/* * Copyright 2011 Paul Mackerras, IBM Corp. * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. * * Authors: * Paul Mackerras * Alexander Graf * Kevin Wolf * * Description: KVM functions specific to running on Book 3S * processors in hypervisor mode (specifically POWER7 and later). * * This file is derived from arch/powerpc/kvm/book3s.c, * by Alexander Graf . * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "book3s.h" #define CREATE_TRACE_POINTS #include "trace_hv.h" /* #define EXIT_DEBUG */ /* #define EXIT_DEBUG_SIMPLE */ /* #define EXIT_DEBUG_INT */ /* Used to indicate that a guest page fault needs to be handled */ #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) /* Used to indicate that a guest passthrough interrupt needs to be handled */ #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) /* Used as a "null" value for timebase values */ #define TB_NIL (~(u64)0) static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); static int dynamic_mt_modes = 6; module_param(dynamic_mt_modes, int, 0644); MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); static int target_smt_mode; module_param(target_smt_mode, int, 0644); MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); static bool indep_threads_mode = true; module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); #ifdef CONFIG_KVM_XICS static struct kernel_param_ops module_param_ops = { .set = param_set_int, .get = param_get_int, }; module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); #endif /* If set, the threads on each CPU core have to be in the same MMU mode */ static bool no_mixing_hpt_and_radix; static void kvmppc_end_cede(struct kvm_vcpu *vcpu); static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, int *ip) { int i = *ip; struct kvm_vcpu *vcpu; while (++i < MAX_SMT_THREADS) { vcpu = READ_ONCE(vc->runnable_threads[i]); if (vcpu) { *ip = i; return vcpu; } } return NULL; } /* Used to traverse the list of runnable threads for a given vcore */ #define for_each_runnable_thread(i, vcpu, vc) \ for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) static bool kvmppc_ipi_thread(int cpu) { unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); /* On POWER9 we can use msgsnd to IPI any cpu */ if (cpu_has_feature(CPU_FTR_ARCH_300)) { msg |= get_hard_smp_processor_id(cpu); smp_mb(); __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); return true; } /* On POWER8 for IPIs to threads in the same core, use msgsnd */ if (cpu_has_feature(CPU_FTR_ARCH_207S)) { preempt_disable(); if (cpu_first_thread_sibling(cpu) == cpu_first_thread_sibling(smp_processor_id())) { msg |= cpu_thread_in_core(cpu); smp_mb(); __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); preempt_enable(); return true; } preempt_enable(); } #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) if (cpu >= 0 && cpu < nr_cpu_ids) { if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { xics_wake_cpu(cpu); return true; } opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); return true; } #endif return false; } static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) { int cpu; struct swait_queue_head *wqp; wqp = kvm_arch_vcpu_wq(vcpu); if (swq_has_sleeper(wqp)) { swake_up(wqp); ++vcpu->stat.halt_wakeup; } cpu = READ_ONCE(vcpu->arch.thread_cpu); if (cpu >= 0 && kvmppc_ipi_thread(cpu)) return; /* CPU points to the first thread of the core */ cpu = vcpu->cpu; if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) smp_send_reschedule(cpu); } /* * We use the vcpu_load/put functions to measure stolen time. * Stolen time is counted as time when either the vcpu is able to * run as part of a virtual core, but the task running the vcore * is preempted or sleeping, or when the vcpu needs something done * in the kernel by the task running the vcpu, but that task is * preempted or sleeping. Those two things have to be counted * separately, since one of the vcpu tasks will take on the job * of running the core, and the other vcpu tasks in the vcore will * sleep waiting for it to do that, but that sleep shouldn't count * as stolen time. * * Hence we accumulate stolen time when the vcpu can run as part of * a vcore using vc->stolen_tb, and the stolen time when the vcpu * needs its task to do other things in the kernel (for example, * service a page fault) in busy_stolen. We don't accumulate * stolen time for a vcore when it is inactive, or for a vcpu * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of * a misnomer; it means that the vcpu task is not executing in * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in * the kernel. We don't have any way of dividing up that time * between time that the vcpu is genuinely stopped, time that * the task is actively working on behalf of the vcpu, and time * that the task is preempted, so we don't count any of it as * stolen. * * Updates to busy_stolen are protected by arch.tbacct_lock; * updates to vc->stolen_tb are protected by the vcore->stoltb_lock * lock. The stolen times are measured in units of timebase ticks. * (Note that the != TB_NIL checks below are purely defensive; * they should never fail.) */ static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) { unsigned long flags; spin_lock_irqsave(&vc->stoltb_lock, flags); vc->preempt_tb = mftb(); spin_unlock_irqrestore(&vc->stoltb_lock, flags); } static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) { unsigned long flags; spin_lock_irqsave(&vc->stoltb_lock, flags); if (vc->preempt_tb != TB_NIL) { vc->stolen_tb += mftb() - vc->preempt_tb; vc->preempt_tb = TB_NIL; } spin_unlock_irqrestore(&vc->stoltb_lock, flags); } static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) { struct kvmppc_vcore *vc = vcpu->arch.vcore; unsigned long flags; /* * We can test vc->runner without taking the vcore lock, * because only this task ever sets vc->runner to this * vcpu, and once it is set to this vcpu, only this task * ever sets it to NULL. */ if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) kvmppc_core_end_stolen(vc); spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && vcpu->arch.busy_preempt != TB_NIL) { vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; vcpu->arch.busy_preempt = TB_NIL; } spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); } static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) { struct kvmppc_vcore *vc = vcpu->arch.vcore; unsigned long flags; if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) kvmppc_core_start_stolen(vc); spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) vcpu->arch.busy_preempt = mftb(); spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); } static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) { /* * Check for illegal transactional state bit combination * and if we find it, force the TS field to a safe state. */ if ((msr & MSR_TS_MASK) == MSR_TS_MASK) msr &= ~MSR_TS_MASK; vcpu->arch.shregs.msr = msr; kvmppc_end_cede(vcpu); } static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) { vcpu->arch.pvr = pvr; } /* Dummy value used in computing PCR value below */ #define PCR_ARCH_300 (PCR_ARCH_207 << 1) static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) { unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; struct kvmppc_vcore *vc = vcpu->arch.vcore; /* We can (emulate) our own architecture version and anything older */ if (cpu_has_feature(CPU_FTR_ARCH_300)) host_pcr_bit = PCR_ARCH_300; else if (cpu_has_feature(CPU_FTR_ARCH_207S)) host_pcr_bit = PCR_ARCH_207; else if (cpu_has_feature(CPU_FTR_ARCH_206)) host_pcr_bit = PCR_ARCH_206; else host_pcr_bit = PCR_ARCH_205; /* Determine lowest PCR bit needed to run guest in given PVR level */ guest_pcr_bit = host_pcr_bit; if (arch_compat) { switch (arch_compat) { case PVR_ARCH_205: guest_pcr_bit = PCR_ARCH_205; break; case PVR_ARCH_206: case PVR_ARCH_206p: guest_pcr_bit = PCR_ARCH_206; break; case PVR_ARCH_207: guest_pcr_bit = PCR_ARCH_207; break; case PVR_ARCH_300: guest_pcr_bit = PCR_ARCH_300; break; default: return -EINVAL; } } /* Check requested PCR bits don't exceed our capabilities */ if (guest_pcr_bit > host_pcr_bit) return -EINVAL; spin_lock(&vc->lock); vc->arch_compat = arch_compat; /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */ vc->pcr = host_pcr_bit - guest_pcr_bit; spin_unlock(&vc->lock); return 0; } static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) { int r; pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); pr_err("pc = %.16lx msr = %.16llx trap = %x\n", vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); for (r = 0; r < 16; ++r) pr_err("r%2d = %.16lx r%d = %.16lx\n", r, kvmppc_get_gpr(vcpu, r), r+16, kvmppc_get_gpr(vcpu, r+16)); pr_err("ctr = %.16lx lr = %.16lx\n", vcpu->arch.ctr, vcpu->arch.lr); pr_err("srr0 = %.16llx srr1 = %.16llx\n", vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); pr_err("fault dar = %.16lx dsisr = %.8x\n", vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); for (r = 0; r < vcpu->arch.slb_max; ++r) pr_err(" ESID = %.16llx VSID = %.16llx\n", vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, vcpu->arch.last_inst); } static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) { struct kvm_vcpu *ret; mutex_lock(&kvm->lock); ret = kvm_get_vcpu_by_id(kvm, id); mutex_unlock(&kvm->lock); return ret; } static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) { vpa->__old_status |= LPPACA_OLD_SHARED_PROC; vpa->yield_count = cpu_to_be32(1); } static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, unsigned long addr, unsigned long len) { /* check address is cacheline aligned */ if (addr & (L1_CACHE_BYTES - 1)) return -EINVAL; spin_lock(&vcpu->arch.vpa_update_lock); if (v->next_gpa != addr || v->len != len) { v->next_gpa = addr; v->len = addr ? len : 0; v->update_pending = 1; } spin_unlock(&vcpu->arch.vpa_update_lock); return 0; } /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ struct reg_vpa { u32 dummy; union { __be16 hword; __be32 word; } length; }; static int vpa_is_registered(struct kvmppc_vpa *vpap) { if (vpap->update_pending) return vpap->next_gpa != 0; return vpap->pinned_addr != NULL; } static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long vcpuid, unsigned long vpa) { struct kvm *kvm = vcpu->kvm; unsigned long len, nb; void *va; struct kvm_vcpu *tvcpu; int err; int subfunc; struct kvmppc_vpa *vpap; tvcpu = kvmppc_find_vcpu(kvm, vcpuid); if (!tvcpu) return H_PARAMETER; subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || subfunc == H_VPA_REG_SLB) { /* Registering new area - address must be cache-line aligned */ if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) return H_PARAMETER; /* convert logical addr to kernel addr and read length */ va = kvmppc_pin_guest_page(kvm, vpa, &nb); if (va == NULL) return H_PARAMETER; if (subfunc == H_VPA_REG_VPA) len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); else len = be32_to_cpu(((struct reg_vpa *)va)->length.word); kvmppc_unpin_guest_page(kvm, va, vpa, false); /* Check length */ if (len > nb || len < sizeof(struct reg_vpa)) return H_PARAMETER; } else { vpa = 0; len = 0; } err = H_PARAMETER; vpap = NULL; spin_lock(&tvcpu->arch.vpa_update_lock); switch (subfunc) { case H_VPA_REG_VPA: /* register VPA */ /* * The size of our lppaca is 1kB because of the way we align * it for the guest to avoid crossing a 4kB boundary. We only * use 640 bytes of the structure though, so we should accept * clients that set a size of 640. */ BUILD_BUG_ON(sizeof(struct lppaca) != 640); if (len < sizeof(struct lppaca)) break; vpap = &tvcpu->arch.vpa; err = 0; break; case H_VPA_REG_DTL: /* register DTL */ if (len < sizeof(struct dtl_entry)) break; len -= len % sizeof(struct dtl_entry); /* Check that they have previously registered a VPA */ err = H_RESOURCE; if (!vpa_is_registered(&tvcpu->arch.vpa)) break; vpap = &tvcpu->arch.dtl; err = 0; break; case H_VPA_REG_SLB: /* register SLB shadow buffer */ /* Check that they have previously registered a VPA */ err = H_RESOURCE; if (!vpa_is_registered(&tvcpu->arch.vpa)) break; vpap = &tvcpu->arch.slb_shadow; err = 0; break; case H_VPA_DEREG_VPA: /* deregister VPA */ /* Check they don't still have a DTL or SLB buf registered */ err = H_RESOURCE; if (vpa_is_registered(&tvcpu->arch.dtl) || vpa_is_registered(&tvcpu->arch.slb_shadow)) break; vpap = &tvcpu->arch.vpa; err = 0; break; case H_VPA_DEREG_DTL: /* deregister DTL */ vpap = &tvcpu->arch.dtl; err = 0; break; case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ vpap = &tvcpu->arch.slb_shadow; err = 0; break; } if (vpap) { vpap->next_gpa = vpa; vpap->len = len; vpap->update_pending = 1; } spin_unlock(&tvcpu->arch.vpa_update_lock); return err; } static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) { struct kvm *kvm = vcpu->kvm; void *va; unsigned long nb; unsigned long gpa; /* * We need to pin the page pointed to by vpap->next_gpa, * but we can't call kvmppc_pin_guest_page under the lock * as it does get_user_pages() and down_read(). So we * have to drop the lock, pin the page, then get the lock * again and check that a new area didn't get registered * in the meantime. */ for (;;) { gpa = vpap->next_gpa; spin_unlock(&vcpu->arch.vpa_update_lock); va = NULL; nb = 0; if (gpa) va = kvmppc_pin_guest_page(kvm, gpa, &nb); spin_lock(&vcpu->arch.vpa_update_lock); if (gpa == vpap->next_gpa) break; /* sigh... unpin that one and try again */ if (va) kvmppc_unpin_guest_page(kvm, va, gpa, false); } vpap->update_pending = 0; if (va && nb < vpap->len) { /* * If it's now too short, it must be that userspace * has changed the mappings underlying guest memory, * so unregister the region. */ kvmppc_unpin_guest_page(kvm, va, gpa, false); va = NULL; } if (vpap->pinned_addr) kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, vpap->dirty); vpap->gpa = gpa; vpap->pinned_addr = va; vpap->dirty = false; if (va) vpap->pinned_end = va + vpap->len; } static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) { if (!