/* * drivers/spi/spi-fsl-dspi.c * * Copyright 2013 Freescale Semiconductor, Inc. * * Freescale DSPI driver * This file contains a driver for the Freescale DSPI * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "fsl-dspi" #define TRAN_STATE_RX_VOID 0x01 #define TRAN_STATE_TX_VOID 0x02 #define TRAN_STATE_WORD_ODD_NUM 0x04 #define DSPI_FIFO_SIZE 4 #define SPI_MCR 0x00 #define SPI_MCR_MASTER (1 << 31) #define SPI_MCR_PCSIS (0x3F << 16) #define SPI_MCR_CLR_TXF (1 << 11) #define SPI_MCR_CLR_RXF (1 << 10) #define SPI_TCR 0x08 #define SPI_CTAR(x) (0x0c + (x * 4)) #define SPI_CTAR_FMSZ(x) (((x) & 0x0000000f) << 27) #define SPI_CTAR_CPOL(x) ((x) << 26) #define SPI_CTAR_CPHA(x) ((x) << 25) #define SPI_CTAR_LSBFE(x) ((x) << 24) #define SPI_CTAR_PCSSCR(x) (((x) & 0x00000003) << 22) #define SPI_CTAR_PASC(x) (((x) & 0x00000003) << 20) #define SPI_CTAR_PDT(x) (((x) & 0x00000003) << 18) #define SPI_CTAR_PBR(x) (((x) & 0x00000003) << 16) #define SPI_CTAR_CSSCK(x) (((x) & 0x0000000f) << 12) #define SPI_CTAR_ASC(x) (((x) & 0x0000000f) << 8) #define SPI_CTAR_DT(x) (((x) & 0x0000000f) << 4) #define SPI_CTAR_BR(x) ((x) & 0x0000000f) #define SPI_CTAR0_SLAVE 0x0c #define SPI_SR 0x2c #define SPI_SR_EOQF 0x10000000 #define SPI_RSER 0x30 #define SPI_RSER_EOQFE 0x10000000 #define SPI_PUSHR 0x34 #define SPI_PUSHR_CONT (1 << 31) #define SPI_PUSHR_CTAS(x) (((x) & 0x00000007) << 28) #define SPI_PUSHR_EOQ (1 << 27) #define SPI_PUSHR_CTCNT (1 << 26) #define SPI_PUSHR_PCS(x) (((1 << x) & 0x0000003f) << 16) #define SPI_PUSHR_TXDATA(x) ((x) & 0x0000ffff) #define SPI_PUSHR_SLAVE 0x34 #define SPI_POPR 0x38 #define SPI_POPR_RXDATA(x) ((x) & 0x0000ffff) #define SPI_TXFR0 0x3c #define SPI_TXFR1 0x40 #define SPI_TXFR2 0x44 #define SPI_TXFR3 0x48 #define SPI_RXFR0 0x7c #define SPI_RXFR1 0x80 #define SPI_RXFR2 0x84 #define SPI_RXFR3 0x88 #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1) #define SPI_FRAME_BITS_MASK SPI_CTAR_FMSZ(0xf) #define SPI_FRAME_BITS_16 SPI_CTAR_FMSZ(0xf) #define SPI_FRAME_BITS_8 SPI_CTAR_FMSZ(0x7) #define SPI_CS_INIT 0x01 #define SPI_CS_ASSERT 0x02 #define SPI_CS_DROP 0x04 struct chip_data { u32 mcr_val; u32 ctar_val; u16 void_write_data; }; struct fsl_dspi { struct spi_bitbang bitbang; struct platform_device *pdev; struct regmap *regmap; int irq; struct clk *clk; struct spi_transfer *cur_transfer; struct chip_data *cur_chip; size_t len; void *tx; void *tx_end; void *rx; void *rx_end; char dataflags; u8 cs; u16 void_write_data; wait_queue_head_t waitq; u32 waitflags; }; static inline int is_double_byte_mode(struct fsl_dspi *dspi) { unsigned int val; regmap_read(dspi->regmap, SPI_CTAR(dspi->cs), &val); return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1; } static void hz_to_spi_baud(char *pbr, char *br, int speed_hz, unsigned long clkrate) { /* Valid baud rate pre-scaler values */ int pbr_tbl[4] = {2, 3, 5, 7}; int brs[16] = { 2, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768 }; int temp, i = 0, j = 0; temp = clkrate / 2 / speed_hz; for (i = 0; i < ARRAY_SIZE(pbr_tbl); i++) for (j = 0; j < ARRAY_SIZE(brs); j++) { if (pbr_tbl[i] * brs[j] >= temp) { *pbr = i; *br = j; return; } } pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld\ ,we use the max prescaler value.\n", speed_hz, clkrate); *pbr = ARRAY_SIZE(pbr_tbl) - 1; *br = ARRAY_SIZE(brs) - 1; } static int dspi_transfer_write(struct fsl_dspi *dspi) { int tx_count = 0; int tx_word; u16 d16; u8 d8; u32 dspi_pushr = 0; int first = 1; tx_word = is_double_byte_mode(dspi); /* If we are in word mode, but only have a single byte to transfer * then switch to byte mode temporarily. Will switch back at the * end of the transfer. */ if (tx_word && (dspi->len == 1)) { dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM; regmap_update_bits(dspi->regmap, SPI_CTAR(dspi->cs), SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8)); tx_word = 0; } while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) { if (tx_word) { if (dspi->len == 1) break; if (!(dspi->dataflags & TRAN_STATE_TX_VOID)) { d16 = *(u16 *)dspi->tx; dspi->tx += 2; } else { d16 = dspi->void_write_data; } dspi_pushr = SPI_PUSHR_TXDATA(d16) | SPI_PUSHR_PCS(dspi->cs) | SPI_PUSHR_CTAS(dspi->cs) | SPI_PUSHR_CONT; dspi->len -= 2; } else { if (!