_timeout( rdev->irq.idle_queue, rdev->pm.gui_idle, msecs_to_jiffies(RADEON_WAIT_IDLE_TIMEOUT)); rdev->irq.gui_idle = false; radeon_irq_set(rdev); mutex_lock(&rdev->vram_mutex); radeon_unmap_vram_bos(rdev); if (!static_switch) { for (i = 0; i < rdev->num_crtc; i++) { if (rdev->pm.active_crtcs & (1 << i)) { rdev->pm.req_vblank |= (1 << i); drm_vblank_get(rdev->ddev, i); } } } radeon_set_power_state(rdev, static_switch); if (!static_switch) { for (i = 0; i < rdev->num_crtc; i++) { if (rdev->pm.req_vblank & (1 << i)) { rdev->pm.req_vblank &= ~(1 << i); drm_vblank_put(rdev->ddev, i); } } } mutex_unlock(&rdev->vram_mutex); /* update display watermarks based on new power state */ radeon_update_bandwidth_info(rdev); if (rdev->pm.active_crtc_count) radeon_bandwidth_update(rdev); rdev->pm.planned_action = PM_ACTION_NONE; mutex_unlock(&rdev->cp.mutex); } static ssize_t radeon_get_power_state_static(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev)); struct radeon_device *rdev = ddev->dev_private; return snprintf(buf, PAGE_SIZE, "%d.%d\n", rdev->pm.current_power_state_index, rdev->pm.current_clock_mode_index); } static ssize_t radeon_set_power_state_static(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev)); struct radeon_device *rdev = ddev->dev_private; int ps, cm; if (sscanf(buf, "%u.%u", &ps, &cm) != 2) { DRM_ERROR("Invalid power state!\n"); return count; } mutex_lock(&rdev->ddev->struct_mutex); mutex_lock(&rdev->pm.mutex); if ((ps >= 0) && (ps < rdev->pm.num_power_states) && (cm >= 0) && (cm < rdev->pm.power_state[ps].num_clock_modes)) { if ((rdev->pm.active_crtc_count > 1) && (rdev->pm.power_state[ps].flags & RADEON_PM_SINGLE_DISPLAY_ONLY)) { DRM_ERROR("Invalid power state for multi-head: %d.%d\n", ps, cm); } else { /* disable dynpm */ rdev->pm.state = PM_STATE_DISABLED; rdev->pm.planned_action = PM_ACTION_NONE; rdev->pm.requested_power_state_index = ps; rdev->pm.requested_clock_mode_index = cm; radeon_pm_set_clocks(rdev, true); } } else DRM_ERROR("Invalid power state: %d.%d\n\n", ps, cm); mutex_unlock(&rdev->pm.mutex); mutex_unlock(&rdev->ddev->struct_mutex); return count; } static ssize_t radeon_get_dynpm(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev)); struct radeon_device *rdev = ddev->dev_private; return snprintf(buf, PAGE_SIZE, "%s\n", (rdev->pm.state == PM_STATE_DISABLED) ? "disabled" : "enabled"); } static ssize_t radeon_set_dynpm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev)); struct radeon_device *rdev = ddev->dev_private; int tmp = simple_strtoul(buf, NULL, 10); if (tmp == 0) { /* update power mode info */ radeon_pm_compute_clocks(rdev); /* disable dynpm */ mutex_lock(&rdev->pm.mutex); rdev->pm.state = PM_STATE_DISABLED; rdev->pm.planned_action = PM_ACTION_NONE; mutex_unlock(&rdev->pm.mutex); DRM_INFO("radeon: dynamic power management disabled\n"); } else if (tmp == 1) { if (rdev->pm.num_power_states > 1) { /* enable dynpm */ mutex_lock(&rdev->ddev->struct_mutex); mutex_lock(&rdev->pm.mutex); rdev->pm.state = PM_STATE_PAUSED; rdev->pm.planned_action = PM_ACTION_DEFAULT; radeon_get_power_state(rdev, rdev->pm.planned_action); mutex_unlock(&rdev->pm.mutex); mutex_unlock(&rdev->ddev->struct_mutex); /* update power mode info */ radeon_pm_compute_clocks(rdev); DRM_INFO("radeon: dynamic power management