/* * Copyright (c) International Business Machines Corp., 2006 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See * the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Author: Artem Bityutskiy (Битюцкий Артём) */ /* This file mostly implements UBI kernel API functions */ #include #include #include #include "ubi.h" /** * ubi_get_device_info - get information about UBI device. * @ubi_num: UBI device number * @di: the information is stored here * * This function returns %0 in case of success and a %-ENODEV if there is no * such UBI device. */ int ubi_get_device_info(int ubi_num, struct ubi_device_info *di) { const struct ubi_device *ubi; if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES || !ubi_devices[ubi_num]) return -ENODEV; ubi = ubi_devices[ubi_num]; di->ubi_num = ubi->ubi_num; di->leb_size = ubi->leb_size; di->min_io_size = ubi->min_io_size; di->ro_mode = ubi->ro_mode; di->cdev = ubi->cdev.dev; return 0; } EXPORT_SYMBOL_GPL(ubi_get_device_info); /** * ubi_get_volume_info - get information about UBI volume. * @desc: volume descriptor * @vi: the information is stored here */ void ubi_get_volume_info(struct ubi_volume_desc *desc, struct ubi_volume_info *vi) { const struct ubi_volume *vol = desc->vol; const struct ubi_device *ubi = vol->ubi; vi->vol_id = vol->vol_id; vi->ubi_num = ubi->ubi_num; vi->size = vol->reserved_pebs; vi->used_bytes = vol->used_bytes; vi->vol_type = vol->vol_type; vi->corrupted = vol->corrupted; vi->upd_marker = vol->upd_marker; vi->alignment = vol->alignment; vi->usable_leb_size = vol->usable_leb_size; vi->name_len = vol->name_len; vi->name = vol->name; vi->cdev = vol->cdev.dev; } EXPORT_SYMBOL_GPL(ubi_get_volume_info); /** * ubi_open_volume - open UBI volume. * @ubi_num: UBI device number * @vol_id: volume ID * @mode: open mode * * The @mode parameter specifies if the volume should be opened in read-only * mode, read-write mode, or exclusive mode. The exclusive mode guarantees that * nobody else will be able to open this volume. UBI allows to have many volume * readers and one writer at a time. * * If a static volume is being opened for the first time since boot, it will be * checked by this function, which means it will be fully read and the CRC * checksum of each logical eraseblock will be checked. * * This function returns volume descriptor in case of success and a negative * error code in case of failure. */ struct ubi_volume_desc *ubi_open_volume(int ubi_num, int vol_id, int mode) { int err; struct ubi_volume_desc *desc; struct ubi_device *ubi; struct ubi_volume *vol; dbg_msg("open device %d volume %d, mode %d", ubi_num, vol_id, mode); err = -ENODEV; if (ubi_num < 0) return ERR_PTR(err); ubi = ubi_devices[ubi_num]; if (!try_module_get(THIS_MODULE)) return ERR_PTR(err); if (ubi_num >= UBI_MAX_DEVICES || !ubi) goto out_put; err = -EINVAL; if (vol_id < 0 || vol_id >= ubi->vtbl_slots) goto out_put; if (mode != UBI_READONLY && mode != UBI_READWRITE && mode != UBI_EXCLUSIVE) goto out_put; desc = kmalloc(sizeof(struct ubi_volume_desc), GFP_KERNEL); if (!desc) { err = -ENOMEM; goto out_put; } spin_lock(&ubi->volumes_lock); vol = ubi->volumes[vol_id]; if (!vol) { err = -ENODEV; goto out_unlock; } err = -EBUSY; switch (mode) { case UBI_READONLY: if (vol->exclusive) goto out_unlock; vol->readers += 1; break; case UBI_READWRITE: if (vol->exclusive || vol->writers > 0) goto out_unlock; vol->writers += 1; break; case UBI_EXCLUSIVE: if (vol->exclusive || vol->writers || vol->readers) goto out_unlock; vol->exclusive = 1; break; } spin_unlock(&ubi->volumes_lock); desc->vol = vol; desc->mode = mode; /* * To prevent simultaneous checks of the same volume we use @vtbl_mutex, * although it is not the purpose it was introduced for. */ mutex_lock(&ubi->vtbl_mutex); if (!vol->checked) { /* This is the first open - check the volume */ err = ubi_check_volume(ubi, vol_id); if (err < 0) { mutex_unlock(&ubi->vtbl_mutex); ubi_close_volume(desc); return ERR_PTR(err); } if (err == 1) { ubi_warn("volume %d on UBI device %d is corrupted", vol_id, ubi->ubi_num); vol->corrupted = 1; } vol->checked = 1; } mutex_unlock(&ubi->vtbl_mutex); return desc; out_unlock: spin_unlock(&ubi->volumes_lock); kfree(desc); out_put: module_put(THIS_MODULE); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(ubi_open_volume); /** * ubi_open_volume_nm - open UBI volume by name. * @ubi_num: UBI device number * @name: volume name * @mode: open mode * * This function is similar to 'ubi_open_volume()', but opens a volume by name. */ struct ubi_volume_desc *ubi_open_volume_nm(int ubi_num, const char *name, int mode) { int i, vol_id = -1, len; struct ubi_volume_desc *ret; struct ubi_device *ubi; dbg_msg("open volume %s, mode %d", name, mode); if (!name) return ERR_PTR(-EINVAL); len = strnlen(name, UBI_VOL_NAME_MAX + 1); if (len > UBI_VOL_NAME_MAX) return ERR_PTR(-EINVAL); ret = ERR_PTR(-ENODEV); if (!try_module_get(THIS_MODULE)) return ret; if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES || !ubi_devices[ubi_num]) goto out_put; ubi = ubi_devices[ubi_num]; spin_lock(&ubi->volumes_lock); /* Walk all volumes of this UBI device */ for (i = 0; i < ubi->vtbl_slots; i++) { struct ubi_volume *vol = ubi->volumes[i]; if (vol && len == vol->name_len && !strcmp(name, vol->name)) { vol_id = i; break; } } spin_unlock(&ubi->volumes_lock); if (vol_id < 0) goto out_put; ret = ubi_open_volume(ubi_num, vol_id, mode); out_put: module_put(THIS_MODULE); return ret; } EXPORT_SYMBOL_GPL(ubi_open_volume_nm); /** * ubi_close_volume - close UBI volume. * @desc: volume descriptor */ void ubi_close_volume(struct ubi_volume_desc *desc) { struct ubi_volume *vol = desc->vol; dbg_msg("close volume %d, mode %d", vol->vol_id, desc->mode); spin_lock(&vol->ubi->volumes_lock); switch (desc->mode) { case UBI_READONLY: vol->readers -= 1; break; case UBI_READWRITE: vol->writers -= 1; break; case UBI_EXCLUSIVE: vol->exclusive = 0; } spin_unlock(&vol->ubi->volumes_lock); kfree(desc); module_put(THIS_MODULE); } EXPORT_SYMBOL_GPL(ubi_close_volume); /** * ubi_leb_read - read data. * @desc: volume descriptor * @lnum: logical eraseblock number to read from * @buf: buffer where to store the read data * @offset: offset within the logical eraseblock to read from * @len: how many bytes to read * @check: whether UBI has to check the read data's CRC or not. * * This function reads data from offset @offset of logical eraseblock @lnum and * stores the data at @buf. When reading from static volumes, @check specifies * whether the data has to be checked or not. If yes, the whole logical * eraseblock will be read and its CRC checksum will be checked (i.e., the CRC * checksum is per-eraseblock). So checking may substantially slow down the * read speed. The @check argument is ignored for dynamic volumes. * * In case of success, this function returns zero. In case of failure, this * function returns a negative error code. * * %-EBADMSG error code is returned: * o for both static and dynamic volumes if MTD driver has detected a data * integrity problem (unrecoverable ECC checksum mismatch in case of NAND); * o for static volumes in case of data CRC mismatch. * * If the volume is damaged because of an interrupted update this function just * returns immediately with %-EBADF error code. */ int ubi_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, int len, int check) { struct ubi_volume *vol = desc->vol; struct ubi_device *ubi = vol->ubi; int err, vol_id = vol->vol_id; dbg_msg("read %d bytes from LEB %d:%d:%d", len, vol_id, lnum, offset); if (vol_id < 0 || vol_id >= ubi->vtbl_slots || lnum < 0 || lnum >= vol->used_ebs || offset < 0 || len < 0 || offset + len > vol->usable_leb_size) return -EINVAL; if (vol->vol_type == UBI_STATIC_VOLUME) { if (vol->used_ebs == 0) /* Empty static UBI volume */ return 0; if (lnum == vol->used_ebs - 1 && offset + len > vol->last_eb_bytes) return -EINVAL; } if (vol->upd_marker) return -EBADF; if (len == 0) return 0; err = ubi_eba_read_leb(ubi, vol, lnum, buf, offset, len, check); if (err && err == -EBADMSG && vol->vol_type == UBI_STATIC_VOLUME) { ubi_warn("mark volume %d as corrupted", vol_id); vol->corrupted = 1; } return err; } EXPORT_SYMBOL_GPL(ubi_leb_read); /** * ubi_leb_write - write data. * @desc: volume descriptor * @lnum: logical eraseblock number to write to * @buf: data to write * @offset: offset within the logical eraseblock where to write * @len: how many bytes to write * @dtype: expected data type * * This function writes @len bytes of data from @buf to offset @offset of * logical eraseblock @lnum. The @dtype argument describes expected lifetime of * the data. * * This function takes care