(vcpu->arch.vpa.update_pending || vcpu->arch.slb_shadow.update_pending || vcpu->arch.dtl.update_pending)) return; spin_lock(&vcpu->arch.vpa_update_lock); if (vcpu->arch.vpa.update_pending) { kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); if (vcpu->arch.vpa.pinned_addr) init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); } if (vcpu->arch.dtl.update_pending) { kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; vcpu->arch.dtl_index = 0; } if (vcpu->arch.slb_shadow.update_pending) kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); spin_unlock(&vcpu->arch.vpa_update_lock); } /* * Return the accumulated stolen time for the vcore up until `now'. * The caller should hold the vcore lock. */ static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) { u64 p; unsigned long flags; spin_lock_irqsave(&vc->stoltb_lock, flags); p = vc->stolen_tb; if (vc->vcore_state != VCORE_INACTIVE && vc->preempt_tb != TB_NIL) p += now - vc->preempt_tb; spin_unlock_irqrestore(&vc->stoltb_lock, flags); return p; } static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) { struct dtl_entry *dt; struct lppaca *vpa; unsigned long stolen; unsigned long core_stolen; u64 now; unsigned long flags; dt = vcpu->arch.dtl_ptr; vpa = vcpu->arch.vpa.pinned_addr; now = mftb(); core_stolen = vcore_stolen_time(vc, now); stolen = core_stolen - vcpu->arch.stolen_logged; vcpu->arch.stolen_logged = core_stolen; spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); stolen += vcpu->arch.busy_stolen; vcpu->arch.busy_stolen = 0; spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); if (!dt || !vpa) return; memset(dt, 0, sizeof(struct dtl_entry)); dt->dispatch_reason = 7; dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); dt->timebase = cpu_to_be64(now + vc->tb_offset); dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); ++dt; if (dt == vcpu->arch.dtl.pinned_end) dt = vcpu->arch.dtl.pinned_addr; vcpu->arch.dtl_ptr = dt; /* order writing *dt vs. writing vpa->dtl_idx */ smp_wmb(); vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); vcpu->arch.dtl.dirty = true; } /* See if there is a doorbell interrupt pending for a vcpu */ static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) { int thr; struct kvmppc_vcore *vc; if (vcpu->arch.doorbell_request) return true; /* * Ensure that the read of vcore->dpdes comes after the read * of vcpu->doorbell_request. This barrier matches the * lwsync in book3s_hv_rmhandlers.S just before the * fast_guest_return label. */ smp_rmb(); vc = vcpu->arch.vcore; thr = vcpu->vcpu_id - vc->first_vcpuid; return !!(vc->dpdes & (1 << thr)); } static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) { if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) return true; if ((!vcpu->arch.vcore->arch_compat) && cpu_has_feature(CPU_FTR_ARCH_207S)) return true; return false; } static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, unsigned long resource, unsigned long value1, unsigned long value2) { switch (resource) { case H_SET_MODE_RESOURCE_SET_CIABR: if (!kvmppc_power8_compatible(vcpu)) return H_P2; if (value2) return H_P4; if (mflags) return H_UNSUPPORTED_FLAG_START; /* Guests can't breakpoint the hypervisor */ if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) return H_P3; vcpu->arch.ciabr = value1; return H_SUCCESS; case H_SET_MODE_RESOURCE_SET_DAWR: if (!kvmppc_power8_compatible(vcpu)) return H_P2; if (!ppc_breakpoint_available()) return H_P2; if (mflags) return H_UNSUPPORTED_FLAG_START; if (value2 & DABRX_HYP) return H_P4; vcpu->arch.dawr = value1; vcpu->arch.dawrx = value2; return H_SUCCESS; default: return H_TOO_HARD; } } static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) { struct kvmppc_vcore *vcore = target->arch.vcore; /* * We expect to have been called by the real mode handler * (kvmppc_rm_h_confer()) which would have directly returned * H_SUCCESS if the source vcore wasn't idle (e.g. if it may * have useful work to do and should not confer) so we don't * recheck that here. */ spin_lock(&vcore->lock); if (target->arch.state == KVMPPC_VCPU_RUNNABLE && vcore->vcore_state != VCORE_INACTIVE && vcore->runner) target = vcore->runner; spin_unlock(&vcore->lock); return kvm_vcpu_yield_to(target); } static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) { int yield_count = 0; struct lppaca *lppaca; spin_lock(&vcpu->arch.vpa_update_lock); lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; if (lppaca) yield_count = be32_to_cpu(lppaca->yield_count); spin_unlock(&vcpu->arch.vpa_update_lock); return yield_count; } int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) { unsigned long req = kvmppc_get_gpr(vcpu, 3); unsigned long target, ret = H_SUCCESS; int yield_count; struct kvm_vcpu *tvcpu; int idx, rc; if (req <= MAX_HCALL_OPCODE && !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) return RESUME_HOST; switch (req) { case H_CEDE: break; case H_PROD: target = kvmppc_get_gpr(vcpu, 4); tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); if (!tvcpu) { ret = H_PARAMETER; break; } tvcpu->arch.prodded = 1; smp_mb(); if (tvcpu->arch.ceded) kvmppc_fast_vcpu_kick_hv(tvcpu); break; case H_CONFER: target = kvmppc_get_gpr(vcpu, 4); if (target == -1) break; tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); if (!tvcpu) { ret = H_PARAMETER; break; } yield_count = kvmppc_get_gpr(vcpu, 5); if (kvmppc_get_yield_count(tvcpu) != yield_count) break; kvm_arch_vcpu_yield_to(tvcpu); break; case H_REGISTER_VPA: ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); break; case H_RTAS: if (list_empty(&vcpu->kvm->arch.rtas_tokens)) return RESUME_HOST; idx = srcu_read_lock(&vcpu->kvm->srcu); rc = kvmppc_rtas_hcall(vcpu); srcu_read_unlock(&vcpu->kvm->srcu, idx); if (rc == -ENOENT) return RESUME_HOST; else if (rc == 0) break; /* Send the error out to userspace via KVM_RUN */ return rc; case H_LOGICAL_CI_LOAD: ret = kvmppc_h_logical_ci_load(vcpu); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_LOGICAL_CI_STORE: ret = kvmppc_h_logical_ci_store(vcpu); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_SET_MODE: ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6), kvmppc_get_gpr(vcpu, 7)); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_XIRR: case H_CPPR: case H_EOI: case H_IPI: case H_IPOLL: case H_XIRR_X: if (kvmppc_xics_enabled(vcpu)) { if (xive_enabled()) { ret = H_NOT_AVAILABLE; return RESUME_GUEST; } ret = kvmppc_xics_hcall(vcpu, req); break; } return RESUME_HOST; case H_PUT_TCE: ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_PUT_TCE_INDIRECT: ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6), kvmppc_get_gpr(vcpu, 7)); if (ret == H_TOO_HARD) return RESUME_HOST; break; case H_STUFF_TCE: ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6), kvmppc_get_gpr(vcpu, 7)); if (ret == H_TOO_HARD) return RESUME_HOST; break; default: return RESUME_HOST; } kvmppc_set_gpr(vcpu, 3, ret); vcpu->arch.hcall_needed = 0; return RESUME_GUEST; } static int kvmppc_hcall_impl_hv(unsigned long cmd) { switch (cmd) { case H_CEDE: case H_PROD: case H_CONFER: case H_REGISTER_VPA: case H_SET_MODE: case H_LOGICAL_CI_LOAD: case H_LOGICAL_CI_STORE: #ifdef CONFIG_KVM_XICS case H_XIRR: case H_CPPR: case H_EOI: case H_IPI: case H_IPOLL: case H_XIRR_X: #endif return 1; } /* See if it's in the real-mode table */ return kvmppc_hcall_impl_hv_realmode(cmd); } static int kvmppc_emulate_debug_inst(struct kvm_run *run, struct kvm_vcpu *vcpu) { u32 last_inst; if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != EMULATE_DONE) { /* * Fetch failed, so return to guest and * try executing it again. */ return RESUME_GUEST; } if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { run->exit_reason = KVM_EXIT_DEBUG; run->debug.arch.address = kvmppc_get_pc(vcpu); return RESUME_HOST; } else { kvmppc_core_queue_program(vcpu, SRR1_PROGILL); return RESUME_GUEST; } } static void do_nothing(void *x) { } static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) { int thr, cpu, pcpu, nthreads; struct kvm_vcpu *v; unsigned long dpdes; nthreads = vcpu->kvm->arch.emul_smt_mode; dpdes = 0; cpu = vcpu->vcpu_id & ~(nthreads - 1); for (thr = 0; thr < nthreads; ++thr, ++cpu) { v = kvmppc_find_vcpu(vcpu->kvm, cpu); if (!v) continue; /* * If the vcpu is currently running on a physical cpu thread, * interrupt it in order to pull it out of the guest briefly, * which will update its vcore->dpdes value. */ pcpu = READ_ONCE(v->cpu); if (pcpu >= 0) smp_call_function_single(pcpu, do_nothing, NULL, 1); if (kvmppc_doorbell_pending(v)) dpdes |= 1 << thr; } return dpdes; } /* * On POWER9, emulate doorbell-related instructions in order to * give the guest the illusion of running on a multi-threaded core. * The instructions emulated are msgsndp, msgclrp, mfspr TIR, * and mfspr DPDES. */ static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) { u32 inst, rb, thr; unsigned long arg; struct kvm *kvm = vcpu->kvm; struct kvm_vcpu *tvcpu; if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) return RESUME_GUEST; if (get_op(inst) != 31) return EMULATE_FAIL; rb = get_rb(inst); thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); switch (get_xop(inst)) { case OP_31_XOP_MSGSNDP: arg = kvmppc_get_gpr(vcpu, rb); if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) break; arg &= 0x3f; if (arg >= kvm->arch.emul_smt_mode) break; tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); if (!tvcpu) break; if (!tvcpu->arch.doorbell_request) { tvcpu->arch.doorbell_request = 1; kvmppc_fast_vcpu_kick_hv(tvcpu); } break; case OP_31_XOP_MSGCLRP: arg = kvmppc_get_gpr(vcpu, rb); if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) break; vcpu->arch.vcore->dpdes = 0; vcpu->arch.doorbell_request = 0; break; case OP_31_XOP_MFSPR: switch (get_sprn(inst)) { case SPRN_TIR: arg = thr; break; case SPRN_DPDES: arg = kvmppc_read_dpdes(vcpu); break; default: return EMULATE_FAIL; } kvmppc_set_gpr(vcpu, get_rt(inst), arg); break; default: return EMULATE_FAIL; } kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); return RESUME_GUEST; } /* Called with vcpu->arch.vcore->lock held */ static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, struct task_struct *tsk) { int r = RESUME_HOST; vcpu->stat.sum_exits++; /* * This can happen if an interrupt occurs in the last stages * of guest entry or the first stages of guest exit (i.e. after * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV * and before setting it to KVM_GUEST_MODE_HOST_HV). * That can happen due to a bug, or due to a machine check * occurring at just the wrong time. */ if (vcpu->arch.shregs.msr & MSR_HV) { printk(KERN_EMERG "KVM trap in HV mode!\n"); printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", vcpu->arch.trap, kvmppc_get_pc(vcpu), vcpu->arch.shregs.msr); kvmppc_dump_regs(vcpu); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; run->hw.hardware_exit_reason = vcpu->arch.trap; return RESUME_HOST; } run->exit_reason = KVM_EXIT_UNKNOWN; run->ready_for_interrupt_injection = 1; switch (vcpu->arch.trap) { /* We're good on these - the host merely wanted to get our attention */ case BOOK3S_INTERRUPT_HV_DECREMENTER: vcpu->stat.dec_exits++; r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_EXTERNAL: case BOOK3S_INTERRUPT_H_DOORBELL: case BOOK3S_INTERRUPT_H_VIRT: vcpu->stat.ext_intr_exits++; r = RESUME_GUEST; break; /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ case BOOK3S_INTERRUPT_HMI: case BOOK3S_INTERRUPT_PERFMON: case BOOK3S_INTERRUPT_SYSTEM_RESET: r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_MACHINE_CHECK: /* Exit to guest with KVM_EXIT_NMI as exit reason */ run->exit_reason = KVM_EXIT_NMI; run->hw.hardware_exit_reason = vcpu->arch.trap; /* Clear out the old NMI status from run->flags */ run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; /* Now set the NMI status */ if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; else run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; r = RESUME_HOST; /* Print the MCE event to host console. */ machine_check_print_event_info(&vcpu->arch.mce_evt, false); break; case BOOK3S_INTERRUPT_PROGRAM: { ulong flags; /* * Normally program interrupts are delivered directly * to the guest by the hardware, but we can get here * as a result of a hypervisor emulation interrupt * (e40) getting turned into a 700 by BML RTAS. */ flags = vcpu->arch.shregs.msr & 0x1f0000ull; kvmppc_core_queue_program(vcpu, flags); r = RESUME_GUEST; break; } case BOOK3S_INTERRUPT_SYSCALL: { /* hcall - punt to userspace */ int i; /* hypercall with MSR_PR has already been handled in rmode, * and never reaches here. */ run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); for (i = 0; i < 