enabled\n"); } else DRM_ERROR("dynpm not valid on this system\n"); } else DRM_ERROR("Invalid setting: %d\n", tmp); return count; } static DEVICE_ATTR(power_state, S_IRUGO | S_IWUSR, radeon_get_power_state_static, radeon_set_power_state_static); static DEVICE_ATTR(dynpm, S_IRUGO | S_IWUSR, radeon_get_dynpm, radeon_set_dynpm); static const char *pm_state_names[4] = { "PM_STATE_DISABLED", "PM_STATE_MINIMUM", "PM_STATE_PAUSED", "PM_STATE_ACTIVE" }; static const char *pm_state_types[5] = { "", "Powersave", "Battery", "Balanced", "Performance", }; static void radeon_print_power_mode_info(struct radeon_device *rdev) { int i, j; bool is_default; DRM_INFO("%d Power State(s)\n", rdev->pm.num_power_states); for (i = 0; i < rdev->pm.num_power_states; i++) { if (rdev->pm.default_power_state_index == i) is_default = true; else is_default = false; DRM_INFO("State %d %s %s\n", i, pm_state_types[rdev->pm.power_state[i].type], is_default ? "(default)" : ""); if ((rdev->flags & RADEON_IS_PCIE) && !(rdev->flags & RADEON_IS_IGP)) DRM_INFO("\t%d PCIE Lanes\n", rdev->pm.power_state[i].pcie_lanes); if (rdev->pm.power_state[i].flags & RADEON_PM_SINGLE_DISPLAY_ONLY) DRM_INFO("\tSingle display only\n"); DRM_INFO("\t%d Clock Mode(s)\n", rdev->pm.power_state[i].num_clock_modes); for (j = 0; j < rdev->pm.power_state[i].num_clock_modes; j++) { if (rdev->flags & RADEON_IS_IGP) DRM_INFO("\t\t%d engine: %d\n", j, rdev->pm.power_state[i].clock_info[j].sclk * 10); else DRM_INFO("\t\t%d engine/memory: %d/%d\n", j, rdev->pm.power_state[i].clock_info[j].sclk * 10, rdev->pm.power_state[i].clock_info[j].mclk * 10); } } } void radeon_sync_with_vblank(struct radeon_device *rdev) { if (rdev->pm.active_crtcs) { rdev->pm.vblank_sync = false; wait_event_timeout( rdev->irq.vblank_queue, rdev->pm.vblank_sync, msecs_to_jiffies(RADEON_WAIT_VBLANK_TIMEOUT)); } } int radeon_pm_init(struct radeon_device *rdev) { rdev->pm.state = PM_STATE_DISABLED; rdev->pm.planned_action = PM_ACTION_NONE; rdev->pm.can_upclock = true; rdev->pm.can_downclock = true; if (rdev->bios) { if (rdev->is_atom_bios) radeon_atombios_get_power_modes(rdev); else radeon_combios_get_power_modes(rdev); radeon_print_power_mode_info(rdev); } if (radeon_debugfs_pm_init(rdev)) { DRM_ERROR("Failed to register debugfs file for PM!\n"); } /* where's the best place to put this? */ device_create_file(rdev->dev, &dev_attr_power_state); device_create_file(rdev->dev, &dev_attr_dynpm); INIT_DELAYED_WORK(&rdev->pm.idle_work, radeon_pm_idle_work_handler); if ((radeon_dynpm != -1 && radeon_dynpm) && (rdev->pm.num_power_states > 1)) { rdev->pm.state = PM_STATE_PAUSED; DRM_INFO("radeon: dynamic power management enabled\n"); } DRM_INFO("radeon: power management initialized\n"); return 0; } void radeon_pm_fini(struct radeon_device *rdev) { if (rdev->pm.state != PM_STATE_DISABLED) { /* cancel work */ cancel_delayed_work_sync(&rdev->pm.idle_work); /* reset default clocks */ rdev->pm.state = PM_STATE_DISABLED; rdev->pm.planned_action = PM_ACTION_DEFAULT; radeon_pm_set_clocks(rdev, false); } else if ((rdev->pm.current_power_state_index != rdev->pm.default_power_state_index) || (rdev->pm.current_clock_mode_index != 0)) { rdev->pm.requested_power_state_index = rdev->pm.default_power_state_index; rdev->pm.requested_clock_mode_index = 