of physical eraseblock write failures. If write to * the physical eraseblock write operation fails, the logical eraseblock is * re-mapped to another physical eraseblock, the data is recovered, and the * write finishes. UBI has a pool of reserved physical eraseblocks for this. * * If all the data were successfully written, zero is returned. If an error * occurred and UBI has not been able to recover from it, this function returns * a negative error code. Note, in case of an error, it is possible that * something was still written to the flash media, but that may be some * garbage. * * If the volume is damaged because of an interrupted update this function just * returns immediately with %-EBADF code. */ int ubi_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, int offset, int len, int dtype) { struct ubi_volume *vol = desc->vol; struct ubi_device *ubi = vol->ubi; int vol_id = vol->vol_id; dbg_msg("write %d bytes to LEB %d:%d:%d", len, vol_id, lnum, offset); if (vol_id < 0 || vol_id >= ubi->vtbl_slots) return -EINVAL; if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME) return -EROFS; if (lnum < 0 || lnum >= vol->reserved_pebs || offset < 0 || len < 0 || offset + len > vol->usable_leb_size || offset % ubi->min_io_size || len % ubi->min_io_size) return -EINVAL; if (dtype != UBI_LONGTERM && dtype != UBI_SHORTTERM && dtype != UBI_UNKNOWN) return -EINVAL; if (vol->upd_marker) return -EBADF; if (len == 0) return 0; return ubi_eba_write_leb(ubi, vol, lnum, buf, offset, len, dtype); } EXPORT_SYMBOL_GPL(ubi_leb_write); /* * ubi_leb_change - change logical eraseblock atomically. * @desc: volume descriptor * @lnum: logical eraseblock number to change * @buf: data to write * @len: how many bytes to write * @dtype: expected data type * * This function changes the contents of a logical eraseblock atomically. @buf * has to contain new logical eraseblock data, and @len - the length of the * data, which has to be aligned. The length may be shorter then the logical * eraseblock size, ant the logical eraseblock may be appended to more times * later on. This function guarantees that in case of an unclean reboot the old * contents is preserved. Returns zero in case of success and a negative error * code in case of failure. */ int ubi_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, int len, int dtype) { struct ubi_volume *vol = desc->vol; struct ubi_device *ubi = vol->ubi; int vol_id = vol->vol_id; dbg_msg("atomically write %d bytes to LEB %d:%d", len, vol_id, lnum); if (vol_id < 0 || vol_id >= ubi->vtbl_slots) return -EINVAL; if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME) return -EROFS; if (lnum < 0 || lnum >= vol->reserved_pebs || len < 0 || len > vol->usable_leb_size || len % ubi->min_io_size) return -EINVAL; if (dtype != UBI_LONGTERM && dtype != UBI_SHORTTERM && dtype != UBI_UNKNOWN) return -EINVAL; if (vol->upd_marker) return -EBADF; if (len == 0) return 0; return ubi_eba_atomic_leb_change(ubi, vol, lnum, buf, len, dtype); } EXPORT_SYMBOL_GPL(ubi_leb_change); /** * ubi_leb_erase - erase logical eraseblock. * @desc: volume descriptor * @lnum: logical eraseblock number * * This function un-maps logical eraseblock @lnum and synchronously erases the * correspondent physical eraseblock. Returns zero in case of success and a * negative error code in case of failure. * * If the volume is damaged because of an interrupted update this function just * returns immediately with %-EBADF code. */ int ubi_leb_erase(struct ubi_volume_desc *desc, int lnum) { struct ubi_volume *vol = desc->vol; struct ubi_device *ubi = vol->ubi; int err, vol_id = vol->vol_id; dbg_msg("erase LEB %d:%d", vol_id, lnum); if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME) return -EROFS; if (lnum < 0 || lnum >= vol->reserved_pebs) return -EINVAL; if (vol->upd_marker) return -EBADF; err = ubi_eba_unmap_leb(ubi, vol, lnum); if (err) return err; return ubi_wl_flush(ubi); } EXPORT_SYMBOL_GPL(ubi_leb_erase); /** * ubi_leb_unmap - un-map logical eraseblock. * @desc: volume descriptor * @lnum: logical eraseblock number * * This function un-maps logical eraseblock @lnum and schedules the * corresponding physical eraseblock for erasure, so that it will eventually be * physically erased in background. This operation is much faster then the * erase operation. * * Unlike