9; ++i) run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); run->exit_reason = KVM_EXIT_PAPR_HCALL; vcpu->arch.hcall_needed = 1; r = RESUME_HOST; break; } /* * We get these next two if the guest accesses a page which it thinks * it has mapped but which is not actually present, either because * it is for an emulated I/O device or because the corresonding * host page has been paged out. Any other HDSI/HISI interrupts * have been handled already. */ case BOOK3S_INTERRUPT_H_DATA_STORAGE: r = RESUME_PAGE_FAULT; break; case BOOK3S_INTERRUPT_H_INST_STORAGE: vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); vcpu->arch.fault_dsisr = 0; r = RESUME_PAGE_FAULT; break; /* * This occurs if the guest executes an illegal instruction. * If the guest debug is disabled, generate a program interrupt * to the guest. If guest debug is enabled, we need to check * whether the instruction is a software breakpoint instruction. * Accordingly return to Guest or Host. */ case BOOK3S_INTERRUPT_H_EMUL_ASSIST: if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? swab32(vcpu->arch.emul_inst) : vcpu->arch.emul_inst; if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { /* Need vcore unlocked to call kvmppc_get_last_inst */ spin_unlock(&vcpu->arch.vcore->lock); r = kvmppc_emulate_debug_inst(run, vcpu); spin_lock(&vcpu->arch.vcore->lock); } else { kvmppc_core_queue_program(vcpu, SRR1_PROGILL); r = RESUME_GUEST; } break; /* * This occurs if the guest (kernel or userspace), does something that * is prohibited by HFSCR. * On POWER9, this could be a doorbell instruction that we need * to emulate. * Otherwise, we just generate a program interrupt to the guest. */ case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: r = EMULATE_FAIL; if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && cpu_has_feature(CPU_FTR_ARCH_300)) { /* Need vcore unlocked to call kvmppc_get_last_inst */ spin_unlock(&vcpu->arch.vcore->lock); r = kvmppc_emulate_doorbell_instr(vcpu); spin_lock(&vcpu->arch.vcore->lock); } if (r == EMULATE_FAIL) { kvmppc_core_queue_program(vcpu, SRR1_PROGILL); r = RESUME_GUEST; } break; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM case BOOK3S_INTERRUPT_HV_SOFTPATCH: /* * This occurs for various TM-related instructions that * we need to emulate on POWER9 DD2.2. We have already * handled the cases where the guest was in real-suspend * mode and was transitioning to transactional state. */ r = kvmhv_p9_tm_emulation(vcpu); break; #endif case BOOK3S_INTERRUPT_HV_RM_HARD: r = RESUME_PASSTHROUGH; break; default: kvmppc_dump_regs(vcpu); printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", vcpu->arch.trap, kvmppc_get_pc(vcpu), vcpu->arch.shregs.msr); run->hw.hardware_exit_reason = vcpu->arch.trap; r = RESUME_HOST; break; } return r; } static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { int i; memset(sregs, 0, sizeof(struct kvm_sregs)); sregs->pvr = vcpu->arch.pvr; for (i = 0; i < vcpu->arch.slb_max; i++) { sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; } return 0; } static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { int i, j; /* Only accept the same PVR as the host's, since we can't spoof it */ if (sregs->pvr != vcpu->arch.pvr) return -EINVAL; j = 0; for (i = 0; i < vcpu->arch.slb_nr; i++) { if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; ++j; } } vcpu->arch.slb_max = j; return 0; } static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, bool preserve_top32) { struct kvm *kvm = vcpu->kvm; struct kvmppc_vcore *vc = vcpu->arch.vcore; u64 mask; mutex_lock(&kvm->lock); spin_lock(&vc->lock); /* * If ILE (interrupt little-endian) has changed, update the * MSR_LE bit in the intr_msr for each vcpu in this vcore. */ if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { struct kvm_vcpu *vcpu; int i; kvm_for_each_vcpu(i, vcpu, kvm) { if (vcpu->arch.vcore != vc) continue; if (new_lpcr & LPCR_ILE) vcpu->arch.intr_msr |= MSR_LE; else vcpu->arch.intr_msr &= ~MSR_LE; } } /* * Userspace can only modify DPFD (default prefetch depth), * ILE (interrupt little-endian) and TC (translation control). * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). */ mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; if (cpu_has_feature(CPU_FTR_ARCH_207S)) mask |= LPCR_AIL; /* * On POWER9, allow userspace to enable large decrementer for the * guest, whether or not the host has it enabled. */ if (cpu_has_feature(CPU_FTR_ARCH_300)) mask |= LPCR_LD; /* Broken 32-bit version of LPCR must not clear top bits */ if (preserve_top32) mask &= 0xFFFFFFFF; vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); spin_unlock(&vc->lock); mutex_unlock(&kvm->lock); } static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) { int r = 0; long int i; switch (id) { case KVM_REG_PPC_DEBUG_INST: *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); break; case KVM_REG_PPC_HIOR: *val = get_reg_val(id, 0); break; case KVM_REG_PPC_DABR: *val = get_reg_val(id, vcpu->arch.dabr); break; case KVM_REG_PPC_DABRX: *val = get_reg_val(id, vcpu->arch.dabrx); break; case KVM_REG_PPC_DSCR: *val = get_reg_val(id, vcpu->arch.dscr); break; case KVM_REG_PPC_PURR: *val = get_reg_val(id, vcpu->arch.purr); break; case KVM_REG_PPC_SPURR: *val = get_reg_val(id, vcpu->arch.spurr); break; case KVM_REG_PPC_AMR: *val = get_reg_val(id, vcpu->arch.amr); break; case KVM_REG_PPC_UAMOR: *val = get_reg_val(id, vcpu->arch.uamor); break; case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: i = id - KVM_REG_PPC_MMCR0; *val = get_reg_val(id, vcpu->arch.mmcr[i]); break; case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: i = id - KVM_REG_PPC_PMC1; *val = get_reg_val(id, vcpu->arch.pmc[i]); break; case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: i = id - KVM_REG_PPC_SPMC1; *val = get_reg_val(id, vcpu->arch.spmc[i]); break; case KVM_REG_PPC_SIAR: *val = get_reg_val(id, vcpu->arch.siar); break; case KVM_REG_PPC_SDAR: *val = get_reg_val(id, vcpu->arch.sdar); break; case KVM_REG_PPC_SIER: *val = get_reg_val(id, vcpu->arch.sier); break; case KVM_REG_PPC_IAMR: *val = get_reg_val(id, vcpu->arch.iamr); break; case KVM_REG_PPC_PSPB: *val = get_reg_val(id, vcpu->arch.pspb); break; case KVM_REG_PPC_DPDES: *val = get_reg_val(id, vcpu->arch.vcore->dpdes); break; case KVM_REG_PPC_VTB: *val = get_reg_val(id, vcpu->arch.vcore->vtb); break; case KVM_REG_PPC_DAWR: *val = get_reg_val(id, vcpu->arch.dawr); break; case KVM_REG_PPC_DAWRX: *val = get_reg_val(id, vcpu->arch.dawrx); break; case KVM_REG_PPC_CIABR: *val = get_reg_val(id, vcpu->arch.ciabr); break; case KVM_REG_PPC_CSIGR: *val = get_reg_val(id, vcpu->arch.csigr); break; case KVM_REG_PPC_TACR: *val = get_reg_val(id, vcpu->arch.tacr); break; case KVM_REG_PPC_TCSCR: *val = get_reg_val(id, vcpu->arch.tcscr); break; case KVM_REG_PPC_PID: *val = get_reg_val(id, vcpu->arch.pid); break; case KVM_REG_PPC_ACOP: *val = get_reg_val(id, vcpu->arch.acop); break; case KVM_REG_PPC_WORT: *val = get_reg_val(id, vcpu->arch.wort); break; case KVM_REG_PPC_TIDR: *val = get_reg_val(id, vcpu->arch.tid); break; case KVM_REG_PPC_PSSCR: *val = get_reg_val(id, vcpu->arch.psscr); break; case KVM_REG_PPC_VPA_ADDR: spin_lock(&vcpu->arch.vpa_update_lock); *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); spin_unlock(&vcpu->arch.vpa_update_lock); break; case KVM_REG_PPC_VPA_SLB: spin_lock(&vcpu->arch.vpa_update_lock); val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; val->vpaval.length = vcpu->arch.slb_shadow.len; spin_unlock(&vcpu->arch.vpa_update_lock); break; case KVM_REG_PPC_VPA_DTL: spin_lock(&vcpu->arch.vpa_update_lock); val->vpaval.addr = vcpu->arch.dtl.next_gpa; val->vpaval.length = vcpu->arch.dtl.len; spin_unlock(&vcpu->arch.vpa_update_lock); break; case KVM_REG_PPC_TB_OFFSET: *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); break; case KVM_REG_PPC_LPCR: case KVM_REG_PPC_LPCR_64: *val = get_reg_val(id, vcpu->arch.vcore->lpcr); break; case KVM_REG_PPC_PPR: *val = get_reg_val(id, vcpu->arch.ppr); break; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM case KVM_REG_PPC_TFHAR: *val = get_reg_val(id, vcpu->arch.tfhar); break; case KVM_REG_PPC_TFIAR: *val = get_reg_val(id, vcpu->arch.tfiar); break; case KVM_REG_PPC_TEXASR: *val = get_reg_val(id, vcpu->arch.texasr); break; case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: i = id - KVM_REG_PPC_TM_GPR0; *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); break; case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: { int j; i = id - KVM_REG_PPC_TM_VSR0; if (i < 32) for (j = 0; j < TS_FPRWIDTH; j++) val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; else { if (cpu_has_feature(CPU_FTR_ALTIVEC)) val->vval = vcpu->arch.vr_tm.vr[i-32]; else r = -ENXIO; } break; } case KVM_REG_PPC_TM_CR: *val = get_reg_val(id, vcpu->arch.cr_tm); break; case KVM_REG_PPC_TM_XER: *val = get_reg_val(id, vcpu->arch.xer_tm); break; case KVM_REG_PPC_TM_LR: *val = get_reg_val(id, vcpu->arch.lr_tm); break; case KVM_REG_PPC_TM_CTR: *val = get_reg_val(id, vcpu->arch.ctr_tm); break; case KVM_REG_PPC_TM_FPSCR: *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); break; case KVM_REG_PPC_TM_AMR: *val = get_reg_val(id, vcpu->arch.amr_tm); break; case KVM_REG_PPC_TM_PPR: *val = get_reg_val(id, vcpu->arch.ppr_tm); break; case KVM_REG_PPC_TM_VRSAVE: *val = get_reg_val(id, vcpu->arch.vrsave_tm); break; case KVM_REG_PPC_TM_VSCR: if (cpu_has_feature(CPU_FTR_ALTIVEC)) *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); else r = -ENXIO; break; case KVM_REG_PPC_TM_DSCR: *val = get_reg_val(id, vcpu->arch.dscr_tm); break; case KVM_REG_PPC_TM_TAR: *val = get_reg_val(id, vcpu->arch.tar_tm); break; #endif case KVM_REG_PPC_ARCH_COMPAT: *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); break; case KVM_REG_PPC_DEC_EXPIRY: *val = get_reg_val(id, vcpu->arch.dec_expires + vcpu->arch.vcore->tb_offset); break; default: r = -EINVAL; break; } return r; } static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) { int r = 0; long int i; unsigned long addr, len; switch (id) { case KVM_REG_PPC_HIOR: /* Only allow this to be set to zero */ if (set_reg_val(id, *val)) r = -EINVAL; break; case KVM_REG_PPC_DABR: vcpu->arch.dabr = set_reg_val(id, *val); break; case KVM_REG_PPC_DABRX: vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; break; case KVM_REG_PPC_DSCR: vcpu->arch.dscr = set_reg_val(id, *val); break; case KVM_REG_PPC_PURR: vcpu->arch.purr = set_reg_val(id, *val); break; case KVM_REG_PPC_SPURR: vcpu->arch.spurr = set_reg_val(id, *val); break; case KVM_REG_PPC_AMR: vcpu->arch.amr = set_reg_val(id, *val); break; case KVM_REG_PPC_UAMOR: vcpu->arch.uamor = set_reg_val(id, *val); break; case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: i = id - KVM_REG_PPC_MMCR0; vcpu->arch.mmcr[i] = set_reg_val(id, *val); break; case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: i = id - KVM_REG_PPC_PMC1; vcpu->arch.pmc[i] = set_reg_val(id, *val); break; case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: i = id - KVM_REG_PPC_SPMC1; vcpu->arch.spmc[i] = set_reg_val(id, *val); break; case KVM_REG_PPC_SIAR: vcpu->arch.siar = set_reg_val(id, *val); break; case KVM_REG_PPC_SDAR: vcpu->arch.sdar = set_reg_val(id, *val); break; case KVM_REG_PPC_SIER: vcpu->arch.sier = set_reg_val(id, *val); break; case KVM_REG_PPC_IAMR: vcpu->arch.iamr = set_reg_val(id, *val); break; case KVM_REG_PPC_PSPB: vcpu->arch.pspb = set_reg_val(id, *val); break; case KVM_REG_PPC_DPDES: vcpu->arch.vcore->dpdes = set_reg_val(id, *val); break; case KVM_REG_PPC_VTB: vcpu->arch.vcore->vtb = set_reg_val(id, *val); break; case KVM_REG_PPC_DAWR: vcpu->arch.dawr = set_reg_val(id, *val); break; case KVM_REG_PPC_DAWRX: vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; break; case KVM_REG_PPC_CIABR: vcpu->arch.ciabr = set_reg_val(id, *val); /* Don't allow setting breakpoints in hypervisor code */ if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ break; case KVM_REG_PPC_CSIGR: vcpu->arch.csigr = set_reg_val(id, *val); break; case KVM_REG_PPC_TACR: vcpu->arch.tacr = set_reg_val(id, *val); break; case KVM_REG_PPC_TCSCR: vcpu->arch.tcscr = set_reg_val(id, *val); break; case KVM_REG_PPC_PID: vcpu->arch.pid = set_reg_val(id, *val); break; case KVM_REG_PPC_ACOP: vcpu->arch.acop = set_reg_val(id, *val); break; case KVM_REG_PPC_WORT: vcpu->arch.wort = set_reg_val(id, *val); break; case KVM_REG_PPC_TIDR: vcpu->arch.tid = set_reg_val(id, *val); break; case KVM_REG_PPC_PSSCR: vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; break; case KVM_REG_PPC_VPA_ADDR: addr = set_reg_val(id, *val); r = -EINVAL; if (!addr && (vcpu->arch.slb_shadow.next_gpa || vcpu->arch.dtl.next_gpa)) break; r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); break; case KVM_REG_PPC_VPA_SLB: addr = val->vpaval.addr; len = val->vpaval.length; r = -EINVAL; if (addr && !vcpu->arch.vpa.next_gpa) break; r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); break; case KVM_REG_PPC_VPA_DTL: addr = val->vpaval.addr; len = val->vpaval.length; r = -EINVAL; if (addr && (len < sizeof(struct dtl_entry) || !vcpu->arch.vpa.next_gpa)) break; len -= len % sizeof(struct dtl_entry); r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); break; case KVM_REG_PPC_TB_OFFSET: /* * POWER9 DD1 has an erratum where writing TBU40 causes * the timebase to lose ticks. So we don't let the * timebase