0; mutex_lock(&rdev->ddev->struct_mutex); mutex_lock(&rdev->pm.mutex); radeon_pm_set_clocks(rdev, true); mutex_unlock(&rdev->pm.mutex); mutex_unlock(&rdev->ddev->struct_mutex); } device_remove_file(rdev->dev, &dev_attr_power_state); device_remove_file(rdev->dev, &dev_attr_dynpm); if (rdev->pm.i2c_bus) radeon_i2c_destroy(rdev->pm.i2c_bus); } void radeon_pm_compute_clocks(struct radeon_device *rdev) { struct drm_device *ddev = rdev->ddev; struct drm_crtc *crtc; struct radeon_crtc *radeon_crtc; if (rdev->pm.state == PM_STATE_DISABLED) return; mutex_lock(&rdev->ddev->struct_mutex); mutex_lock(&rdev->pm.mutex); rdev->pm.active_crtcs = 0; rdev->pm.active_crtc_count = 0; list_for_each_entry(crtc, &ddev->mode_config.crtc_list, head) { radeon_crtc = to_radeon_crtc(crtc); if (radeon_crtc->enabled) { rdev->pm.active_crtcs |= (1 << radeon_crtc->crtc_id); rdev->pm.active_crtc_count++; } } if (rdev->pm.active_crtc_count > 1) { if (rdev->pm.state == PM_STATE_ACTIVE) { cancel_delayed_work(&rdev->pm.idle_work); rdev->pm.state = PM_STATE_PAUSED; rdev->pm.planned_action = PM_ACTION_UPCLOCK; radeon_pm_set_clocks(rdev, false); DRM_DEBUG("radeon: dynamic power management deactivated\n"); } } else if (rdev->pm.active_crtc_count == 1) { /* TODO: Increase clocks if needed for current mode */ if (rdev->pm.state == PM_STATE_MINIMUM) { rdev->pm.state = PM_STATE_ACTIVE; rdev->pm.planned_action = PM_ACTION_UPCLOCK; radeon_pm_set_clocks(rdev, false); queue_delayed_work(rdev->wq, &rdev->pm.idle_work, msecs_to_jiffies(RADEON_IDLE_LOOP_MS)); } else if (rdev->pm.state == PM_STATE_PAUSED) { rdev->pm.state = PM_STATE_ACTIVE; queue_delayed_work(rdev->wq, &rdev->pm.idle_work, msecs_to_jiffies(RADEON_IDLE_LOOP_MS)); DRM_DEBUG("radeon: dynamic power management activated\n"); } } else { /* count == 0 */ if (rdev->pm.state != PM_STATE_MINIMUM) { cancel_delayed_work(&rdev->pm.idle_work); rdev->pm.state = PM_STATE_MINIMUM; rdev->pm.planned_action = PM_ACTION_MINIMUM; radeon_pm_set_clocks(rdev, false); } } mutex_unlock(&rdev->pm.mutex); mutex_unlock(&rdev->ddev->struct_mutex); } bool radeon_pm_debug_check_in_vbl(struct radeon_device *rdev, bool finish) { u32 stat_crtc = 0; bool in_vbl = true; if (ASIC_IS_DCE4(rdev)) { if (rdev->pm.active_crtcs & (1 << 0)) { stat_crtc = RREG32(EVERGREEN_CRTC_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET); if (!(stat_crtc & 1)) in_vbl = false; } if (rdev->pm.active_crtcs & (1 << 1)) { stat_crtc = RREG32(EVERGREEN_CRTC_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET); if (!(stat_crtc & 1)) in_vbl = false; } if (rdev->pm.active_crtcs & (1 << 2)) { stat_crtc = RREG32(EVERGREEN_CRTC_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET); if (!(stat_crtc & 1)) in_vbl = false; } if (rdev->pm.active_crtcs & (1 << 3)) { stat_crtc = RREG32(EVERGREEN_CRTC_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET); if (!(stat_crtc & 1)) in_vbl = false; } if (rdev->pm.active_crtcs & (1 << 4)) { stat_crtc = RREG32(EVERGREEN_CRTC_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET); if (!(stat_crtc & 1)) in_vbl = false; } if (rdev->pm.active_crtcs & (1 << 5)) { stat_crtc = RREG32(EVERGREEN_CRTC_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET); if (!(stat_crtc & 1)) in_vbl = false; } } else if (ASIC_IS_AVIVO(rdev)) { if (rdev->pm.active_crtcs & (1 << 0)) { stat_crtc = RREG32(D1CRTC_STATUS); if (!