(dspi->dataflags & TRAN_STATE_TX_VOID)) { d8 = *(u8 *)dspi->tx; dspi->tx++; } else { d8 = (u8)dspi->void_write_data; } dspi_pushr = SPI_PUSHR_TXDATA(d8) | SPI_PUSHR_PCS(dspi->cs) | SPI_PUSHR_CTAS(dspi->cs) | SPI_PUSHR_CONT; dspi->len--; } if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) { /* last transfer in the transfer */ dspi_pushr |= SPI_PUSHR_EOQ; } else if (tx_word && (dspi->len == 1)) dspi_pushr |= SPI_PUSHR_EOQ; if (first) { first = 0; dspi_pushr |= SPI_PUSHR_CTCNT; /* clear counter */ } regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr); tx_count++; } return tx_count * (tx_word + 1); } static int dspi_transfer_read(struct fsl_dspi *dspi) { int rx_count = 0; int rx_word = is_double_byte_mode(dspi); u16 d; while ((dspi->rx < dspi->rx_end) && (rx_count < DSPI_FIFO_SIZE)) { if (rx_word) { unsigned int val; if ((dspi->rx_end - dspi->rx) == 1) break; regmap_read(dspi->regmap, SPI_POPR, &val); d = SPI_POPR_RXDATA(val); if (!(dspi->dataflags & TRAN_STATE_RX_VOID)) *(u16 *)dspi->rx = d; dspi->rx += 2; } else { unsigned int val; regmap_read(dspi->regmap, SPI_POPR, &val); d = SPI_POPR_RXDATA(val); if (!(dspi->dataflags & TRAN_STATE_RX_VOID)) *(u8 *)dspi->rx = d; dspi->rx++; } rx_count++; } return rx_count; } static int dspi_txrx_transfer(struct spi_device *spi, struct spi_transfer *t) { struct fsl_dspi *dspi = spi_master_get_devdata(spi->master); dspi->cur_transfer = t; dspi->cur_chip = spi_get_ctldata(spi); dspi->cs = spi->chip_select; dspi->void_write_data = dspi->cur_chip->void_write_data; dspi->dataflags = 0; dspi->tx = (void *)t->tx_buf; dspi->tx_end = dspi->tx + t->len; dspi->rx = t->rx_buf; dspi->rx_end = dspi->rx + t->len; dspi->len = t->len; if (!dspi->rx) dspi->dataflags |= TRAN_STATE_RX_VOID; if (!dspi->tx) dspi->dataflags |= TRAN_STATE_TX_VOID; regmap_write(dspi->regmap, SPI_MCR, dspi->cur_chip->mcr_val); regmap_write(dspi->regmap, SPI_CTAR(dspi->cs), dspi->cur_chip->ctar_val); regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE); if (t->speed_hz) regmap_write(dspi->regmap, SPI_CTAR(dspi->cs), dspi->cur_chip->ctar_val); dspi_transfer_write(dspi); if (wait_event_interruptible(dspi->waitq, dspi->waitflags)) dev_err(&dspi->pdev->dev, "wait transfer complete fail!\n"); dspi->waitflags = 0; return t->len - dspi->len; } static void dspi_chipselect(struct spi_device *spi, int value) { struct fsl_dspi *dspi = spi_master_get_devdata(spi->master); unsigned int pushr; regmap_read(dspi->regmap, SPI_PUSHR, &pushr); switch (value) { case BITBANG_CS_ACTIVE: pushr |= SPI_PUSHR_CONT; break; case BITBANG_CS_INACTIVE: pushr &= ~SPI_PUSHR_CONT; break; } regmap_write(dspi->regmap, SPI_PUSHR, pushr); } static int dspi_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct chip_data *chip; struct fsl_dspi *dspi = spi_master_get_devdata(spi->master); unsigned char br = 0, pbr = 0, fmsz = 0; /* Only alloc on first setup */ chip = spi_get_ctldata(spi); if (chip == NULL) { chip = kcalloc(1, sizeof(struct chip_data), GFP_KERNEL); if (!chip) return -ENOMEM; } chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS | SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF; if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) { fmsz = spi->bits_per_word - 1; } else { pr_err("Invalid wordsize\n"); kfree(chip); return -ENODEV; } chip->void_write_data = 0; hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clk_get_rate(dspi->clk)); chip->ctar_val = SPI_CTAR_FMSZ(fmsz) | SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0) | SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0) | SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0) | SPI_CTAR_PBR(pbr) | SPI_CTAR_BR(br); spi_set_ctldata(spi, chip); return 0; } static int dspi_setup(struct spi_device *spi) { if (!spi->max_speed_hz) return -EINVAL; return dspi_setup_transfer(spi, NULL); } static irqreturn_t dspi_interrupt(int irq, void *dev_id) { struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id; regmap_write(dspi->regmap, SPI_SR, SPI_SR_EOQF); dspi_transfer_read(dspi); if (!dspi->len) { if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM) regmap_update_bits(dspi->regmap, SPI_CTAR(dspi->cs), SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(16)); dspi->waitflags = 1; wake_up_interruptible(&dspi->waitq); } else { dspi_transfer_write(dspi); return IRQ_HANDLED; } return IRQ_HANDLED; } static struct of_device_id fsl_dspi_dt_ids[] = { { .compatible = "fsl,vf610-dspi", .data = NULL, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids); #ifdef CONFIG_PM_SLEEP static int dspi_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct fsl_dspi *dspi = spi_master_get_devdata(master); spi_master_suspend(master); clk_disable_unprepare(dspi->clk); return 0; } static int dspi_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct fsl_dspi *dspi = spi_master_get_devdata(master); clk_prepare_enable(dspi->clk); spi_master_resume(master); return 0; } #endif /* CONFIG_PM_SLEEP */ static const struct dev_pm_ops dspi_pm = { SET_SYSTEM_SLEEP_PM_OPS(dspi_suspend, dspi_resume) }; static struct regmap_config dspi_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .max_register = 0x88, }; static int dspi_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct spi_master *master; struct fsl_dspi *dspi; struct resource *res; void __iomem *base; int ret = 0, cs_num, bus_num; master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi)); if (!master) return -ENOMEM; dspi = spi_master_get_devdata(master); dspi->pdev = pdev; dspi->bitbang.master = master; dspi->bitbang.chipselect = dspi_chipselect; dspi->bitbang.setup_transfer = dspi_setup_transfer; dspi->bitbang.txrx_bufs = dspi_txrx_transfer; dspi->bitbang.master->setup = dspi_setup; dspi->bitbang.master->dev.of_node = pdev->dev.of_node; master->mode_bits = SPI_CPOL | SPI_CPHA; master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) | SPI_BPW_MASK(16); ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num); if (ret < 0) { dev_err(&pdev->dev, "can't get spi-num-chipselects\n"); goto out_master_put; } master->num_chipselect = cs_num; ret = of_property_read_u32(np, "bus-num", &bus_num); if (ret < 0) { dev_err(&pdev->dev, "can't get bus-num\n"); goto out_master_put; } master->bus_num = bus_num; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base)) { ret = PTR_ERR(base); goto out_master_put; } dspi_regmap_config.lock_arg = dspi; dspi_regmap_config.val_format_endian = of_property_read_bool(np, "big-endian") ? REGMAP_ENDIAN_BIG : REGMAP_ENDIAN_DEFAULT; dspi->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "dspi", base, &dspi_regmap_config); if (IS_ERR(dspi->regmap)) { dev_err(&pdev->dev, "failed to init regmap: %ld\n", PTR_ERR(dspi->regmap)); return PTR_ERR(dspi->regmap); } dspi->irq = platform_get_irq(pdev, 0); if (dspi->irq < 0) { dev_err(&pdev->dev, "can't get platform irq\n"); ret = dspi->irq; goto out_master_put; } ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0, pdev->name, dspi); if (ret < 0) { dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n"); goto out_master_put; } dspi->clk = devm_clk_get(&pdev->dev, "dspi"); if (IS_ERR(dspi->clk)) { ret = PTR_ERR(dspi->clk); dev_err(&pdev->dev, "unable to get clock\n"); goto out_master_put; } clk_prepare_enable(dspi->clk); init_waitqueue_head(&dspi->waitq); platform_set_drvdata(pdev, dspi); ret = spi_bitbang_start(&dspi->bitbang); if (ret != 0) { dev_err(&pdev->dev, "Problem registering DSPI master\n"); goto out_clk_put; } pr_info(KERN_INFO "Freescale DSPI master initialized\n"); return ret; out_clk_put: clk_disable_unprepare(dspi->clk); out_master_put: spi_master_put(master); return ret; } static int dspi_remove(struct platform_device *pdev) { struct fsl_dspi *dspi = platform_get_drvdata(pdev); /* Disconnect from the SPI framework */ spi_bitbang_stop(&dspi->bitbang); clk_disable_unprepare(dspi->clk); spi_master_put(dspi->bitbang.master); return 0; } static struct platform_driver fsl_dspi_driver = { .driver.name = DRIVER_NAME, .driver.of_match_table = fsl_dspi_dt_ids, .driver.owner = THIS_MODULE, .driver.pm = &dspi_pm, .probe = dspi_probe, .remove = dspi_remove, }; module_platform_driver(fsl_dspi_driver); MODULE_DESCRIPTION("Freescale DSPI Controller Driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRIVER_NAME);