/****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *****************************************************************************/ #include #include "iwl-trans.h" #include "mvm.h" #include "iwl-eeprom-parse.h" #include "iwl-eeprom-read.h" #include "iwl-nvm-parse.h" /* Default NVM size to read */ #define IWL_NVM_DEFAULT_CHUNK_SIZE (2*1024) #define IWL_MAX_NVM_SECTION_SIZE 7000 #define NVM_WRITE_OPCODE 1 #define NVM_READ_OPCODE 0 /* * prepare the NVM host command w/ the pointers to the nvm buffer * and send it to fw */ static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section, u16 offset, u16 length, const u8 *data) { struct iwl_nvm_access_cmd nvm_access_cmd = { .offset = cpu_to_le16(offset), .length = cpu_to_le16(length), .type = cpu_to_le16(section), .op_code = NVM_WRITE_OPCODE, }; struct iwl_host_cmd cmd = { .id = NVM_ACCESS_CMD, .len = { sizeof(struct iwl_nvm_access_cmd), length }, .flags = CMD_SYNC | CMD_SEND_IN_RFKILL, .data = { &nvm_access_cmd, data }, /* data may come from vmalloc, so use _DUP */ .dataflags = { 0, IWL_HCMD_DFL_DUP }, }; return iwl_mvm_send_cmd(mvm, &cmd); } static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section, u16 offset, u16 length, u8 *data) { struct iwl_nvm_access_cmd nvm_access_cmd = { .offset = cpu_to_le16(offset), .length = cpu_to_le16(length), .type = cpu_to_le16(section), .op_code = NVM_READ_OPCODE, }; struct iwl_nvm_access_resp *nvm_resp; struct iwl_rx_packet *pkt; struct iwl_host_cmd cmd = { .id = NVM_ACCESS_CMD, .flags = CMD_SYNC | CMD_WANT_SKB | CMD_SEND_IN_RFKILL, .data = { &nvm_access_cmd, }, }; int ret, bytes_read, offset_read; u8 *resp_data; cmd.len[0] = sizeof(struct iwl_nvm_access_cmd); ret = iwl_mvm_send_cmd(mvm, &cmd); if (ret) return ret; pkt = cmd.resp_pkt; if (pkt->hdr.flags & IWL_CMD_FAILED_MSK) { IWL_ERR(mvm, "Bad return from NVM_ACCES_COMMAND (0x%08X)\n", pkt->hdr.flags); ret = -EIO; goto exit; } /* Extract NVM response */ nvm_resp = (void *)pkt->data; ret = le16_to_cpu(nvm_resp->status); bytes_read = le16_to_cpu(nvm_resp->length); offset_read = le16_to_cpu(nvm_resp->offset); resp_data = nvm_resp->data; if (ret) { IWL_ERR(mvm, "NVM access command failed with status %d (device: %s)\n", ret, mvm->cfg->name); ret = -EINVAL; goto exit; } if (offset_read != offset) { IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n", offset_read); ret = -EINVAL; goto exit; } /* Write data to NVM */ memcpy(data + offset, resp_data, bytes_read); ret = bytes_read; exit: iwl_free_resp(&cmd); return ret; } static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section, const u8 *data, u16 length) { int offset = 0; /* copy data in chunks of 2k (and remainder if any) */ while (offset < length) { int chunk_size, ret; chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE, length - offset); ret = iwl_nvm_write_chunk(mvm, section, offset, chunk_size, data + offset); if (ret < 0) return ret; offset += chunk_size; } return 0; } /* * Reads an NVM section completely. * NICs prior to 7000 family doesn't have a real NVM, but just read * section 0 which is the EEPROM. Because the EEPROM reading is unlimited * by uCode, we need to manually check in this case that we don't * overflow and try to read more than the EEPROM size. * For 7000 family NICs, we supply the maximal size we can read, and * the uCode fills the response with as much data as we can, * without overflowing, so no check is needed. */ static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section, u8 *data) { u16 length, offset = 0; int ret; /* Set nvm section read length */ length = IWL_NVM_DEFAULT_CHUNK_SIZE; ret = length; /* Read the NVM until exhausted (reading less than requested) */ while (ret == length) { ret = iwl_nvm_read_chunk(mvm, section, offset, length, data); if (ret < 0) { IWL_ERR(mvm, "Cannot read NVM from section %d offset %d, length %d\n", section, offset, length); return ret; } offset += ret; } IWL_DEBUG_EEPROM(mvm->trans->dev, "NVM section %d read completed\n", section); return offset; } static struct iwl_nvm_data * iwl_parse_nvm_sections(struct iwl_mvm *mvm) { struct iwl_nvm_section *sections = mvm->nvm_sections; const __le16 *hw, *sw, *calib, *regulatory, *mac_override; /* Checking for required sections */ if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) { if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data || !