/* * skl-message.c - HDA DSP interface for FW registration, Pipe and Module * configurations * * Copyright (C) 2015 Intel Corp * Author:Rafal Redzimski * Jeeja KP * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include #include #include #include #include "skl-sst-dsp.h" #include "skl-sst-ipc.h" #include "skl.h" #include "../common/sst-dsp.h" #include "../common/sst-dsp-priv.h" #include "skl-topology.h" #include "skl-tplg-interface.h" static int skl_alloc_dma_buf(struct device *dev, struct snd_dma_buffer *dmab, size_t size) { struct hdac_ext_bus *ebus = dev_get_drvdata(dev); struct hdac_bus *bus = ebus_to_hbus(ebus); if (!bus) return -ENODEV; return bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab); } static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab) { struct hdac_ext_bus *ebus = dev_get_drvdata(dev); struct hdac_bus *bus = ebus_to_hbus(ebus); if (!bus) return -ENODEV; bus->io_ops->dma_free_pages(bus, dmab); return 0; } #define NOTIFICATION_PARAM_ID 3 #define NOTIFICATION_MASK 0xf /* disable notfication for underruns/overruns from firmware module */ static void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable) { struct notification_mask mask; struct skl_ipc_large_config_msg msg = {0}; mask.notify = NOTIFICATION_MASK; mask.enable = enable; msg.large_param_id = NOTIFICATION_PARAM_ID; msg.param_data_size = sizeof(mask); skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask); } static int skl_dsp_setup_spib(struct device *dev, unsigned int size, int stream_tag, int enable) { struct hdac_ext_bus *ebus = dev_get_drvdata(dev); struct hdac_bus *bus = ebus_to_hbus(ebus); struct hdac_stream *stream = snd_hdac_get_stream(bus, SNDRV_PCM_STREAM_PLAYBACK, stream_tag); struct hdac_ext_stream *estream; if (!stream) return -EINVAL; estream = stream_to_hdac_ext_stream(stream); /* enable/disable SPIB for this hdac stream */ snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index); /* set the spib value */ snd_hdac_ext_stream_set_spib(ebus, estream, size); return 0; } static int skl_dsp_prepare(struct device *dev, unsigned int format, unsigned int size, struct snd_dma_buffer *dmab) { struct hdac_ext_bus *ebus = dev_get_drvdata(dev); struct hdac_bus *bus = ebus_to_hbus(ebus); struct hdac_ext_stream *estream; struct hdac_stream *stream; struct snd_pcm_substream substream; int ret; if (!bus) return -ENODEV; memset(&substream, 0, sizeof(substream)); substream.stream = SNDRV_PCM_STREAM_PLAYBACK; estream = snd_hdac_ext_stream_assign(ebus, &substream, HDAC_EXT_STREAM_TYPE_HOST); if (!estream) return -ENODEV; stream = hdac_stream(estream); /* assign decouple host dma channel */ ret = snd_hdac_dsp_prepare(stream, format, size, dmab); if (ret < 0) return ret; skl_dsp_setup_spib(dev, size, stream->stream_tag, true); return stream->stream_tag; } static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag) { struct hdac_ext_bus *ebus = dev_get_drvdata(dev); struct hdac_stream *stream; struct hdac_bus *bus = ebus_to_hbus(ebus); if (!bus) return -ENODEV; stream = snd_hdac_get_stream(bus, SNDRV_PCM_STREAM_PLAYBACK, stream_tag); if (!stream) return -EINVAL; snd_hdac_dsp_trigger(stream, start); return 0; } static int skl_dsp_cleanup(struct device *dev, struct snd_dma_buffer *dmab, int stream_tag) { struct hdac_ext_bus *ebus = dev_get_drvdata(dev); struct hdac_stream *stream; struct hdac_ext_stream *estream; struct hdac_bus *bus = ebus_to_hbus(ebus); if (!bus) return -ENODEV; stream = snd_hdac_get_stream(bus, SNDRV_PCM_STREAM_PLAYBACK, stream_tag); if (!stream) return -EINVAL; estream = stream_to_hdac_ext_stream(stream); skl_dsp_setup_spib(dev, 0, stream_tag, false); snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST); snd_hdac_dsp_cleanup(stream, dmab); return 0; } static struct skl_dsp_loader_ops skl_get_loader_ops(void) { struct skl_dsp_loader_ops loader_ops; memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops)); loader_ops.alloc_dma_buf = skl_alloc_dma_buf; loader_ops.free_dma_buf = skl_free_dma_buf; return loader_ops; }; static struct skl_dsp_loader_ops bxt_get_loader_ops(void) { struct skl_dsp_loader_ops loader_ops; memset(&loader_ops, 