offset be changed on P9 DD1. (It is * initialized to zero.) */ if (cpu_has_feature(CPU_FTR_POWER9_DD1)) break; /* round up to multiple of 2^24 */ vcpu->arch.vcore->tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24); break; case KVM_REG_PPC_LPCR: kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); break; case KVM_REG_PPC_LPCR_64: kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); break; case KVM_REG_PPC_PPR: vcpu->arch.ppr = set_reg_val(id, *val); break; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM case KVM_REG_PPC_TFHAR: vcpu->arch.tfhar = set_reg_val(id, *val); break; case KVM_REG_PPC_TFIAR: vcpu->arch.tfiar = set_reg_val(id, *val); break; case KVM_REG_PPC_TEXASR: vcpu->arch.texasr = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: i = id - KVM_REG_PPC_TM_GPR0; vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: { int j; i = id - KVM_REG_PPC_TM_VSR0; if (i < 32) for (j = 0; j < TS_FPRWIDTH; j++) vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; else if (cpu_has_feature(CPU_FTR_ALTIVEC)) vcpu->arch.vr_tm.vr[i-32] = val->vval; else r = -ENXIO; break; } case KVM_REG_PPC_TM_CR: vcpu->arch.cr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_XER: vcpu->arch.xer_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_LR: vcpu->arch.lr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_CTR: vcpu->arch.ctr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_FPSCR: vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_AMR: vcpu->arch.amr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_PPR: vcpu->arch.ppr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_VRSAVE: vcpu->arch.vrsave_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_VSCR: if (cpu_has_feature(CPU_FTR_ALTIVEC)) vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); else r = - ENXIO; break; case KVM_REG_PPC_TM_DSCR: vcpu->arch.dscr_tm = set_reg_val(id, *val); break; case KVM_REG_PPC_TM_TAR: vcpu->arch.tar_tm = set_reg_val(id, *val); break; #endif case KVM_REG_PPC_ARCH_COMPAT: r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); break; case KVM_REG_PPC_DEC_EXPIRY: vcpu->arch.dec_expires = set_reg_val(id, *val) - vcpu->arch.vcore->tb_offset; break; default: r = -EINVAL; break; } return r; } /* * On POWER9, threads are independent and can be in different partitions. * Therefore we consider each thread to be a subcore. * There is a restriction that all threads have to be in the same * MMU mode (radix or HPT), unfortunately, but since we only support * HPT guests on a HPT host so far, that isn't an impediment yet. */ static int threads_per_vcore(struct kvm *kvm) { if (kvm->arch.threads_indep) return 1; return threads_per_subcore; } static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) { struct kvmppc_vcore *vcore; vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); if (vcore == NULL) return NULL; spin_lock_init(&vcore->lock); spin_lock_init(&vcore->stoltb_lock); init_swait_queue_head(&vcore->wq); vcore->preempt_tb = TB_NIL; vcore->lpcr = kvm->arch.lpcr; vcore->first_vcpuid = core * kvm->arch.smt_mode; vcore->kvm = kvm; INIT_LIST_HEAD(&vcore->preempt_list); return vcore; } #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING static struct debugfs_timings_element { const char *name; size_t offset; } timings[] = { {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, }; #define N_TIMINGS (ARRAY_SIZE(timings)) struct debugfs_timings_state { struct kvm_vcpu *vcpu; unsigned int buflen; char buf[N_TIMINGS * 100]; }; static int debugfs_timings_open(struct inode *inode, struct file *file) { struct kvm_vcpu *vcpu = inode->i_private; struct debugfs_timings_state *p; p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) return -ENOMEM; kvm_get_kvm(vcpu->kvm); p->vcpu = vcpu; file->private_data = p; return nonseekable_open(inode, file); } static int debugfs_timings_release(struct inode *inode, struct file *file) { struct debugfs_timings_state *p = file->private_data; kvm_put_kvm(p->vcpu->kvm); kfree(p); return 0; } static ssize_t debugfs_timings_read(struct file *file, char __user *buf, size_t len, loff_t *ppos) { struct debugfs_timings_state *p = file->private_data; struct kvm_vcpu *vcpu = p->vcpu; char *s, *buf_end; struct kvmhv_tb_accumulator tb; u64 count; loff_t pos; ssize_t n; int i, loops; bool ok; if (!p->buflen) { s = p->buf; buf_end = s + sizeof(p->buf); for (i = 0; i < N_TIMINGS; ++i) { struct kvmhv_tb_accumulator *acc; acc = (struct kvmhv_tb_accumulator *) ((unsigned long)vcpu + timings[i].offset); ok = false; for (loops = 0; loops < 1000; ++loops) { count = acc->seqcount; if (!(count & 1)) { smp_rmb(); tb = *acc; smp_rmb(); if (count == acc->seqcount) { ok = true; break; } } udelay(1); } if (!ok) snprintf(s, buf_end - s, "%s: stuck\n", timings[i].name); else snprintf(s, buf_end - s, "%s: %llu %llu %llu %llu\n", timings[i].name, count / 2, tb_to_ns(tb.tb_total), tb_to_ns(tb.tb_min), tb_to_ns(tb.tb_max)); s += strlen(s); } p->buflen = s - p->buf; } pos = *ppos; if (pos >= p->buflen) return 0; if (len > p->buflen - pos) len = p->buflen - pos; n = copy_to_user(buf, p->buf + pos, len); if (n) { if (n == len) return -EFAULT; len -= n; } *ppos = pos + len; return len; } static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, size_t len, loff_t *ppos) { return -EACCES; } static const struct file_operations debugfs_timings_ops = { .owner = THIS_MODULE, .open = debugfs_timings_open, .release = debugfs_timings_release, .read = debugfs_timings_read, .write = debugfs_timings_write, .llseek = generic_file_llseek, }; /* Create a debugfs directory for the vcpu */ static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) { char buf[16]; struct kvm *kvm = vcpu->kvm; snprintf(buf, sizeof(buf), "vcpu%u", id); if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) return; vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) return; vcpu->arch.debugfs_timings = debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu, &debugfs_timings_ops); } #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) { } #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, unsigned int id) { struct kvm_vcpu *vcpu; int err; int core; struct kvmppc_vcore *vcore; err = -ENOMEM; vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); if (!vcpu) goto out; err = kvm_vcpu_init(vcpu, kvm, id); if (err) goto free_vcpu; vcpu->arch.shared = &vcpu->arch.shregs; #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE /* * The shared struct is never shared on HV, * so we can always use host endianness */ #ifdef __BIG_ENDIAN__ vcpu->arch.shared_big_endian = true; #else vcpu->arch.shared_big_endian = false; #endif #endif vcpu->arch.mmcr[0] = MMCR0_FC; vcpu->arch.ctrl = CTRL_RUNLATCH; /* default to host PVR, since we can't spoof it */ kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); spin_lock_init(&vcpu->arch.vpa_update_lock); spin_lock_init(&vcpu->arch.tbacct_lock); vcpu->arch.busy_preempt = TB_NIL; vcpu->arch.intr_msr = MSR_SF | MSR_ME; /* * Set the default HFSCR for the guest from the host value. * This value is only used on POWER9. * On POWER9 DD1, TM doesn't work, so we make sure to * prevent the guest from using it. * On POWER9, we want to virtualize the doorbell facility, so we * turn off the HFSCR bit, which causes those instructions to trap. */ vcpu->arch.hfscr = mfspr(SPRN_HFSCR); if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) vcpu->arch.hfscr |= HFSCR_TM; else if (!cpu_has_feature(CPU_FTR_TM_COMP)) vcpu->arch.hfscr &= ~HFSCR_TM; if (cpu_has_feature(CPU_FTR_ARCH_300)) vcpu->arch.hfscr &= ~HFSCR_MSGP; kvmppc_mmu_book3s_hv_init(vcpu); vcpu->arch.state = KVMPPC_VCPU_NOTREADY; init_waitqueue_head(&vcpu->arch.cpu_run); mutex_lock(&kvm->lock); vcore = NULL; err = -EINVAL; core = id / kvm->arch.smt_mode; if (core < KVM_MAX_VCORES) { vcore = kvm->arch.vcores[core]; if (!vcore) { err = -ENOMEM; vcore = kvmppc_vcore_create(kvm, core); kvm->arch.vcores[core] = vcore; kvm->arch.online_vcores++; } } mutex_unlock(&kvm->lock); if (!vcore) goto free_vcpu; spin_lock(&vcore->lock); ++vcore->num_threads; spin_unlock(&vcore->lock); vcpu->arch.vcore = vcore; vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; vcpu->arch.thread_cpu = -1; vcpu->arch.prev_cpu = -1; vcpu->arch.cpu_type = KVM_CPU_3S_64; kvmppc_sanity_check(vcpu); debugfs_vcpu_init(vcpu, id); return vcpu; free_vcpu: kmem_cache_free(kvm_vcpu_cache, vcpu); out: return ERR_PTR(err); } static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, unsigned long flags) { int err; int esmt = 0; if (flags) return -EINVAL; if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) return -EINVAL; if (!cpu_has_feature(CPU_FTR_ARCH_300)) { /* * On POWER8 (or POWER7), the threading mode is "strict", * so we pack smt_mode vcpus per vcore. */ if (smt_mode > threads_per_subcore) return -EINVAL; } else { /* * On POWER9, the threading mode is "loose", * so each vcpu gets its own vcore. */ esmt = smt_mode; smt_mode = 1; } mutex_lock(&kvm->lock); err = -EBUSY; if (!kvm->arch.online_vcores) { kvm->arch.smt_mode = smt_mode; kvm->arch.emul_smt_mode = esmt; err = 0; } mutex_unlock(&kvm->lock); return err; } static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) { if (vpa->pinned_addr) kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, vpa->dirty); } static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) { spin_lock(&vcpu->arch.vpa_update_lock); unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); spin_unlock(&vcpu->arch.vpa_update_lock); kvm_vcpu_uninit(vcpu); kmem_cache_free(kvm_vcpu_cache, vcpu); } static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) { /* Indicate we want to get back into the guest */ return 1; } static void kvmppc_set_timer(struct kvm_vcpu *vcpu) { unsigned long dec_nsec, now; now = get_tb(); if (now > vcpu->arch.dec_expires) { /* decrementer has already gone negative */ kvmppc_core_queue_dec(vcpu); kvmppc_core_prepare_to_enter(vcpu); return; } dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC / tb_ticks_per_sec; hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); vcpu->arch.timer_running = 1; } static void kvmppc_end_cede(struct kvm_vcpu *vcpu) { vcpu->arch.ceded = 0; if (vcpu->arch.timer_running) { hrtimer_try_to_cancel(&vcpu->arch.dec_timer); vcpu->arch.timer_running = 0; } } extern int __kvmppc_vcore_entry(void); static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, struct kvm_vcpu *vcpu) { u64 now; if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) return; spin_lock_irq(&vcpu->arch.tbacct_lock); now = mftb(); vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - vcpu->arch.stolen_logged; vcpu->arch.busy_preempt = now; vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; spin_unlock_irq(&vcpu->arch.tbacct_lock); --vc->n_runnable; WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); } static int kvmppc_grab_hwthread(int cpu) { struct paca_struct *tpaca; long timeout = 10000; tpaca = paca_ptrs[cpu]; /* Ensure the thread won't go into the kernel if it wakes */ tpaca->kvm_hstate.kvm_vcpu = NULL; tpaca->kvm_hstate.kvm_vcore = NULL; tpaca->kvm_hstate.napping = 0; smp_wmb(); tpaca->kvm_hstate.hwthread_req = 1; /* * If the thread is already executing in the kernel (e.g. handling * a stray interrupt), wait for it to get back to nap mode. * The smp_mb() is to ensure that our setting of hwthread_req * is visible before we look at hwthread_state, so if this * races with the code at system_reset_pSeries and the thread * misses our setting of hwthread_req, we are sure to see its * setting of hwthread_state, and vice versa. */ smp_mb(); while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { if (--timeout <= 0) { pr_err("KVM: couldn't grab cpu %d\n", cpu); return -EBUSY; } udelay(1); } return 0; } static void kvmppc_release_hwthread(int cpu) { struct paca_struct *tpaca; tpaca = paca_ptrs[cpu]; tpaca->kvm_hstate.hwthread_req = 0; tpaca->kvm_hstate.kvm_vcpu = NULL; tpaca->kvm_hstate.kvm_vcore = NULL; tpaca->kvm_hstate.kvm_split_mode = NULL; } static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) { int i; cpu = cpu_first_thread_sibling(cpu); cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); /* * Make sure setting of bit in need_tlb_flush precedes * testing of cpu_in_guest bits. The matching barrier on * the other side is the first smp_mb() in kvmppc_run_core(). */ smp_mb(); for (i = 0; i < threads_per_core; ++i) if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest)) smp_call_function_single(cpu + i, do_nothing, NULL, 1); } static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) { struct kvm *kvm = vcpu->kvm; /* * With radix, the guest can do TLB invalidations itself, * and it could choose to use the local form (tlbiel) if * it is invalidating a translation that has only ever been * used on one vcpu. However, that doesn't mean it has * only ever been used on one physical cpu, since vcpus * can move around between pcpus. To cope with this, when * a vcpu moves from one pcpu to another, we need to tell * any vcpus running on the same core as this vcpu previously * ran to flush the TLB. The TLB is shared between threads, * so we use a single bit in .need_tlb_flush for all 4 threads. */ if (vcpu->arch.prev_cpu != pcpu) { if (vcpu->arch.prev_cpu >= 0 && cpu_first_thread_sibling(vcpu->arch.prev_cpu) != cpu_first_thread_sibling(pcpu)) radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu); vcpu->arch.prev_cpu = pcpu; } } static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) { int cpu; struct paca_struct *tpaca; struct kvm *kvm = vc->kvm; cpu = vc->pcpu; if (vcpu) { if (vcpu->arch.timer_running) { hrtimer_try_to_cancel(&vcpu->arch.dec_timer); vcpu->arch.timer_running = 0; } cpu += vcpu->arch.ptid; vcpu->cpu = vc->pcpu; vcpu->arch.thread_cpu = cpu; cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); } tpaca = paca_ptrs[cpu]; tpaca->kvm_hstate.kvm_vcpu = vcpu; tpaca->kvm_hstate.ptid = cpu - vc->pcpu; tpaca->kvm_hstate.fake_suspend = 0; /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ smp_wmb(); tpaca->kvm_hstate.kvm_vcore = vc; if (cpu != smp_processor_id()) kvmppc_ipi_thread(cpu); } static void kvmppc_wait_for_nap(int n_threads) { int cpu = smp_processor_id(); int i, loops; if (n_threads <= 1) return; for (loops = 0; loops < 1000000; ++loops) { /* * Check if all threads are finished. * We set the vcore pointer when starting a thread * and the thread clears it when finished, so we look * for any threads that still have a non-NULL vcore ptr. */ for (i = 1; i < n_threads; ++i) if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) break; if (i == n_threads) { HMT_medium(); return; } HMT_low(); } HMT_medium(); for (i = 1; i < n_threads; ++i) if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); } /* * Check that we are on thread 0 and that any other threads in * this core are off-line. Then grab the threads so they can't * enter the kernel. */ static int on_primary_thread(void) { int cpu = smp_processor_id(); int thr; /* Are we on a primary subcore? */ if (cpu_thread_in_subcore(cpu)) return 0; thr = 0; while (++thr < threads_per_subcore) if (cpu_online(cpu + thr)) return 0; /* Grab all hw threads so they can't go into the kernel */ for (thr = 1; thr < threads_per_subcore; ++thr) { if (kvmppc_grab_hwthread(cpu + thr)) { /* Couldn't grab one; let the others go */ do { kvmppc_release_hwthread(cpu + thr); } while (--thr > 0); return 0; } } return 1; } /* * A list of virtual cores for each physical CPU. * These are vcores that could run but their runner VCPU tasks are * (or may be) preempted. */ struct preempted_vcore_list { struct list_head list; spinlock_t lock; }; static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); static void init_vcore_lists(void) { int cpu; for_each_possible_cpu(cpu) { struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); spin_lock_init(&lp->lock); INIT_LIST_HEAD(&lp->list); } } static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) { struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); vc->vcore_state = VCORE_PREEMPT; vc->pcpu = smp_processor_id(); if (vc->num_threads < threads_per_vcore(vc->kvm)) { spin_lock(&lp->lock); list_add_tail(&vc->preempt_list, &lp->list); spin_unlock(&lp->lock); } /* Start accumulating stolen time */ kvmppc_core_start_stolen(vc); } static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) { struct preempted_vcore_list *lp; kvmppc_core_end_stolen(vc); if (!list_empty(&vc->preempt_list)) { lp = &per_cpu(preempted_vcores, vc->pcpu); spin_lock(&lp->lock); list_del_init(&vc->preempt_list); spin_unlock(&lp->lock); } vc->vcore_state = VCORE_INACTIVE; } /* * This stores information about the virtual cores currently * assigned to a physical core. */ struct core_info { int n_subcores; int max_subcore_threads; int total_threads; int subcore_threads[MAX_SUBCORES]; struct kvmppc_vcore *vc[MAX_SUBCORES]; }; /* * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 * respectively in 2-way micro-threading (split-core) mode on POWER8. */ static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) { memset(cip, 0, sizeof(*cip)); cip->n_subcores = 1; cip->max_subcore_threads = vc->num_threads; cip->total_threads = vc->num_threads; cip->subcore_threads[0] = vc->num_threads; cip->vc[0] = vc; } static bool subcore_config_ok(int n_subcores, int n_threads) { /* * POWER9 "SMT4" cores are permanently in what is effectively a 4-way * split-core mode, with one thread per subcore. */ if (cpu_has_feature(CPU_FTR_ARCH_300)) return n_subcores <= 4 && n_threads == 1; /* On POWER8, can only dynamically split if unsplit to begin with */ if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) return false; if (n_subcores > MAX_SUBCORES) return false; if (n_subcores > 1) { if (!(dynamic_mt_modes & 2)) n_subcores = 4; if (n_subcores > 2 && !(dynamic_mt_modes & 4)) return false; } return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; } static void init_vcore_to_run(struct kvmppc_vcore *vc) { vc->entry_exit_map = 0; vc->in_guest = 0; vc->napping_threads = 0; vc->conferring_threads = 0; } static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) { int n_threads = vc->num_threads; int sub; if (!cpu_has_feature(CPU_FTR_ARCH_207S)) return false; /* Some POWER9 chips require all threads to be in the same MMU mode */ if (no_mixing_hpt_and_radix && kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm)) return false; if (n_threads < cip->max_subcore_threads) n_threads = cip->max_subcore_threads; if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) return false; cip->max_subcore_threads = n_threads; sub = cip->n_subcores; ++cip->n_subcores; cip->total_threads += vc->num_threads; cip->subcore_threads[sub] = vc->num_threads; cip->vc[sub] = vc; init_vcore_to_run(vc); list_del_init(&vc->preempt_list); return true; } /* * Work out whether it is possible to piggyback the execution of * vcore *pvc onto the execution of the other vcores described in *cip. */ static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, int target_threads) { if (cip->total_threads + pvc->num_threads > target_threads) return false; return can_dynamic_split(pvc, cip); } static void prepare_threads(struct kvmppc_vcore *vc) { int i; struct kvm_vcpu *vcpu; for_each_runnable_thread(i, vcpu, vc) { if (signal_pending(vcpu->arch.run_task)) vcpu->arch.ret = -EINTR; else if (vcpu->arch.vpa.update_pending || vcpu->arch.slb_shadow.update_pending || vcpu->arch.dtl.update_pending) vcpu->arch.ret = RESUME_GUEST; else continue; kvmppc_remove_runnable(vc, vcpu); wake_up(&vcpu->arch.cpu_run); } } static void collect_piggybacks(struct core_info *cip, int target_threads) { struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); struct kvmppc_vcore *pvc, *vcnext; spin_lock(&lp->lock); list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { if (!spin_trylock(&pvc->lock)) continue; prepare_threads(pvc); if (!pvc->n_runnable) { list_del_init(&pvc->preempt_list); if (pvc->runner == NULL) { pvc->vcore_state = VCORE_INACTIVE; kvmppc_core_end_stolen(pvc); } spin_unlock(&pvc->lock); continue; } if (!can_piggyback(pvc, cip, target_threads)) { spin_unlock(&pvc->lock); continue; } kvmppc_core_end_stolen(pvc); pvc->vcore_state = VCORE_PIGGYBACK; if (cip->total_threads >= target_threads) break; } spin_unlock(&lp->lock); } static bool recheck_signals(struct core_info *cip) { int sub, i; struct kvm_vcpu *vcpu; for (sub = 0; sub < cip->n_subcores; ++sub) for_each_runnable_thread(i, vcpu, cip->vc[sub]) if (signal_pending(vcpu->arch.run_task)) return true; return false; } static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) { int still_running = 0, i; u64 now; long ret; struct kvm_vcpu *vcpu; spin_lock(&vc->lock); now = get_tb(); for_each_runnable_thread(i, vcpu, vc) { /* cancel pending dec exception if dec is positive */ if (now < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu)) kvmppc_core_dequeue_dec(vcpu); trace_kvm_guest_exit(vcpu); ret = RESUME_GUEST; if (vcpu->arch.trap) ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, vcpu->arch.run_task); vcpu->arch.ret = ret; vcpu->arch.trap = 0; if (is_kvmppc_resume_guest(vcpu->arch.ret)) { if (vcpu->arch.pending_exceptions) kvmppc_core_prepare_to_enter(vcpu); if (vcpu->arch.ceded) kvmppc_set_timer(vcpu); else ++still_running; } else { kvmppc_remove_runnable(vc, vcpu); wake_up(&vcpu->arch.cpu_run); } } if (!is_master) { if (still_running > 0) { kvmppc_vcore_preempt(vc); } else if (vc->runner) { vc->vcore_state = VCORE_PREEMPT; kvmppc_core_start_stolen(vc); } else { vc->vcore_state = VCORE_INACTIVE; } if (vc->n_runnable > 0 && vc->runner == NULL) { /* make sure there's a candidate runner awake */ i = -1; vcpu = next_runnable_thread(vc, &i); wake_up(&vcpu->arch.cpu_run); } } spin_unlock(&vc->lock); } /* * Clear core from the list of active host cores as we are about to * enter the guest. Only do this if it is the primary thread of the * core (not if a subcore) that is entering the guest. */ static inline int kvmppc_clear_host_core(unsigned int cpu) { int core; if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) return 0; /* * Memory barrier can be omitted here as we will do a smp_wmb() * later in kvmppc_start_thread and we need ensure that state is * visible to other CPUs only after we enter guest. */ core = cpu >> threads_shift; kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; return 0; } /* * Advertise this core as an active host core since we exited the guest * Only need to do this if it is the primary thread of the core that is * exiting. */ static inline int kvmppc_set_host_core(unsigned int cpu) { int core; if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) return 0; /* * Memory barrier can be omitted here because we do a spin_unlock * immediately after this which provides the memory barrier. */ core = cpu >> threads_shift; kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; return 0; } static void set_irq_happened(int trap) { switch (trap) { case BOOK3S_INTERRUPT_EXTERNAL: local_paca->irq_happened |= PACA_IRQ_EE; break; case BOOK3S_INTERRUPT_H_DOORBELL: local_paca->irq_happened |= PACA_IRQ_DBELL; break; case BOOK3S_INTERRUPT_HMI: local_paca->irq_happened |= PACA_IRQ_HMI; break; case BOOK3S_INTERRUPT_SYSTEM_RESET: replay_system_reset(); break; } } /* * Run a set of guest threads on a physical core. * Called with vc->lock held. */ static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) { struct kvm_vcpu *vcpu; int i; int srcu_idx; struct core_info core_info; struct kvmppc_vcore *pvc; struct kvm_split_mode split_info, *sip; int split, subcore_size, active; int sub; bool thr0_done; unsigned long cmd_bit, stat_bit; int pcpu, thr; int target_threads; int controlled_threads; int trap; bool is_power8; bool hpt_on_radix; /* * Remove from the list any threads that have a signal pending * or need a VPA update done */ prepare_threads(vc); /* if the runner is no longer runnable, let the caller pick a new one */ if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) return; /* * Initialize *vc. */ init_vcore_to_run(vc); vc->preempt_tb = TB_NIL; /* * Number of threads that we will be controlling: the same as * the number of threads per subcore, except on POWER9, * where it's 1 because the threads are (mostly) independent. */ controlled_threads = threads_per_vcore(vc->kvm); /* * Make sure we are running on primary threads, and that secondary * threads are offline. Also check if the number of threads in this * guest are greater than the current system threads per guest. * On POWER9, we need to be not in independent-threads mode if * this is a HPT guest on a radix host machine where the * CPU threads may not be in different MMU modes. */ hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() && !kvm_is_radix(vc->kvm); if (((controlled_threads > 1) && ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) || (hpt_on_radix && vc->kvm->arch.threads_indep)) { for_each_runnable_thread(i, vcpu, vc) { vcpu->arch.ret = -EBUSY; kvmppc_remove_runnable(vc, vcpu); wake_up(&vcpu->arch.cpu_run); } goto out; } /* * See if we could run any other vcores on the physical core * along with this one. */ init_core_info(&core_info, vc); pcpu = smp_processor_id(); target_threads = controlled_threads; if (target_smt_mode && target_smt_mode < target_threads) target_threads = target_smt_mode; if (vc->num_threads < target_threads) collect_piggybacks(&core_info, target_threads); /* * On radix, arrange for TLB flushing if necessary. * This has to be done before disabling interrupts since * it uses smp_call_function(). */ pcpu = smp_processor_id(); if (kvm_is_radix(vc->kvm)) { for (sub = 0; sub < core_info.n_subcores; ++sub) for_each_runnable_thread(i, vcpu, core_info.vc[sub]) kvmppc_prepare_radix_vcpu(vcpu, pcpu); } /* * Hard-disable interrupts, and check resched flag and signals. * If we need to reschedule or deliver a signal, clean up * and return without going into the guest(s). * If the mmu_ready flag has been cleared, don't go into the * guest because that means a HPT resize operation is in progress. */ local_irq_disable(); hard_irq_disable(); if (lazy_irq_pending() || need_resched() || recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) { local_irq_enable(); vc->vcore_state = VCORE_INACTIVE; /* Unlock all except the primary vcore */ for (sub = 1; sub < core_info.n_subcores; ++sub) { pvc = core_info.vc[sub]; /* Put back on to the preempted vcores list */ kvmppc_vcore_preempt(pvc); spin_unlock(&pvc->lock); } for (i = 0; i < controlled_threads; ++i) kvmppc_release_hwthread(pcpu + i); return; } kvmppc_clear_host_core(pcpu); /* Decide on micro-threading (split-core) mode */ subcore_size = threads_per_subcore; cmd_bit = stat_bit = 0; split = core_info.n_subcores; sip = NULL; is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) && !cpu_has_feature(CPU_FTR_ARCH_300); if (split > 1 || hpt_on_radix) { sip = &split_info; memset(&split_info, 0, sizeof(split_info)); for (sub = 0; sub < core_info.n_subcores; ++sub) split_info.vc[sub] = core_info.vc[sub]; if (is_power8) { if (split == 2 && (dynamic_mt_modes & 2)) { cmd_bit = HID0_POWER8_1TO2LPAR; stat_bit = HID0_POWER8_2LPARMODE; } else { split = 4; cmd_bit = HID0_POWER8_1TO4LPAR; stat_bit = HID0_POWER8_4LPARMODE; } subcore_size = MAX_SMT_THREADS / split; split_info.rpr = mfspr(SPRN_RPR); split_info.pmmar = mfspr(SPRN_PMMAR); split_info.ldbar = mfspr(SPRN_LDBAR); split_info.subcore_size = subcore_size; } else { split_info.subcore_size = 1; if (hpt_on_radix) { /* Use the split_info for LPCR/LPIDR changes */ split_info.lpcr_req = vc->lpcr; split_info.lpidr_req = vc->kvm->arch.lpid; split_info.host_lpcr = vc->kvm->arch.host_lpcr; split_info.do_set = 1; } } /* order writes to split_info before kvm_split_mode pointer */ smp_wmb(); } for (thr = 0; thr < controlled_threads; ++thr) { struct paca_struct *paca = paca_ptrs[pcpu + thr]; paca->kvm_hstate.tid = thr; paca->kvm_hstate.napping = 0; paca->kvm_hstate.kvm_split_mode = sip; } /* Initiate micro-threading (split-core) on POWER8 if required */ if (cmd_bit) { unsigned long hid0 = mfspr(SPRN_HID0); hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; mb(); mtspr(SPRN_HID0, hid0); isync(); for (;;) { hid0 = mfspr(SPRN_HID0); if (hid0 & stat_bit) break; cpu_relax(); } } /* Start all the threads */ active = 0; for (sub = 0; sub < core_info.n_subcores; ++sub) { thr = is_power8 ? subcore_thread_map[sub] : sub; thr0_done = false; active |= 1 << thr; pvc = core_info.vc[sub]; pvc->pcpu = pcpu + thr; for_each_runnable_thread(i, vcpu, pvc) { kvmppc_start_thread(vcpu, pvc); kvmppc_create_dtl_entry(vcpu, pvc); trace_kvm_guest_enter(vcpu); if (!vcpu->arch.ptid) thr0_done = true; active |= 1 << (thr + vcpu->arch.ptid); } /* * We need to start the first thread of each subcore * even if it doesn't have a vcpu. */ if (!thr0_done) kvmppc_start_thread(NULL, pvc); } /* * Ensure that split_info.do_nap is set after setting * the vcore pointer in the PACA of the secondaries. */ smp_mb(); /* * When doing micro-threading, poke the inactive threads as well. * This gets them to the nap instruction after kvm_do_nap, * which reduces the time taken to unsplit later. * For POWER9 HPT guest on radix host, we need all the secondary * threads woken up so they can do the LPCR/LPIDR change. */ if (cmd_bit || hpt_on_radix) { split_info.do_nap = 1; /* ask secondaries to nap when done */ for (thr = 1; thr < threads_per_subcore; ++thr) if (!(active & (1 << thr))) kvmppc_ipi_thread(pcpu + thr); } vc->vcore_state = VCORE_RUNNING; preempt_disable(); trace_kvmppc_run_core(vc, 0); for (sub = 0; sub < core_info.n_subcores; ++sub) spin_unlock(&core_info.vc[sub]->lock); /* * Interrupts will be enabled once we get into the guest, * so tell lockdep that we're about to enable interrupts. */ trace_hardirqs_on(); guest_enter_irqoff(); srcu_idx = srcu_read_lock(&vc->kvm->srcu); trap = __kvmppc_vcore_entry(); srcu_read_unlock(&vc->kvm->srcu, srcu_idx); trace_hardirqs_off(); set_irq_happened(trap); spin_lock(&vc->lock); /* prevent other vcpu threads from doing kvmppc_start_thread() now */ vc->vcore_state = VCORE_EXITING; /* wait for secondary threads to finish writing their state to memory */ kvmppc_wait_for_nap(controlled_threads); /* Return to whole-core mode if we split the core earlier */ if (cmd_bit) { unsigned long hid0 = mfspr(SPRN_HID0); unsigned long loops = 0; hid0 &= ~HID0_POWER8_DYNLPARDIS; stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; mb(); mtspr(SPRN_HID0, hid0); isync(); for (;;) { hid0 = mfspr(SPRN_HID0); if (!(hid0 & stat_bit)) break; cpu_relax(); ++loops; } } else if (hpt_on_radix) { /* Wait for all threads to have seen final sync */ for (thr = 1; thr < controlled_threads; ++thr) { struct paca_struct *paca = paca_ptrs[pcpu + thr]; while (paca->kvm_hstate.kvm_split_mode) { HMT_low(); barrier(); } HMT_medium(); } } split_info.do_nap = 0; kvmppc_set_host_core(pcpu); local_irq_enable(); guest_exit(); /* Let secondaries go back to the offline loop */ for (i = 0; i < controlled_threads; ++i) { kvmppc_release_hwthread(pcpu + i); if (sip && sip->napped[i]) kvmppc_ipi_thread(pcpu + i); cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); } spin_unlock(&vc->lock); /* make sure updates to secondary vcpu structs are visible now */ smp_mb(); preempt_enable(); for (sub = 0; sub < core_info.n_subcores; ++sub) { pvc = core_info.vc[sub]; post_guest_process(pvc, pvc == vc); } spin_lock(&vc->lock); out: vc->vcore_state = VCORE_INACTIVE; trace_kvmppc_run_core(vc, 1); } /* * Wait for some other vcpu thread to execute us, and * wake us up when we need to handle something in the host. */ static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, struct kvm_vcpu *vcpu, int wait_state) { DEFINE_WAIT(wait); prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { spin_unlock(&vc->lock); schedule(); spin_lock(&vc->lock); } finish_wait(&vcpu->arch.cpu_run, &wait); } static void grow_halt_poll_ns(struct kvmppc_vcore *vc) { /* 10us base */ if (vc->halt_poll_ns == 0 && halt_poll_ns_grow) vc->halt_poll_ns = 10000; else vc->halt_poll_ns *= halt_poll_ns_grow; } static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) { if (halt_poll_ns_shrink == 0) vc->halt_poll_ns = 0; else vc->halt_poll_ns /= halt_poll_ns_shrink; } #ifdef CONFIG_KVM_XICS static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) { if (!xive_enabled()) return false; return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < vcpu->arch.xive_saved_state.cppr; } #else static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) { return false; } #endif /* CONFIG_KVM_XICS */ static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) { if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) return true; return false; } /* * Check to see if any of the runnable vcpus on the vcore have pending * exceptions or are no longer ceded */ static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) { struct kvm_vcpu *vcpu; int i; for_each_runnable_thread(i, vcpu, vc) { if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) return 1; } return 0; } /* * All the vcpus in this vcore are idle, so wait for a decrementer * or external interrupt to one of the vcpus. vc->lock is held. */ static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) { ktime_t cur, start_poll, start_wait; int do_sleep = 1; u64 block_ns; DECLARE_SWAITQUEUE(wait); /* Poll for pending exceptions and ceded state */ cur = start_poll = ktime_get(); if (vc->halt_poll_ns) { ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); ++vc->runner->stat.halt_attempted_poll; vc->vcore_state = VCORE_POLLING; spin_unlock(&vc->lock); do { if (kvmppc_vcore_check_block(vc)) { do_sleep = 0; break; } cur = ktime_get(); } while (single_task_running() && ktime_before(cur, stop)); spin_lock(&vc->lock); vc->vcore_state = VCORE_INACTIVE; if (!do_sleep) { ++vc->runner->stat.halt_successful_poll; goto out; } } prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE); if (kvmppc_vcore_check_block(vc)) { finish_swait(&vc->wq, &wait); do_sleep = 0; /* If we polled, count this as a successful poll */ if (vc->halt_poll_ns) ++vc->runner->stat.halt_successful_poll; goto out; } start_wait = ktime_get(); vc->vcore_state = VCORE_SLEEPING; trace_kvmppc_vcore_blocked(vc, 0); spin_unlock(&vc->lock); schedule(); finish_swait(&vc->wq, &wait); spin_lock(&vc->lock); vc->vcore_state = VCORE_INACTIVE; trace_kvmppc_vcore_blocked(vc, 1); ++vc->runner->stat.halt_successful_wait; cur = ktime_get(); out: block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); /* Attribute wait time */ if (do_sleep) { vc->runner->stat.halt_wait_ns += ktime_to_ns(cur) - ktime_to_ns(start_wait); /* Attribute failed poll time */ if (vc->halt_poll_ns) vc->runner->stat.halt_poll_fail_ns += ktime_to_ns(start_wait) - ktime_to_ns(start_poll); } else { /* Attribute successful poll time */ if (vc->halt_poll_ns) vc->runner->stat.halt_poll_success_ns += ktime_to_ns(cur) - ktime_to_ns(start_poll); } /* Adjust poll time */ if (halt_poll_ns) { if (block_ns <= vc->halt_poll_ns) ; /* We slept and blocked for longer than the max halt time */ else if (vc->halt_poll_ns && block_ns > halt_poll_ns) shrink_halt_poll_ns(vc); /* We slept and our poll time is too small */ else if (vc->halt_poll_ns < halt_poll_ns && block_ns < halt_poll_ns) grow_halt_poll_ns(vc); if (vc->halt_poll_ns > halt_poll_ns) vc->halt_poll_ns = halt_poll_ns; } else vc->halt_poll_ns = 0; trace_kvmppc_vcore_wakeup(do_sleep, block_ns); } static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) { int r = 0; struct kvm *kvm = vcpu->kvm; mutex_lock(&kvm->lock); if (!kvm->arch.mmu_ready) { if (!kvm_is_radix(kvm)) r = kvmppc_hv_setup_htab_rma(vcpu); if (!r) { if (cpu_has_feature(CPU_FTR_ARCH_300)) kvmppc_setup_partition_table(kvm); kvm->arch.mmu_ready = 1; } } mutex_unlock(&kvm->lock); return r; } static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) { int n_ceded, i, r; struct kvmppc_vcore *vc; struct kvm_vcpu *v; trace_kvmppc_run_vcpu_enter(vcpu); kvm_run->exit_reason = 0; vcpu->arch.ret = RESUME_GUEST; vcpu->arch.trap = 0; kvmppc_update_vpas(vcpu); /* * Synchronize with other threads in this virtual core */ vc = vcpu->arch.vcore; spin_lock(&vc->lock); vcpu->arch.ceded = 0; vcpu->arch.run_task = current; vcpu->arch.kvm_run = kvm_run; vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; vcpu->arch.busy_preempt = TB_NIL; WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); ++vc->n_runnable; /* * This happens the first time this is called for a vcpu. * If the vcore is already running, we may be able to start * this thread straight away and have it join in. */ if (!signal_pending(current)) { if ((vc->vcore_state == VCORE_PIGGYBACK || vc->vcore_state == VCORE_RUNNING) && !VCORE_IS_EXITING(vc)) { kvmppc_create_dtl_entry(vcpu, vc); kvmppc_start_thread(vcpu, vc); trace_kvm_guest_enter(vcpu); } else if (vc->vcore_state == VCORE_SLEEPING) { swake_up(&vc->wq); } } while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && !signal_pending(current)) { /* See if the MMU is ready to go */ if (!vcpu->kvm->arch.mmu_ready) { spin_unlock(&vc->lock); r = kvmhv_setup_mmu(vcpu); spin_lock(&vc->lock); if (r) { kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; kvm_run->fail_entry. hardware_entry_failure_reason = 0; vcpu->arch.ret = r; break; } } if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) kvmppc_vcore_end_preempt(vc); if (vc->vcore_state != VCORE_INACTIVE) { kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); continue; } for_each_runnable_thread(i, v, vc) { kvmppc_core_prepare_to_enter(v); if (signal_pending(v->arch.run_task)) { kvmppc_remove_runnable(vc, v); v->stat.signal_exits++; v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; v->arch.ret = -EINTR; wake_up(&v->arch.cpu_run); } } if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) break; n_ceded = 0; for_each_runnable_thread(i, v, vc) { if (!kvmppc_vcpu_woken(v)) n_ceded += v->arch.ceded; else v->arch.ceded = 0; } vc->runner = vcpu; if (n_ceded == vc->n_runnable) { kvmppc_vcore_blocked(vc); } else if (need_resched()) { kvmppc_vcore_preempt(vc); /* Let something else run */ cond_resched_lock(&vc->lock); if (vc->vcore_state == VCORE_PREEMPT) kvmppc_vcore_end_preempt(vc); } else { kvmppc_run_core(vc); } vc->runner = NULL; } while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && (vc->vcore_state == VCORE_RUNNING || vc->vcore_state == VCORE_EXITING || vc->vcore_state == VCORE_PIGGYBACK)) kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) kvmppc_vcore_end_preempt(vc); if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { kvmppc_remove_runnable(vc, vcpu); vcpu->stat.signal_exits++; kvm_run->exit_reason = KVM_EXIT_INTR; vcpu->arch.ret = -EINTR; } if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { /* Wake up some vcpu to run the core */ i = -1; v = next_runnable_thread(vc, &i); wake_up(&v->arch.cpu_run); } trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); spin_unlock(&vc->lock); return vcpu->arch.ret; } static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) { int r; int srcu_idx; unsigned long ebb_regs[3] = {}; /* shut up GCC */ unsigned long user_tar = 0; unsigned int user_vrsave; struct kvm *kvm; if (!vcpu->arch.sane) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; return -EINVAL; } /* * Don't allow entry with a suspended transaction, because * the guest entry/exit code will lose it. * If the guest has TM enabled, save away their TM-related SPRs * (they will get restored by the TM unavailable interrupt). */ #ifdef CONFIG_PPC_TRANSACTIONAL_MEM if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && (current->thread.regs->msr & MSR_TM)) { if (MSR_TM_ACTIVE(current->thread.regs->msr)) { run->exit_reason = KVM_EXIT_FAIL_ENTRY; run->fail_entry.hardware_entry_failure_reason = 0; return -EINVAL; } /* Enable TM so we can read the TM SPRs */ mtmsr(mfmsr() | MSR_TM); current->thread.tm_tfhar = mfspr(SPRN_TFHAR); current->thread.tm_tfiar = mfspr(SPRN_TFIAR); current->thread.tm_texasr = mfspr(SPRN_TEXASR); current->thread.regs->msr &= ~MSR_TM; } #endif kvmppc_core_prepare_to_enter(vcpu); /* No need to go into the guest when all we'll do is come back out */ if (signal_pending(current)) { run->exit_reason = KVM_EXIT_INTR; return -EINTR; } kvm = vcpu->kvm; atomic_inc(&kvm->arch.vcpus_running); /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ smp_mb(); flush_all_to_thread(current); /* Save userspace EBB and other register values */ if (cpu_has_feature(CPU_FTR_ARCH_207S)) { ebb_regs[0] = mfspr(SPRN_EBBHR); ebb_regs[1] = mfspr(SPRN_EBBRR); ebb_regs[2] = mfspr(SPRN_BESCR); user_tar = mfspr(SPRN_TAR); } user_vrsave = mfspr(SPRN_VRSAVE); vcpu->arch.wqp = &vcpu->arch.vcore->wq; vcpu->arch.pgdir = current->mm->pgd; vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; do { r = kvmppc_run_vcpu(run, vcpu); if (run->exit_reason == KVM_EXIT_PAPR_HCALL && !