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) { IWL_ERR(mvm, "Can't parse empty NVM sections\n"); return NULL; } } else { /* SW and REGULATORY sections are mandatory */ if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data || !mvm->nvm_sections[NVM_SECTION_TYPE_REGULATORY].data) { IWL_ERR(mvm, "Can't parse empty family 8000 NVM sections\n"); return NULL; } /* MAC_OVERRIDE or at least HW section must exist */ if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data && !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) { IWL_ERR(mvm, "Can't parse mac_address, empty sections\n"); return NULL; } } if (WARN_ON(!mvm->cfg)) return NULL; hw = (const __le16 *)sections[mvm->cfg->nvm_hw_section_num].data; sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data; calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data; regulatory = (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data; mac_override = (const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data; return iwl_parse_nvm_data(mvm->trans->dev, mvm->cfg, hw, sw, calib, regulatory, mac_override, mvm->fw->valid_tx_ant, mvm->fw->valid_rx_ant); } #define MAX_NVM_FILE_LEN 16384 /* * Reads external NVM from a file into mvm->nvm_sections * * HOW TO CREATE THE NVM FILE FORMAT: * ------------------------------ * 1. create hex file, format: * 3800 -> header * 0000 -> header * 5a40 -> data * * rev - 6 bit (word1) * len - 10 bit (word1) * id - 4 bit (word2) * rsv - 12 bit (word2) * * 2. flip 8bits with 8 bits per line to get the right NVM file format * * 3. create binary file from the hex file * * 4. save as "iNVM_xxx.bin" under /lib/firmware */ static int iwl_mvm_read_external_nvm(struct iwl_mvm *mvm) { int ret, section_size; u16 section_id; const struct firmware *fw_entry; const struct { __le16 word1; __le16 word2; u8 data[]; } *file_sec; const u8 *eof, *temp; #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF)) #define NVM_WORD2_ID(x) (x >> 12) #define NVM_WORD2_LEN_FAMILY_8000(x) (2 * ((x & 0xFF) << 8 | x >> 8)) #define NVM_WORD1_ID_FAMILY_8000(x) (x >> 4) IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from external NVM\n"); /* * Obtain NVM image via request_firmware. Since we already used * request_firmware_nowait() for the firmware binary load and only * get here after that we assume the NVM request can be satisfied * synchronously. */ ret = request_firmware(&fw_entry, mvm->nvm_file_name, mvm->trans->dev); if (ret) { IWL_ERR(mvm, "ERROR: %s isn't available %d\n", mvm->nvm_file_name, ret); return ret; } IWL_INFO(mvm, "Loaded NVM file %s (%zu bytes)\n", mvm->nvm_file_name, fw_entry->size); if (fw_entry->size < sizeof(*file_sec)) { IWL_ERR(mvm, "NVM file too small\n"); ret = -EINVAL; goto out; } if (fw_entry->size > MAX_NVM_FILE_LEN) { IWL_ERR(mvm, "NVM file too large\n"); ret = -EINVAL; goto out; } eof = fw_entry->data + fw_entry->size; file_sec = (void *)fw_entry->data; while (true) { if (file_sec->data > eof) { IWL_ERR(mvm, "ERROR - NVM file too short for section header\n"); ret = -EINVAL; break; } /* check for EOF marker */ if (!file_sec->word1 && !file_sec->word2) { ret = 0; break; } if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) { section_size = 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1)); section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2)); } else { section_size = 2 * NVM_WORD2_LEN_FAMILY_8000( le16_to_cpu(file_sec->word2)); section_id = NVM_WORD1_ID_FAMILY_8000( le16_to_cpu(file_sec->word1)); } if (section_size > IWL_MAX_NVM_SECTION_SIZE) { IWL_ERR(mvm, "ERROR - section too large (%d)\n", section_size); ret = -EINVAL; break; } if (!section_size) { IWL_ERR(mvm, "ERROR - section empty\n"); ret = -EINVAL; break; } if (file_sec->data + section_size > eof) { IWL_ERR(mvm, "ERROR - NVM file too short for section (%d bytes)\n", section_size); ret = -EINVAL; break; } if (WARN(section_id >= NVM_MAX_NUM_SECTIONS, "Invalid NVM section ID %d\n", section_id)) { ret = -EINVAL; break; } temp = kmemdup(file_sec->data, section_size, GFP_KERNEL); if (!temp) { ret = -ENOMEM; break; } mvm->nvm_sections[section_id].data = temp; mvm->nvm_sections[section_id].length = section_size; /* advance to the next section */ file_sec = (void *)(file_sec->data + section_size); } out: release_firmware(fw_entry); return ret; } /* Loads the NVM data stored in mvm->nvm_sections into the NIC */ int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm) { int i, ret = 0; struct iwl_nvm_section *sections = mvm->nvm_sections; IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n"); for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) { if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length) continue; ret = iwl_nvm_write_section(mvm, i, sections[i].data, sections[i].length); if (ret < 0) { IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret); break; } } return ret; } int iwl_nvm_init(struct iwl_mvm *mvm, bool read_nvm_from_nic) { int ret, i, section; u8 *nvm_buffer, *temp; int nvm_to_read[NVM_MAX_NUM_SECTIONS]; int num_of_sections_to_read; if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS)) return -EINVAL; /* load NVM values from nic */ if (read_nvm_from_nic) { /* list of NVM sections we are allowed/need to read */ if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) { nvm_to_read[0] = mvm->cfg->nvm_hw_section_num; nvm_to_read[1] = NVM_SECTION_TYPE_SW; nvm_to_read[2] = NVM_SECTION_TYPE_CALIBRATION; nvm_to_read[3] = NVM_SECTION_TYPE_PRODUCTION; num_of_sections_to_read = 4; } else { nvm_to_read[0] = NVM_SECTION_TYPE_SW; nvm_to_read[1] = NVM_SECTION_TYPE_CALIBRATION; nvm_to_read[2] = NVM_SECTION_TYPE_PRODUCTION; nvm_to_read[3] = NVM_SECTION_TYPE_REGULATORY; nvm_to_read[4] = NVM_SECTION_TYPE_MAC_OVERRIDE; num_of_sections_to_read = 5; } /* Read From FW NVM */ IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n"); nvm_buffer = kmalloc(mvm->cfg->base_params->eeprom_size, GFP_KERNEL); if (!nvm_buffer) return -ENOMEM; for (i = 0; i < num_of_sections_to_read; i++) { section = nvm_to_read[i]; /* we override the constness for initial read */ ret = iwl_nvm_read_section(mvm, section, nvm_buffer); if (ret < 0) break; temp = kmemdup(nvm_buffer, ret, GFP_KERNEL); if (!temp) { ret = -ENOMEM; break; } mvm->nvm_sections[section].data = temp; mvm->nvm_sections[section].length = ret; #ifdef CONFIG_IWLWIFI_DEBUGFS switch (section) { case NVM_SECTION_TYPE_SW: mvm->nvm_sw_blob.data = temp; mvm->nvm_sw_blob.size = ret; break; case NVM_SECTION_TYPE_CALIBRATION: mvm->nvm_calib_blob.data = temp; mvm->nvm_calib_blob.size = ret; break; case NVM_SECTION_TYPE_PRODUCTION: mvm->nvm_prod_blob.data = temp; mvm->nvm_prod_blob.size = ret; break; default: if (section == mvm->cfg->nvm_hw_section_num) { mvm->nvm_hw_blob.data = temp; mvm->nvm_hw_blob.size = ret; break; } WARN(1, "section: %d", section); } #endif } kfree(nvm_buffer); if (ret < 0) return ret; } /* load external NVM if configured */ if (mvm->nvm_file_name) { /* move to External NVM flow */ ret = iwl_mvm_read_external_nvm(mvm); if (ret) return ret; } /* parse the relevant nvm sections */ mvm->nvm_data = iwl_parse_nvm_sections(mvm); if (!mvm->nvm_data) return -ENODATA; return 0; }