0, sizeof(loader_ops)); loader_ops.alloc_dma_buf = skl_alloc_dma_buf; loader_ops.free_dma_buf = skl_free_dma_buf; loader_ops.prepare = skl_dsp_prepare; loader_ops.trigger = skl_dsp_trigger; loader_ops.cleanup = skl_dsp_cleanup; return loader_ops; }; static const struct skl_dsp_ops dsp_ops[] = { { .id = 0x9d70, .loader_ops = skl_get_loader_ops, .init = skl_sst_dsp_init, .init_fw = skl_sst_init_fw, .cleanup = skl_sst_dsp_cleanup }, { .id = 0x9d71, .loader_ops = skl_get_loader_ops, .init = skl_sst_dsp_init, .init_fw = skl_sst_init_fw, .cleanup = skl_sst_dsp_cleanup }, { .id = 0x5a98, .loader_ops = bxt_get_loader_ops, .init = bxt_sst_dsp_init, .init_fw = bxt_sst_init_fw, .cleanup = bxt_sst_dsp_cleanup }, }; const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id) { int i; for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) { if (dsp_ops[i].id == pci_id) return &dsp_ops[i]; } return NULL; } int skl_init_dsp(struct skl *skl) { void __iomem *mmio_base; struct hdac_ext_bus *ebus = &skl->ebus; struct hdac_bus *bus = ebus_to_hbus(ebus); struct skl_dsp_loader_ops loader_ops; int irq = bus->irq; const struct skl_dsp_ops *ops; int ret; /* enable ppcap interrupt */ snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true); snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true); /* read the BAR of the ADSP MMIO */ mmio_base = pci_ioremap_bar(skl->pci, 4); if (mmio_base == NULL) { dev_err(bus->dev, "ioremap error\n"); return -ENXIO; } ops = skl_get_dsp_ops(skl->pci->device); if (!ops) return -EIO; loader_ops = ops->loader_ops(); ret = ops->init(bus->dev, mmio_base, irq, skl->fw_name, loader_ops, &skl->skl_sst); if (ret < 0) return ret; dev_dbg(bus->dev, "dsp registration status=%d\n", ret); return ret; } int skl_free_dsp(struct skl *skl) { struct hdac_ext_bus *ebus = &skl->ebus; struct hdac_bus *bus = ebus_to_hbus(ebus); struct skl_sst *ctx = skl->skl_sst; const struct skl_dsp_ops *ops; /* disable ppcap interrupt */ snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false); ops = skl_get_dsp_ops(skl->pci->device); if (!ops) return -EIO; ops->cleanup(bus->dev, ctx); if (ctx->dsp->addr.lpe) iounmap(ctx->dsp->addr.lpe); return 0; } int skl_suspend_dsp(struct skl *skl) { struct skl_sst *ctx = skl->skl_sst; int ret; /* if ppcap is not supported return 0 */ if (!skl->ebus.ppcap) return 0; ret = skl_dsp_sleep(ctx->dsp); if (ret < 0) return ret; /* disable ppcap interrupt */ snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false); snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false); return 0; } int skl_resume_dsp(struct skl *skl) { struct skl_sst *ctx = skl->skl_sst; int ret; /* if ppcap is not supported return 0 */ if (!skl->ebus.ppcap) return 0; /* enable ppcap interrupt */ snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true); snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true); /* check if DSP 1st boot is done */ if (skl->skl_sst->is_first_boot == true) return 0; ret = skl_dsp_wake(ctx->dsp); if (ret < 0) return ret; skl_dsp_enable_notification(skl->skl_sst, false); return ret; } enum skl_bitdepth skl_get_bit_depth(int params) { switch (params) { case 8: return SKL_DEPTH_8BIT; case 16: return SKL_DEPTH_16BIT; case 24: return SKL_DEPTH_24BIT; case 32: return SKL_DEPTH_32BIT; default: return SKL_DEPTH_INVALID; } } /* * Each module in DSP expects a base module configuration, which consists of * PCM format information, which we calculate in driver and resource values * which are read from widget information passed through topology binary * This is send when we create a module with INIT_INSTANCE IPC msg */ static void skl_set_base_module_format(struct skl_sst *ctx, struct skl_module_cfg *mconfig, struct skl_base_cfg *base_cfg) { struct skl_module_fmt *format = &mconfig->in_fmt[0]; base_cfg->audio_fmt.number_of_channels = (u8)format->channels; base_cfg->audio_fmt.s_freq = format->s_freq; base_cfg->audio_fmt.bit_depth = format->bit_depth; base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth; base_cfg->audio_fmt.ch_cfg = format->ch_cfg; dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n", format->bit_depth, format->valid_bit_depth, format->ch_cfg); base_cfg->audio_fmt.channel_map = format->ch_map; base_cfg->audio_fmt.interleaving = format->interleaving_style; base_cfg->cps = mconfig->mcps; base_cfg->ibs = mconfig->ibs; base_cfg->obs = mconfig->obs; base_cfg->is_pages = mconfig->mem_pages; } /* * Copies copier capabilities into copier module and updates copier module * config size. */ static void skl_copy_copier_caps(struct skl_module_cfg *mconfig, struct skl_cpr_cfg *cpr_mconfig) { if (mconfig->formats_config.caps_size == 0) return; memcpy(cpr_mconfig->gtw_cfg.config_data, mconfig->formats_config.caps, mconfig->formats_config.caps_size); cpr_mconfig->gtw_cfg.config_length = (mconfig->formats_config.caps_size) / 4; } #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF /* * Calculate the gatewat settings required for copier module, type of * gateway and index of gateway to use */ static u32 skl_get_node_id(struct skl_sst *ctx, struct skl_module_cfg *mconfig) { union skl_connector_node_id node_id = {0}; union skl_ssp_dma_node ssp_node = {0}; struct skl_pipe_params *params = mconfig->pipe->p_params; switch (mconfig->dev_type) { case SKL_DEVICE_BT: node_id.node.dma_type = (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? SKL_DMA_I2S_LINK_OUTPUT_CLASS : SKL_DMA_I2S_LINK_INPUT_CLASS; node_id.node.vindex = params->host_dma_id + (mconfig->vbus_id << 3); break; case SKL_DEVICE_I2S: node_id.node.dma_type = (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? SKL_DMA_I2S_LINK_OUTPUT_CLASS : SKL_DMA_I2S_LINK_INPUT_CLASS; ssp_node.dma_node.time_slot_index = mconfig->time_slot; ssp_node.dma_node.i2s_instance = mconfig->vbus_id; node_id.node.vindex = ssp_node.val; break; case SKL_DEVICE_DMIC: node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS; node_id.node.vindex = mconfig->vbus_id + (mconfig->time_slot); break; case SKL_DEVICE_HDALINK: node_id.node.dma_type = (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? SKL_DMA_HDA_LINK_OUTPUT_CLASS : SKL_DMA_HDA_LINK_INPUT_CLASS; node_id.node.vindex = params->link_dma_id; break; case SKL_DEVICE_HDAHOST: node_id.node.dma_type = (SKL_CONN_SOURCE == mconfig->hw_conn_type) ? SKL_DMA_HDA_HOST_OUTPUT_CLASS : SKL_DMA_HDA_HOST_INPUT_CLASS; node_id.node.vindex = params->host_dma_id; break; default: node_id.val = 0xFFFFFFFF; break; } return node_id.val; } static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx, struct skl_module_cfg *mconfig, struct skl_cpr_cfg *cpr_mconfig) { cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig); if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) { cpr_mconfig->cpr_feature_mask = 0; return; } if (SKL_CONN_SOURCE == mconfig->hw_conn_type) cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->obs; else cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->ibs; cpr_mconfig->cpr_feature_mask = 0; cpr_mconfig->gtw_cfg.config_length = 0; skl_copy_copier_caps(mconfig, cpr_mconfig); } #define DMA_CONTROL_ID 5 int skl_dsp_set_dma_control(struct skl_sst *ctx, struct skl_module_cfg *mconfig) { struct skl_dma_control *dma_ctrl; struct skl_i2s_config_blob config_blob; struct skl_ipc_large_config_msg msg = {0}; int err = 0; /* * if blob size is same as capablity size, then no dma control * present so return */ if (mconfig->formats_config.caps_size == sizeof(config_blob)) return 0; msg.large_param_id = DMA_CONTROL_ID; msg.param_data_size = sizeof(struct skl_dma_control) + mconfig->formats_config.caps_size; dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL); if (dma_ctrl == NULL) return -ENOMEM; dma_ctrl->node_id = skl_get_node_id(ctx, mconfig); /* size in dwords */ dma_ctrl->config_length = sizeof(config_blob) / 4; memcpy(dma_ctrl->config_data, mconfig->formats_config.caps, mconfig->formats_config.caps_size); err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl); kfree(dma_ctrl); return err; } static void skl_setup_out_format(struct skl_sst *ctx, struct skl_module_cfg *mconfig, struct skl_audio_data_format *out_fmt) { struct skl_module_fmt *format = &mconfig->out_fmt[0]; out_fmt->number_of_channels = (u8)format->channels; out_fmt->s_freq = format->s_freq; out_fmt->bit_depth = format->bit_depth; out_fmt->valid_bit_depth = format->valid_bit_depth; out_fmt->ch_cfg = format->ch_cfg; out_fmt->channel_map = format->ch_map; out_fmt->interleaving = format->interleaving_style; out_fmt->sample_type = format->sample_type; dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n", out_fmt->number_of_channels, format->s_freq, format->bit_depth); } /* * DSP needs SRC module for frequency conversion, SRC takes base module * configuration and the target frequency as extra parameter passed as src * config */ static void skl_set_src_format(struct skl_sst *ctx, struct skl_module_cfg *mconfig, struct skl_src_module_cfg *src_mconfig) { struct skl_module_fmt *fmt = &mconfig->out_fmt[0]; skl_set_base_module_format(ctx, mconfig, (struct skl_base_cfg *)src_mconfig); src_mconfig->src_cfg = fmt->s_freq; } /* * DSP needs updown module to do channel conversion. updown module take base * module configuration and channel configuration * It also take coefficients and now we have defaults applied here */ static void skl_set_updown_mixer_format(struct skl_sst *ctx, struct skl_module_cfg *mconfig, struct skl_up_down_mixer_cfg *mixer_mconfig) { struct skl_module_fmt *fmt = &mconfig->out_fmt[0]; int i = 0; skl_set_base_module_format(ctx, mconfig, (struct skl_base_cfg *)mixer_mconfig); mixer_mconfig->out_ch_cfg = fmt->ch_cfg; /* Select F/W default coefficient */ mixer_mconfig->coeff_sel = 0x0; /* User coeff, don't care since we are selecting F/W defaults */ for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++) mixer_mconfig->coeff[i] = 0xDEADBEEF; } /* * 'copier' is DSP internal module which copies data from Host DMA (HDA host * dma) or link (hda link, SSP, PDM) * Here we calculate the copier module parameters, like PCM format, output * format, gateway settings * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg */ static void skl_set_copier_format(struct skl_sst *ctx, struct skl_module_cfg *mconfig, struct skl_cpr_cfg *cpr_mconfig) { struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt; struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig; skl_set_base_module_format(ctx, mconfig, base_cfg); skl_setup_out_format(ctx, mconfig, out_fmt); skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig); } /* * Algo module are DSP pre processing modules. Algo module take base module * configuration and params */ static void skl_set_algo_format(struct skl_sst *ctx, struct skl_module_cfg *mconfig, struct skl_algo_cfg *algo_mcfg) { struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg; skl_set_base_module_format(ctx, mconfig, base_cfg); if (mconfig->formats_config.caps_size == 0) return; memcpy(algo_mcfg->params, mconfig->formats_config.caps, mconfig->formats_config.caps_size); } /* * Mic select module allows selecting one or many input channels, thus * acting as a demux. * * Mic select module take base module configuration and out-format * configuration */ static void skl_set_base_outfmt_format(struct skl_sst *ctx, struct skl_module_cfg *mconfig, struct skl_base_outfmt_cfg *base_outfmt_mcfg) { struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt; struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)base_outfmt_mcfg; skl_set_base_module_format(ctx, mconfig, base_cfg); skl_setup_out_format(ctx, mconfig, out_fmt); } static u16 skl_get_module_param_size(struct skl_sst *ctx, struct skl_module_cfg *mconfig) { u16 param_size; switch (mconfig->m_type) { case SKL_MODULE_TYPE_COPIER: param_size = sizeof(struct skl_cpr_cfg); param_size += mconfig->formats_config.caps_size; return param_size; case SKL_MODULE_TYPE_SRCINT: return sizeof(struct skl_src_module_cfg); case SKL_MODULE_TYPE_UPDWMIX: return sizeof(struct skl_up_down_mixer_cfg); case SKL_MODULE_TYPE_ALGO: param_size = sizeof(struct skl_base_cfg); param_size += mconfig->formats_config.caps_size; return param_size; case SKL_MODULE_TYPE_BASE_OUTFMT: return sizeof(struct skl_base_outfmt_cfg); default: /* * return only base cfg when no specific module type is * specified */ return sizeof(struct skl_base_cfg); } return 0; } /* * DSP firmware supports various modules like copier, SRC, updown