(stat_crtc & 1)) in_vbl = false; } if (rdev->pm.active_crtcs & (1 << 1)) { stat_crtc = RREG32(D2CRTC_STATUS); if (!(stat_crtc & 1)) in_vbl = false; } } else { if (rdev->pm.active_crtcs & (1 << 0)) { stat_crtc = RREG32(RADEON_CRTC_STATUS); if (!(stat_crtc & 1)) in_vbl = false; } if (rdev->pm.active_crtcs & (1 << 1)) { stat_crtc = RREG32(RADEON_CRTC2_STATUS); if (!(stat_crtc & 1)) in_vbl = false; } } if (in_vbl == false) DRM_INFO("not in vbl for pm change %08x at %s\n", stat_crtc, finish ? "exit" : "entry"); return in_vbl; } static void radeon_pm_idle_work_handler(struct work_struct *work) { struct radeon_device *rdev; int resched; rdev = container_of(work, struct radeon_device, pm.idle_work.work); resched = ttm_bo_lock_delayed_workqueue(&rdev->mman.bdev); mutex_lock(&rdev->ddev->struct_mutex); mutex_lock(&rdev->pm.mutex); if (rdev->pm.state == PM_STATE_ACTIVE) { unsigned long irq_flags; int not_processed = 0; read_lock_irqsave(&rdev->fence_drv.lock, irq_flags); if (!list_empty(&rdev->fence_drv.emited)) { struct list_head *ptr; list_for_each(ptr, &rdev->fence_drv.emited) { /* count up to 3, that's enought info */ if (++not_processed >= 3) break; } } read_unlock_irqrestore(&rdev->fence_drv.lock, irq_flags); if (not_processed >= 3) { /* should upclock */ if (rdev->pm.planned_action == PM_ACTION_DOWNCLOCK) { rdev->pm.planned_action = PM_ACTION_NONE; } else if (rdev->pm.planned_action == PM_ACTION_NONE && rdev->pm.can_upclock) { rdev->pm.planned_action = PM_ACTION_UPCLOCK; rdev->pm.action_timeout = jiffies + msecs_to_jiffies(RADEON_RECLOCK_DELAY_MS); } } else if (not_processed == 0) { /* should downclock */ if (rdev->pm.planned_action == PM_ACTION_UPCLOCK) { rdev->pm.planned_action = PM_ACTION_NONE; } else if (rdev->pm.planned_action == PM_ACTION_NONE && rdev->pm.can_downclock) { rdev->pm.planned_action = PM_ACTION_DOWNCLOCK; rdev->pm.action_timeout = jiffies + msecs_to_jiffies(RADEON_RECLOCK_DELAY_MS); } } if (rdev->pm.planned_action != PM_ACTION_NONE && jiffies > rdev->pm.action_timeout) { radeon_pm_set_clocks(rdev, false); } } mutex_unlock(&rdev->pm.mutex); mutex_unlock(&rdev->ddev->struct_mutex); ttm_bo_unlock_delayed_workqueue(&rdev->mman.bdev, resched); queue_delayed_work(rdev->wq, &rdev->pm.idle_work, msecs_to_jiffies(RADEON_IDLE_LOOP_MS)); } /* * Debugfs info */ #if defined(CONFIG_DEBUG_FS) static int radeon_debugfs_pm_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; seq_printf(m, "state: %s\n", pm_state_names[rdev->pm.state]); seq_printf(m, "default engine clock: %u0 kHz\n", rdev->clock.default_sclk); seq_printf(m, "current engine clock: %u0 kHz\n", radeon_get_engine_clock(rdev)); seq_printf(m, "default memory clock: %u0 kHz\n", rdev->clock.default_mclk); if (rdev->asic->get_memory_clock) seq_printf(m, "current memory clock: %u0 kHz\n", radeon_get_memory_clock(rdev)); if (rdev->asic->get_pcie_lanes) seq_printf(m, "PCIE lanes: %d\n", radeon_get_pcie_lanes(rdev)); return 0; } static struct drm_info_list radeon_pm_info_list[] = { {"radeon_pm_info", radeon_debugfs_pm_info, 0, NULL}, }; #endif static int radeon_debugfs_pm_init(struct radeon_device *rdev) { #if defined(CONFIG_DEBUG_FS) return radeon_debugfs_add_files(rdev, radeon_pm_info_list, ARRAY_SIZE(radeon_pm_info_list)); #else return 0; #endif }