(vcpu->arch.shregs.msr & MSR_PR)) { trace_kvm_hcall_enter(vcpu); r = kvmppc_pseries_do_hcall(vcpu); trace_kvm_hcall_exit(vcpu, r); kvmppc_core_prepare_to_enter(vcpu); } else if (r == RESUME_PAGE_FAULT) { srcu_idx = srcu_read_lock(&kvm->srcu); r = kvmppc_book3s_hv_page_fault(run, vcpu, vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); srcu_read_unlock(&kvm->srcu, srcu_idx); } else if (r == RESUME_PASSTHROUGH) { if (WARN_ON(xive_enabled())) r = H_SUCCESS; else r = kvmppc_xics_rm_complete(vcpu, 0); } } while (is_kvmppc_resume_guest(r)); /* Restore userspace EBB and other register values */ if (cpu_has_feature(CPU_FTR_ARCH_207S)) { mtspr(SPRN_EBBHR, ebb_regs[0]); mtspr(SPRN_EBBRR, ebb_regs[1]); mtspr(SPRN_BESCR, ebb_regs[2]); mtspr(SPRN_TAR, user_tar); mtspr(SPRN_FSCR, current->thread.fscr); } mtspr(SPRN_VRSAVE, user_vrsave); vcpu->arch.state = KVMPPC_VCPU_NOTREADY; atomic_dec(&kvm->arch.vcpus_running); return r; } static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, int shift, int sllp) { (*sps)->page_shift = shift; (*sps)->slb_enc = sllp; (*sps)->enc[0].page_shift = shift; (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); /* * Add 16MB MPSS support (may get filtered out by userspace) */ if (shift != 24) { int penc = kvmppc_pgsize_lp_encoding(shift, 24); if (penc != -1) { (*sps)->enc[1].page_shift = 24; (*sps)->enc[1].pte_enc = penc; } } (*sps)++; } static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, struct kvm_ppc_smmu_info *info) { struct kvm_ppc_one_seg_page_size *sps; /* * POWER7, POWER8 and POWER9 all support 32 storage keys for data. * POWER7 doesn't support keys for instruction accesses, * POWER8 and POWER9 do. */ info->data_keys = 32; info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; info->slb_size = 32; /* We only support these sizes for now, and no muti-size segments */ sps = &info->sps[0]; kvmppc_add_seg_page_size(&sps, 12, 0); kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); return 0; } /* * Get (and clear) the dirty memory log for a memory slot. */ static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, struct kvm_dirty_log *log) { struct kvm_memslots *slots; struct kvm_memory_slot *memslot; int i, r; unsigned long n; unsigned long *buf, *p; struct kvm_vcpu *vcpu; mutex_lock(&kvm->slots_lock); r = -EINVAL; if (log->slot >= KVM_USER_MEM_SLOTS) goto out; slots = kvm_memslots(kvm); memslot = id_to_memslot(slots, log->slot); r = -ENOENT; if (!memslot->dirty_bitmap) goto out; /* * Use second half of bitmap area because both HPT and radix * accumulate bits in the first half. */ n = kvm_dirty_bitmap_bytes(memslot); buf = memslot->dirty_bitmap + n / sizeof(long); memset(buf, 0, n); if (kvm_is_radix(kvm)) r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); else r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); if (r) goto out; /* * We accumulate dirty bits in the first half of the * memslot's dirty_bitmap area, for when pages are paged * out or modified by the host directly. Pick up these * bits and add them to the map. */ p = memslot->dirty_bitmap; for (i = 0; i < n / sizeof(long); ++i) buf[i] |= xchg(&p[i], 0); /* Harvest dirty bits from VPA and DTL updates */ /* Note: we never modify the SLB shadow buffer areas */ kvm_for_each_vcpu(i, vcpu, kvm) { spin_lock(&vcpu->arch.vpa_update_lock); kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); spin_unlock(&vcpu->arch.vpa_update_lock); } r = -EFAULT; if (copy_to_user(log->dirty_bitmap, buf, n)) goto out; r = 0; out: mutex_unlock(&kvm->slots_lock); return r; } static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, struct kvm_memory_slot *dont) { if (!dont || free->arch.rmap != dont->arch.rmap) { vfree(free->arch.rmap); free->arch.rmap = NULL; } } static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, unsigned long npages) { slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); if (!slot->arch.rmap) return -ENOMEM; return 0; } static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, struct kvm_memory_slot *memslot, const struct kvm_userspace_memory_region *mem) { return 0; } static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, const struct kvm_userspace_memory_region *mem, const struct kvm_memory_slot *old, const struct kvm_memory_slot *new) { unsigned long npages = mem->memory_size >> PAGE_SHIFT; /* * If we are making a new memslot, it might make * some address that was previously cached as emulated * MMIO be no longer emulated MMIO, so invalidate * all the caches of emulated MMIO translations. */ if (npages) atomic64_inc(&kvm->arch.mmio_update); } /* * Update LPCR values in kvm->arch and in vcores. * Caller must hold kvm->lock. */ void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) { long int i; u32 cores_done = 0; if ((kvm->arch.lpcr & mask) == lpcr) return; kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; for (i = 0; i < KVM_MAX_VCORES; ++i) { struct kvmppc_vcore *vc = kvm->arch.vcores[i]; if (!vc) continue; spin_lock(&vc->lock); vc->lpcr = (vc->lpcr & ~mask) | lpcr; spin_unlock(&vc->lock); if (++cores_done >= kvm->arch.online_vcores) break; } } static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) { return; } void kvmppc_setup_partition_table(struct kvm *kvm) { unsigned long dw0, dw1; if (!kvm_is_radix(kvm)) { /* PS field - page size for VRMA */ dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); /* HTABSIZE and HTABORG fields */ dw0 |= kvm->arch.sdr1; /* Second dword as set by userspace */ dw1 = kvm->arch.process_table; } else { dw0 = PATB_HR | radix__get_tree_size() | __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; dw1 = PATB_GR | kvm->arch.process_table; } mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1); } /* * Set up HPT (hashed page table) and RMA (real-mode area). * Must be called with kvm->lock held. */ static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) { int err = 0; struct kvm *kvm = vcpu->kvm; unsigned long hva; struct kvm_memory_slot *memslot; struct vm_area_struct *vma; unsigned long lpcr = 0, senc; unsigned long psize, porder; int srcu_idx; /* Allocate hashed page table (if not done already) and reset it */ if (!kvm->arch.hpt.virt) { int order = KVM_DEFAULT_HPT_ORDER; struct kvm_hpt_info info; err = kvmppc_allocate_hpt(&info, order); /* If we get here, it means userspace didn't specify a * size explicitly. So, try successively smaller * sizes if the default failed. */ while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) err = kvmppc_allocate_hpt(&info, order); if (err < 0) { pr_err("KVM: Couldn't alloc HPT\n"); goto out; } kvmppc_set_hpt(kvm, &info); } /* Look up the memslot for guest physical address 0 */ srcu_idx = srcu_read_lock(&kvm->srcu); memslot = gfn_to_memslot(kvm, 0); /* We must have some memory at 0 by now */ err = -EINVAL; if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) goto out_srcu; /* Look up the VMA for the start of this memory slot */ hva = memslot->userspace_addr; down_read(¤t->mm->mmap_sem); vma = find_vma(current->mm, hva); if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) goto up_out; psize = vma_kernel_pagesize(vma); up_read(¤t->mm->mmap_sem); /* We can handle 4k, 64k or 16M pages in the VRMA */ if (psize >= 0x1000000) psize = 0x1000000; else if (psize >= 0x10000) psize = 0x10000; else psize = 0x1000; porder = __ilog2(psize); senc = slb_pgsize_encoding(psize); kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | (VRMA_VSID << SLB_VSID_SHIFT_1T); /* Create HPTEs in the hash page table for the VRMA */ kvmppc_map_vrma(vcpu, memslot, porder); /* Update VRMASD field in the LPCR */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) { /* the -4 is to account for senc values starting at 0x10 */ lpcr = senc << (LPCR_VRMASD_SH - 4); kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); } /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ smp_wmb(); err = 0; out_srcu: srcu_read_unlock(&kvm->srcu, srcu_idx); out: return err; up_out: up_read(¤t->mm->mmap_sem); goto out_srcu; } /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */ int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) { kvmppc_free_radix(kvm); kvmppc_update_lpcr(kvm, LPCR_VPM1, LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); kvmppc_rmap_reset(kvm); kvm->arch.radix = 0; kvm->arch.process_table = 0; return 0; } /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */ int kvmppc_switch_mmu_to_radix(struct kvm *kvm) { int err; err = kvmppc_init_vm_radix(kvm); if (err) return err; kvmppc_free_hpt(&kvm->arch.hpt); kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); kvm->arch.radix = 1; return 0; } #ifdef CONFIG_KVM_XICS /* * Allocate a per-core structure for managing state about which cores are * running in the host versus the guest and for exchanging data between * real mode KVM and CPU running in the host. * This is only done for the first VM. * The allocated structure stays even if all VMs have stopped. * It is only freed when the kvm-hv module is unloaded. * It's OK for this routine to fail, we just don't support host * core operations like redirecting H_IPI wakeups. */ void kvmppc_alloc_host_rm_ops(void) { struct kvmppc_host_rm_ops *ops; unsigned long l_ops; int cpu, core; int size; /* Not the first time here ? */ if (kvmppc_host_rm_ops_hv != NULL) return; ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); if (!ops) return; size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); ops->rm_core = kzalloc(size, GFP_KERNEL); if (!ops->rm_core) { kfree(ops); return; } cpus_read_lock(); for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { if (!cpu_online(cpu)) continue; core = cpu >> threads_shift; ops->rm_core[core].rm_state.in_host = 1; } ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; /* * Make the contents of the kvmppc_host_rm_ops structure visible * to other CPUs before we assign it to the global variable. * Do an atomic assignment (no locks used here), but if someone * beats us to it, just free our copy and return. */ smp_wmb(); l_ops = (unsigned long) ops; if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { cpus_read_unlock(); kfree(ops->rm_core); kfree(ops); return; } cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, "ppc/kvm_book3s:prepare", kvmppc_set_host_core, kvmppc_clear_host_core); cpus_read_unlock(); } void kvmppc_free_host_rm_ops(void) { if (kvmppc_host_rm_ops_hv) { cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); kfree(kvmppc_host_rm_ops_hv->rm_core); kfree(kvmppc_host_rm_ops_hv); kvmppc_host_rm_ops_hv = NULL; } } #endif static int kvmppc_core_init_vm_hv(struct kvm *kvm) { unsigned long lpcr, lpid; char buf[32]; int ret; /* Allocate the guest's logical partition ID */ lpid = kvmppc_alloc_lpid(); if ((long)lpid < 0) return -ENOMEM; kvm->arch.lpid = lpid; kvmppc_alloc_host_rm_ops(); /* * Since we don't flush the TLB when tearing down a VM, * and this lpid might have previously been used, * make sure we flush on each core before running the new VM. * On POWER9, the tlbie in mmu_partition_table_set_entry() * does this flush for us. */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) cpumask_setall(&kvm->arch.need_tlb_flush); /* Start out with the default set of hcalls enabled */ memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, sizeof(kvm->arch.enabled_hcalls)); if (!cpu_has_feature(CPU_FTR_ARCH_300)) kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); /* Init LPCR for virtual RMA mode */ kvm->arch.host_lpid = mfspr(SPRN_LPID); kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); lpcr &= LPCR_PECE | LPCR_LPES; lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | LPCR_VPM0 | LPCR_VPM1; kvm->arch.vrma_slb_v = SLB_VSID_B_1T | (VRMA_VSID << SLB_VSID_SHIFT_1T); /* On POWER8 turn on online bit to enable PURR/SPURR */ if (cpu_has_feature(CPU_FTR_ARCH_207S)) lpcr |= LPCR_ONL; /* * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) * Set HVICE bit to enable hypervisor virtualization interrupts. * Set HEIC to prevent OS interrupts to go to hypervisor (should * be unnecessary but better safe than sorry in case we re-enable * EE in HV mode with this LPCR still set) */ if (cpu_has_feature(CPU_FTR_ARCH_300)) { lpcr &= ~LPCR_VPM0; lpcr |= LPCR_HVICE | LPCR_HEIC; /* * If xive is enabled, we route 0x500 interrupts directly * to the guest. */ if (xive_enabled()) lpcr |= LPCR_LPES; } /* * If the host uses radix, the guest starts out as radix. */ if (radix_enabled()) { kvm->arch.radix = 1; kvm->arch.mmu_ready = 1; lpcr &= ~LPCR_VPM1; lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; ret = kvmppc_init_vm_radix(kvm); if (ret) { kvmppc_free_lpid(kvm->arch.lpid); return ret; } kvmppc_setup_partition_table(kvm); } kvm->arch.lpcr = lpcr; /* Initialization for future HPT resizes */ kvm->arch.resize_hpt = NULL; /* * Work out how many sets the TLB has, for the use of * the TLB invalidation loop in book3s_hv_rmhandlers.S. */ if (radix_enabled()) kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ else if (cpu_has_feature(CPU_FTR_ARCH_300)) kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ else if (cpu_has_feature(CPU_FTR_ARCH_207S)) kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ else kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ /* * Track that we now have a HV mode VM active. This blocks secondary * CPU threads from coming online. * On POWER9, we only need to do this if the "indep_threads_mode" * module parameter has been set to N. */ if (cpu_has_feature(CPU_FTR_ARCH_300)) kvm->arch.threads_indep = indep_threads_mode; if (!kvm->arch.threads_indep) kvm_hv_vm_activated(); /* * Initialize smt_mode depending on processor. * POWER8 and earlier have to use "strict" threading, where * all vCPUs in a vcore have to run on the same (sub)core, * whereas on POWER9 the threads can each run a different * guest. */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) kvm->arch.smt_mode = threads_per_subcore; else kvm->arch.smt_mode = 1; kvm->arch.emul_smt_mode = 1; /* * Create a debugfs directory for the VM */ snprintf(buf, sizeof(buf), "vm%d", current->pid); kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); kvmppc_mmu_debugfs_init(kvm); return 0; } static void kvmppc_free_vcores(struct kvm *kvm) { long int i; for (i = 0; i < KVM_MAX_VCORES; ++i) kfree(kvm->arch.vcores[i]); kvm->arch.online_vcores = 0; } static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) { debugfs_remove_recursive(kvm->arch.debugfs_dir); if (!kvm->arch.threads_indep) kvm_hv_vm_deactivated(); kvmppc_free_vcores(kvm); kvmppc_free_lpid(kvm->arch.lpid); if (kvm_is_radix(kvm)) kvmppc_free_radix(kvm); else kvmppc_free_hpt(&kvm->arch.hpt); kvmppc_free_pimap(kvm); } /* We don't need to emulate any privileged instructions or dcbz */ static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, unsigned int inst, int *advance) { return EMULATE_FAIL; } static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, ulong spr_val) { return EMULATE_FAIL; } static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val) { return EMULATE_FAIL; } static int kvmppc_core_check_processor_compat_hv(void) { if (!cpu_has_feature(CPU_FTR_HVMODE) || !cpu_has_feature(CPU_FTR_ARCH_206)) return -EIO; return 0; } #ifdef CONFIG_KVM_XICS void kvmppc_free_pimap(struct kvm *kvm) { kfree(kvm->arch.pimap); } static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) { return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); } static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) { struct irq_desc *desc; struct kvmppc_irq_map *irq_map; struct kvmppc_passthru_irqmap *pimap; struct irq_chip *chip; int i, rc = 0; if (!kvm_irq_bypass) return 1; desc = irq_to_desc(host_irq); if (!desc) return -EIO; mutex_lock(&kvm->lock); pimap = kvm->arch.pimap; if (pimap == NULL) { /* First call, allocate structure to hold IRQ map */ pimap = kvmppc_alloc_pimap(); if (pimap == NULL) { mutex_unlock(&kvm->lock); return -ENOMEM; } kvm->arch.pimap = pimap; } /* * For now, we only support interrupts for which the EOI operation * is an OPAL call followed by a write to XIRR, since that's * what our real-mode EOI code does, or a XIVE interrupt */ chip = irq_data_get_irq_chip(&desc->irq_data); if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", host_irq, guest_gsi); mutex_unlock(&kvm->lock); return -ENOENT; } /* * See if we already have an entry for this guest IRQ number. * If it's mapped to a hardware IRQ number, that's an error, * otherwise re-use this entry. */ for (i = 0; i < pimap->n_mapped; i++) { if (guest_gsi == pimap->mapped[i].v_hwirq) { if (pimap->mapped[i].r_hwirq) { mutex_unlock(&kvm->lock); return -EINVAL; } break; } } if (i == KVMPPC_PIRQ_MAPPED) { mutex_unlock(&kvm->lock); return -EAGAIN; /* table is full */ } irq_map = &pimap->mapped[i]; irq_map->v_hwirq = guest_gsi; irq_map->desc = desc; /* * Order the above two stores before the next to serialize with * the KVM real mode handler. */ smp_wmb(); irq_map->r_hwirq = desc->irq_data.hwirq; if (i == pimap->n_mapped) pimap->n_mapped++; if (xive_enabled()) rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); else kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); if (rc) irq_map->r_hwirq = 0; mutex_unlock(&kvm->lock); return 0; } static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) { struct irq_desc *desc; struct kvmppc_passthru_irqmap *pimap; int i, rc = 0; if (!kvm_irq_bypass) return 0; desc = irq_to_desc(host_irq); if (!desc) return -EIO; mutex_lock(&kvm->lock); if (!kvm->arch.pimap) goto unlock; pimap = kvm->arch.pimap; for (i = 0; i < pimap->n_mapped; i++) { if (guest_gsi == pimap->mapped[i].v_hwirq) break; } if (i == pimap->n_mapped) { mutex_unlock(&kvm->lock); return -ENODEV; } if (xive_enabled()) rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); else kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); /* invalidate the entry (what do do on error from the above ?) */ pimap->mapped[i].r_hwirq = 0; /* * We don't free this structure even when the count goes to * zero. The structure is freed when we destroy the VM. */ unlock: mutex_unlock(&kvm->lock); return rc; } static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, struct irq_bypass_producer *prod) { int ret = 0; struct kvm_kernel_irqfd *irqfd = container_of(cons, struct kvm_kernel_irqfd, consumer); irqfd->producer = prod; ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); if (ret) pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", prod->irq, irqfd->gsi, ret); return ret; } static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, struct irq_bypass_producer *prod) { int ret; struct kvm_kernel_irqfd *irqfd = container_of(cons, struct kvm_kernel_irqfd, consumer); irqfd->producer = NULL; /* * When producer of consumer is unregistered, we change back to * default external interrupt handling mode - KVM real mode * will switch back to host. */ ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); if (ret) pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", prod->irq, irqfd->gsi, ret); } #endif static long kvm_arch_vm_ioctl_hv(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm *kvm __maybe_unused = filp->private_data; void __user *argp = (void __user *)arg; long r; switch (ioctl) { case KVM_PPC_ALLOCATE_HTAB: { u32 htab_order; r = -EFAULT; if (get_user(htab_order, (u32 __user *)argp)) break; r = kvmppc_alloc_reset_hpt(kvm, htab_order); if (r) break; r = 0; break; } case KVM_PPC_GET_HTAB_FD: { struct kvm_get_htab_fd ghf; r = -EFAULT; if (copy_from_user(&ghf, argp, sizeof(ghf))) break; r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); break; } case KVM_PPC_RESIZE_HPT_PREPARE: { struct kvm_ppc_resize_hpt rhpt; r = -EFAULT; if (copy_from_user(&rhpt, argp, sizeof(rhpt))) break; r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); break; } case KVM_PPC_RESIZE_HPT_COMMIT: { struct kvm_ppc_resize_hpt rhpt; r = -EFAULT; if (copy_from_user(&rhpt, argp, sizeof(rhpt))) break; r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); break; } default: r = -ENOTTY; } return r; } /* * List of hcall numbers to enable by default. * For compatibility with old userspace, we enable by default * all hcalls that were implemented before the hcall-enabling * facility was added. Note this list should not include H_RTAS. */ static unsigned int default_hcall_list[] = { H_REMOVE, H_ENTER, H_READ, H_PROTECT, H_BULK_REMOVE, H_GET_TCE, H_PUT_TCE, H_SET_DABR, H_SET_XDABR, H_CEDE, H_PROD, H_CONFER, H_REGISTER_VPA, #ifdef CONFIG_KVM_XICS H_EOI, H_CPPR, H_IPI, H_IPOLL, H_XIRR, H_XIRR_X, #endif 0 }; static void init_default_hcalls(void) { int i; unsigned int hcall; for (i = 0; default_hcall_list[i]; ++i) { hcall = default_hcall_list[i]; WARN_ON(!kvmppc_hcall_impl_hv(hcall)); __set_bit(hcall / 4, default_enabled_hcalls); } } static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) { unsigned long lpcr; int radix; int err; /* If not on a POWER9, reject it */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) return -ENODEV; /* If any unknown flags set, reject it */ if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) return -EINVAL; /* GR (guest radix) bit in process_table field must match */ radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); if (!!(cfg->process_table & PATB_GR) != radix) return -EINVAL; /* Process table size field must be reasonable, i.e. <= 24 */ if ((cfg->process_table & PRTS_MASK) > 24) return -EINVAL; /* We can change a guest to/from radix now, if the host is radix */ if (radix && !radix_enabled()) return -EINVAL; mutex_lock(&kvm->lock); if (radix != kvm_is_radix(kvm)) { if (kvm->arch.mmu_ready) { kvm->arch.mmu_ready = 0; /* order mmu_ready vs. vcpus_running */ smp_mb(); if (atomic_read(&kvm->arch.vcpus_running)) { kvm->arch.mmu_ready = 1; err = -EBUSY; goto out_unlock; } } if (radix) err = kvmppc_switch_mmu_to_radix(kvm); else err = kvmppc_switch_mmu_to_hpt(kvm); if (err) goto out_unlock; } kvm->arch.process_table = cfg->process_table; kvmppc_setup_partition_table(kvm); lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); err = 0; out_unlock: mutex_unlock(&kvm->lock); return err; } static struct kvmppc_ops kvm_ops_hv = { .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, .get_one_reg = kvmppc_get_one_reg_hv, .set_one_reg = kvmppc_set_one_reg_hv, .vcpu_load = kvmppc_core_vcpu_load_hv, .vcpu_put = kvmppc_core_vcpu_put_hv, .set_msr = kvmppc_set_msr_hv, .vcpu_run = kvmppc_vcpu_run_hv, .vcpu_create = kvmppc_core_vcpu_create_hv, .vcpu_free = kvmppc_core_vcpu_free_hv, .check_requests = kvmppc_core_check_requests_hv, .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, .flush_memslot = kvmppc_core_flush_memslot_hv, .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, .commit_memory_region = kvmppc_core_commit_memory_region_hv, .unmap_hva_range = kvm_unmap_hva_range_hv, .age_hva = kvm_age_hva_hv, .test_age_hva = kvm_test_age_hva_hv, .set_spte_hva = kvm_set_spte_hva_hv, .mmu_destroy = kvmppc_mmu_destroy_hv, .free_memslot = kvmppc_core_free_memslot_hv, .create_memslot = kvmppc_core_create_memslot_hv, .init_vm = kvmppc_core_init_vm_hv, .destroy_vm = kvmppc_core_destroy_vm_hv, .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, .emulate_op = kvmppc_core_emulate_op_hv, .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, .hcall_implemented = kvmppc_hcall_impl_hv, #ifdef CONFIG_KVM_XICS .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, #endif .configure_mmu = kvmhv_configure_mmu, .get_rmmu_info = kvmhv_get_rmmu_info, .set_smt_mode = kvmhv_set_smt_mode, }; static int kvm_init_subcore_bitmap(void) { int i, j; int nr_cores = cpu_nr_cores(); struct sibling_subcore_state *sibling_subcore_state; for (i = 0; i < nr_cores; i++) { int first_cpu = i * threads_per_core; int node = cpu_to_node(first_cpu); /* Ignore if it is already allocated. */ if (paca_ptrs[first_cpu]->sibling_subcore_state) continue; sibling_subcore_state = kmalloc_node(sizeof(struct sibling_subcore_state), GFP_KERNEL, node); if (!sibling_subcore_state) return -ENOMEM; memset(sibling_subcore_state, 0, sizeof(struct sibling_subcore_state)); for (j = 0; j < threads_per_core; j++) { int cpu = first_cpu + j; paca_ptrs[cpu]->sibling_subcore_state = sibling_subcore_state; } } return 0; } static int kvmppc_radix_possible(void) { return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); } static int kvmppc_book3s_init_hv(void) { int r; /* * FIXME!! Do we need to check on all cpus ? */ r = kvmppc_core_check_processor_compat_hv(); if (r < 0) return -ENODEV; r = kvm_init_subcore_bitmap(); if (r) return r; /* * We need a way of accessing the XICS interrupt controller, * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or * indirectly, via OPAL. */ #ifdef CONFIG_SMP if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) { struct device_node *np; np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); if (!np) { pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); return -ENODEV; } } #endif kvm_ops_hv.owner = THIS_MODULE; kvmppc_hv_ops = &kvm_ops_hv; init_default_hcalls(); init_vcore_lists(); r = kvmppc_mmu_hv_init(); if (r) return r; if (kvmppc_radix_possible()) r = kvmppc_radix_init(); /* * POWER9 chips before version 2.02 can't have some threads in * HPT mode and some in radix mode on the same core. */ if (cpu_has_feature(CPU_FTR_ARCH_300)) { unsigned int pvr = mfspr(SPRN_PVR); if ((pvr >> 16) == PVR_POWER9 && (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) no_mixing_hpt_and_radix = true; } return r; } static void kvmppc_book3s_exit_hv(void) { kvmppc_free_host_rm_ops(); if (kvmppc_radix_possible()) kvmppc_radix_exit(); kvmppc_hv_ops = NULL; } module_init(kvmppc_book3s_init_hv); module_exit(kvmppc_book3s_exit_hv); MODULE_LICENSE("GPL"); MODULE_ALIAS_MISCDEV(KVM_MINOR); MODULE_ALIAS("devname:kvm");