etc. * These modules required various parameters to be calculated and sent for * the module initialization to DSP. By default a generic module needs only * base module format configuration */ static int skl_set_module_format(struct skl_sst *ctx, struct skl_module_cfg *module_config, u16 *module_config_size, void **param_data) { u16 param_size; param_size = skl_get_module_param_size(ctx, module_config); *param_data = kzalloc(param_size, GFP_KERNEL); if (NULL == *param_data) return -ENOMEM; *module_config_size = param_size; switch (module_config->m_type) { case SKL_MODULE_TYPE_COPIER: skl_set_copier_format(ctx, module_config, *param_data); break; case SKL_MODULE_TYPE_SRCINT: skl_set_src_format(ctx, module_config, *param_data); break; case SKL_MODULE_TYPE_UPDWMIX: skl_set_updown_mixer_format(ctx, module_config, *param_data); break; case SKL_MODULE_TYPE_ALGO: skl_set_algo_format(ctx, module_config, *param_data); break; case SKL_MODULE_TYPE_BASE_OUTFMT: skl_set_base_outfmt_format(ctx, module_config, *param_data); break; default: skl_set_base_module_format(ctx, module_config, *param_data); break; } dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n", module_config->id.module_id, param_size); print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4, *param_data, param_size, false); return 0; } static int skl_get_queue_index(struct skl_module_pin *mpin, struct skl_module_inst_id id, int max) { int i; for (i = 0; i < max; i++) { if (mpin[i].id.module_id == id.module_id && mpin[i].id.instance_id == id.instance_id) return i; } return -EINVAL; } /* * Allocates queue for each module. * if dynamic, the pin_index is allocated 0 to max_pin. * In static, the pin_index is fixed based on module_id and instance id */ static int skl_alloc_queue(struct skl_module_pin *mpin, struct skl_module_cfg *tgt_cfg, int max) { int i; struct skl_module_inst_id id = tgt_cfg->id; /* * if pin in dynamic, find first free pin * otherwise find match module and instance id pin as topology will * ensure a unique pin is assigned to this so no need to * allocate/free */ for (i = 0; i < max; i++) { if (mpin[i].is_dynamic) { if (!mpin[i].in_use && mpin[i].pin_state == SKL_PIN_UNBIND) { mpin[i].in_use = true; mpin[i].id.module_id = id.module_id; mpin[i].id.instance_id = id.instance_id; mpin[i].tgt_mcfg = tgt_cfg; return i; } } else { if (mpin[i].id.module_id == id.module_id && mpin[i].id.instance_id == id.instance_id && mpin[i].pin_state == SKL_PIN_UNBIND) { mpin[i].tgt_mcfg = tgt_cfg; return i; } } } return -EINVAL; } static void skl_free_queue(struct skl_module_pin *mpin, int q_index) { if (mpin[q_index].is_dynamic) { mpin[q_index].in_use = false; mpin[q_index].id.module_id = 0; mpin[q_index].id.instance_id = 0; } mpin[q_index].pin_state = SKL_PIN_UNBIND; mpin[q_index].tgt_mcfg = NULL; } /* Module state will be set to unint, if all the out pin state is UNBIND */ static void skl_clear_module_state(struct skl_module_pin *mpin, int max, struct skl_module_cfg *mcfg) { int i; bool found = false; for (i = 0; i < max; i++) { if (mpin[i].pin_state == SKL_PIN_UNBIND) continue; found = true; break; } if (!found) mcfg->m_state = SKL_MODULE_UNINIT; return; } /* * A module needs to be instanataited in DSP. A mdoule is present in a * collection of module referred as a PIPE. * We first calculate the module format, based on module type and then * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper */ int skl_init_module(struct skl_sst *ctx, struct skl_module_cfg *mconfig) { u16 module_config_size = 0; void *param_data = NULL; int ret; struct skl_ipc_init_instance_msg msg; dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__, mconfig->id.module_id, mconfig->id.instance_id); if (mconfig->pipe->state != SKL_PIPE_CREATED) { dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n", mconfig->pipe->state, mconfig->pipe->ppl_id); return -EIO; } ret = skl_set_module_format(ctx, mconfig, &module_config_size, ¶m_data); if (ret < 0) { dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret); return ret; } msg.module_id = mconfig->id.module_id; msg.instance_id = mconfig->id.instance_id; msg.ppl_instance_id = mconfig->pipe->ppl_id; msg.param_data_size = module_config_size; msg.core_id = mconfig->core_id; ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data); if (ret < 0) { dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret); kfree(param_data); return ret; } mconfig->m_state = SKL_MODULE_INIT_DONE; kfree(param_data); return ret; } static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg *src_module, struct skl_module_cfg *dst_module) { dev_dbg(ctx->dev, "%s: src module_id = %d src_instance=%d\n", __func__, src_module->id.module_id, src_module->id.instance_id); dev_dbg(ctx->dev, "%s: dst_module=%d dst_instacne=%d\n", __func__, dst_module->id.module_id, dst_module->id.instance_id); dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n", src_module->m_state, dst_module->m_state); } /* * On module freeup, we need to unbind the module with modules * it is already bind. * Find the pin allocated and unbind then using bind_unbind IPC */ int skl_unbind_modules(struct skl_sst *ctx, struct skl_module_cfg *src_mcfg, struct skl_module_cfg *dst_mcfg) { int ret; struct skl_ipc_bind_unbind_msg msg; struct skl_module_inst_id src_id = src_mcfg->id; struct skl_module_inst_id dst_id = dst_mcfg->id; int in_max = dst_mcfg->max_in_queue; int out_max = src_mcfg->max_out_queue; int src_index, dst_index, src_pin_state, dst_pin_state; skl_dump_bind_info(ctx, src_mcfg, dst_mcfg); /* get src queue index */ src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max); if (src_index < 0) return 0; msg.src_queue = src_index; /* get dst queue index */ dst_index = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max); if (dst_index < 0) return 0; msg.dst_queue = dst_index; src_pin_state = src_mcfg->m_out_pin[src_index].pin_state; dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state; if (src_pin_state != SKL_PIN_BIND_DONE || dst_pin_state != SKL_PIN_BIND_DONE) return 0; msg.module_id = src_mcfg->id.module_id; msg.instance_id = src_mcfg->id.instance_id; msg.dst_module_id = dst_mcfg->id.module_id; msg.dst_instance_id = dst_mcfg->id.instance_id; msg.bind = false; ret = skl_ipc_bind_unbind(&ctx->ipc, &msg); if (!ret) { /* free queue only if unbind is success */ skl_free_queue(src_mcfg->m_out_pin, src_index); skl_free_queue(dst_mcfg->m_in_pin, dst_index); /* * check only if src module bind state, bind is * always from src -> sink */ skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg); } return ret; } /* * Once a module is instantiated it need to be 'bind' with other modules in * the pipeline. For binding we need to find the module pins which are bind * together * This function finds the pins and then sends bund_unbind IPC message to * DSP using IPC helper */ int skl_bind_modules(struct skl_sst *ctx, struct skl_module_cfg *src_mcfg, struct skl_module_cfg *dst_mcfg) { int ret; struct skl_ipc_bind_unbind_msg msg; int in_max = dst_mcfg->max_in_queue; int out_max = src_mcfg->max_out_queue; int src_index, dst_index; skl_dump_bind_info(ctx, src_mcfg, dst_mcfg); if (src_mcfg->m_state < SKL_MODULE_INIT_DONE || dst_mcfg->m_state < SKL_MODULE_INIT_DONE) return 0; src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max); if (src_index < 0) return -EINVAL; msg.src_queue = src_index; dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max); if (dst_index < 0) { skl_free_queue(src_mcfg->m_out_pin, src_index); return -EINVAL; } msg.dst_queue = dst_index; dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n", msg.src_queue, msg.dst_queue); msg.module_id = src_mcfg->id.module_id; msg.instance_id = src_mcfg->id.instance_id; msg.dst_module_id = dst_mcfg->id.module_id; msg.dst_instance_id = dst_mcfg->id.instance_id; msg.bind = true; ret = skl_ipc_bind_unbind(&ctx->ipc, &msg); if (!ret) { src_mcfg->m_state = SKL_MODULE_BIND_DONE; src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE; dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE; } else { /* error case , if IPC fails, clear the queue index */ skl_free_queue(src_mcfg->m_out_pin, src_index); skl_free_queue(dst_mcfg->m_in_pin, dst_index); } return ret; } static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe, enum