erase, the un-map operation does not guarantee that the logical * eraseblock will contain all 0xFF bytes when UBI is initialized again. For * example, if several logical eraseblocks are un-mapped, and an unclean reboot * happens after this, the logical eraseblocks will not necessarily be * un-mapped again when this MTD device is attached. They may actually be * mapped to the same physical eraseblocks again. So, this function has to be * used with care. * * In other words, when un-mapping a logical eraseblock, UBI does not store * any information about this on the flash media, it just marks the logical * eraseblock as "un-mapped" in RAM. If UBI is detached before the physical * eraseblock is physically erased, it will be mapped again to the same logical * eraseblock when the MTD device is attached again. * * The main and obvious use-case of this function is when the contents of a * logical eraseblock has to be re-written. Then it is much more efficient to * first un-map it, then write new data, rather then first erase it, then write * new data. Note, once new data has been written to the logical eraseblock, * UBI guarantees that the old contents has gone forever. In other words, if an * unclean reboot happens after the logical eraseblock has been un-mapped and * then written to, it will contain the last written data. * * This function returns zero in case of success and a negative error code in * case of failure. If the volume is damaged because of an interrupted update * this function just returns immediately with %-EBADF code. */ int ubi_leb_unmap(struct ubi_volume_desc *desc, int lnum) { struct ubi_volume *vol = desc->vol; struct ubi_device *ubi = vol->ubi; int vol_id = vol->vol_id; dbg_msg("unmap LEB %d:%d", vol_id, lnum); if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME) return -EROFS; if (lnum < 0 || lnum >= vol->reserved_pebs) return -EINVAL; if (vol->upd_marker) return -EBADF; return ubi_eba_unmap_leb(ubi, vol, lnum); } EXPORT_SYMBOL_GPL(ubi_leb_unmap); /** * ubi_leb_map - map logical erasblock to a physical eraseblock. * @desc: volume descriptor * @lnum: logical eraseblock number * @dtype: expected data type * * This function maps an un-mapped logical eraseblock @lnum to a physical * eraseblock. This means, that after a successfull invocation of this * function the logical eraseblock @lnum will be empty (contain only %0xFF * bytes) and be mapped to a physical eraseblock, even if an unclean reboot * happens. * * This function returns zero in case of success, %-EBADF if the volume is * damaged because of an interrupted update, %-EBADMSG if the logical * eraseblock is already mapped, and other negative error codes in case of * other failures. */ int ubi_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) { struct ubi_volume *vol = desc->vol; struct ubi_device *ubi = vol->ubi; int vol_id = vol->vol_id; dbg_msg("unmap LEB %d:%d", vol_id, lnum); if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME) return -EROFS; if (lnum < 0 || lnum >= vol->reserved_pebs) return -EINVAL; if (dtype != UBI_LONGTERM && dtype != UBI_SHORTTERM && dtype != UBI_UNKNOWN) return -EINVAL; if (vol->upd_marker) return -EBADF; if (vol->eba_tbl[lnum] >= 0) return -EBADMSG; return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype); } EXPORT_SYMBOL_GPL(ubi_leb_map); /** * ubi_is_mapped - check if logical eraseblock is mapped. * @desc: volume descriptor * @lnum: logical eraseblock number * * This function checks if logical eraseblock @lnum is mapped to a physical * eraseblock. If a logical eraseblock is un-mapped, this does not necessarily * mean it will still be un-mapped after the UBI device is re-attached. The * logical eraseblock may become mapped to the physical eraseblock it was last * mapped to. * * This function returns %1 if the LEB is mapped, %0 if not, and a negative * error code in case of failure. If the volume is damaged because of an * interrupted update this function just returns immediately with %-EBADF error * code. */ int ubi_is_mapped(struct ubi_volume_desc *desc, int lnum) { struct ubi_volume *vol = desc->vol; dbg_msg("test LEB %d:%d", vol->vol_id, lnum); if (lnum < 0 || lnum >= vol->reserved_pebs) return -EINVAL; if (vol->upd_marker) return -EBADF; return vol->eba_tbl[lnum] >= 0; } EXPORT_SYMBOL_GPL(ubi_is_mapped);