skl_ipc_pipeline_state state) { dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state); return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state); } /* * A pipeline is a collection of modules. Before a module in instantiated a * pipeline needs to be created for it. * This function creates pipeline, by sending create pipeline IPC messages * to FW */ int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe) { int ret; dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id); ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages, pipe->pipe_priority, pipe->ppl_id); if (ret < 0) { dev_err(ctx->dev, "Failed to create pipeline\n"); return ret; } pipe->state = SKL_PIPE_CREATED; return 0; } /* * A pipeline needs to be deleted on cleanup. If a pipeline is running, then * pause the pipeline first and then delete it * The pipe delete is done by sending delete pipeline IPC. DSP will stop the * DMA engines and releases resources */ int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe) { int ret; dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id); /* If pipe is started, do stop the pipe in FW. */ if (pipe->state > SKL_PIPE_STARTED) { ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED); if (ret < 0) { dev_err(ctx->dev, "Failed to stop pipeline\n"); return ret; } pipe->state = SKL_PIPE_PAUSED; } /* If pipe was not created in FW, do not try to delete it */ if (pipe->state < SKL_PIPE_CREATED) return 0; ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id); if (ret < 0) { dev_err(ctx->dev, "Failed to delete pipeline\n"); return ret; } pipe->state = SKL_PIPE_INVALID; return ret; } /* * A pipeline is also a scheduling entity in DSP which can be run, stopped * For processing data the pipe need to be run by sending IPC set pipe state * to DSP */ int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe) { int ret; dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id); /* If pipe was not created in FW, do not try to pause or delete */ if (pipe->state < SKL_PIPE_CREATED) return 0; /* Pipe has to be paused before it is started */ ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED); if (ret < 0) { dev_err(ctx->dev, "Failed to pause pipe\n"); return ret; } pipe->state = SKL_PIPE_PAUSED; ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING); if (ret < 0) { dev_err(ctx->dev, "Failed to start pipe\n"); return ret; } pipe->state = SKL_PIPE_STARTED; return 0; } /* * Stop the pipeline by sending set pipe state IPC * DSP doesnt implement stop so we always send pause message */ int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe) { int ret; dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id); /* If pipe was not created in FW, do not try to pause or delete */ if (pipe->state < SKL_PIPE_PAUSED) return 0; ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED); if (ret < 0) { dev_dbg(ctx->dev, "Failed to stop pipe\n"); return ret; } pipe->state = SKL_PIPE_PAUSED; return 0; } /* * Reset the pipeline by sending set pipe state IPC this will reset the DMA * from the DSP side */ int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe) { int ret; /* If pipe was not created in FW, do not try to pause or delete */ if (pipe->state < SKL_PIPE_PAUSED) return 0; ret = skl_set_pipe_state(ctx, pipe, PPL_RESET); if (ret < 0) { dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret); return ret; } pipe->state = SKL_PIPE_RESET; return 0; } /* Algo parameter set helper function */ int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size, u32 param_id, struct skl_module_cfg *mcfg) { struct skl_ipc_large_config_msg msg; msg.module_id = mcfg->id.module_id; msg.instance_id = mcfg->id.instance_id; msg.param_data_size = size; msg.large_param_id = param_id; return skl_ipc_set_large_config(&ctx->ipc, &msg, params); } int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size, u32 param_id, struct skl_module_cfg *mcfg) { struct skl_ipc_large_config_msg msg; msg.module_id = mcfg->id.module_id; msg.instance_id = mcfg->id.instance_id; msg.param_data_size = size; msg.large_param_id = param_id; return skl_ipc_get_large_config(&ctx->ipc, &msg, params); }