// SPDX-License-Identifier: GPL-2.0 /* * Thunderbolt Cactus Ridge driver - switch/port utility functions * * Copyright (c) 2014 Andreas Noever */ #include #include #include #include #include #include #include #include #include "tb.h" /* Switch NVM support */ #define NVM_DEVID 0x05 #define NVM_VERSION 0x08 #define NVM_CSS 0x10 #define NVM_FLASH_SIZE 0x45 #define NVM_MIN_SIZE SZ_32K #define NVM_MAX_SIZE SZ_512K static DEFINE_IDA(nvm_ida); struct nvm_auth_status { struct list_head list; uuid_t uuid; u32 status; }; /* * Hold NVM authentication failure status per switch This information * needs to stay around even when the switch gets power cycled so we * keep it separately. */ static LIST_HEAD(nvm_auth_status_cache); static DEFINE_MUTEX(nvm_auth_status_lock); static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw) { struct nvm_auth_status *st; list_for_each_entry(st, &nvm_auth_status_cache, list) { if (uuid_equal(&st->uuid, sw->uuid)) return st; } return NULL; } static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status) { struct nvm_auth_status *st; mutex_lock(&nvm_auth_status_lock); st = __nvm_get_auth_status(sw); mutex_unlock(&nvm_auth_status_lock); *status = st ? st->status : 0; } static void nvm_set_auth_status(const struct tb_switch *sw, u32 status) { struct nvm_auth_status *st; if (WARN_ON(!sw->uuid)) return; mutex_lock(&nvm_auth_status_lock); st = __nvm_get_auth_status(sw); if (!st) { st = kzalloc(sizeof(*st), GFP_KERNEL); if (!st) goto unlock; memcpy(&st->uuid, sw->uuid, sizeof(st->uuid)); INIT_LIST_HEAD(&st->list); list_add_tail(&st->list, &nvm_auth_status_cache); } st->status = status; unlock: mutex_unlock(&nvm_auth_status_lock); } static void nvm_clear_auth_status(const struct tb_switch *sw) { struct nvm_auth_status *st; mutex_lock(&nvm_auth_status_lock); st = __nvm_get_auth_status(sw); if (st) { list_del(&st->list); kfree(st); } mutex_unlock(&nvm_auth_status_lock); } static int nvm_validate_and_write(struct tb_switch *sw) { unsigned int image_size, hdr_size; const u8 *buf = sw->nvm->buf; u16 ds_size; int ret; if (!buf) return -EINVAL; image_size = sw->nvm->buf_data_size; if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE) return -EINVAL; /* * FARB pointer must point inside the image and must at least * contain parts of the digital section we will be reading here. */ hdr_size = (*(u32 *)buf) & 0xffffff; if (hdr_size + NVM_DEVID + 2 >= image_size) return -EINVAL; /* Digital section start should be aligned to 4k page */ if (!IS_ALIGNED(hdr_size, SZ_4K)) return -EINVAL; /* * Read digital section size and check that it also fits inside * the image. */ ds_size = *(u16 *)(buf + hdr_size); if (ds_size >= image_size) return -EINVAL; if (!sw->safe_mode) { u16 device_id; /* * Make sure the device ID in the image matches the one * we read from the switch config space. */ device_id = *(u16 *)(buf + hdr_size + NVM_DEVID); if (device_id != sw->config.device_id) return -EINVAL; if (sw->generation < 3) { /* Write CSS headers first */ ret = dma_port_flash_write(sw->dma_port, DMA_PORT_CSS_ADDRESS, buf + NVM_CSS, DMA_PORT_CSS_MAX_SIZE); if (ret) return ret; } /* Skip headers in the image */ buf += hdr_size; image_size -= hdr_size; } return dma_port_flash_write(sw->dma_port, 0, buf, image_size); } static int nvm_authenticate_host(struct tb_switch *sw) { int ret; /* * Root switch NVM upgrade requires that we disconnect the * existing paths first (in case it is not in safe mode * already). */ if (!sw->safe_mode) { ret = tb_domain_disconnect_all_paths(sw->tb); if (ret) return ret; /* * The host controller goes away pretty soon after this if * everything goes well so getting timeout is expected. */ ret = dma_port_flash_update_auth(sw->dma_port); return ret == -ETIMEDOUT ? 0 : ret; } /* * From safe mode we can get out by just power cycling the * switch. */ dma_port_power_cycle(sw->dma_port); return 0; } static int nvm_authenticate_device(struct tb_switch *sw) { int ret, retries = 10; ret = dma_port_flash_update_auth(sw->dma_port); if (ret && ret != -ETIMEDOUT) return ret; /* * Poll here for the authentication status. It takes some time * for the device to respond (we get timeout for a while). Once * we get response the device needs to be power cycled in order * to the new NVM to be taken into use. */ do { u32 status; ret = dma_port_flash_update_auth_status(sw->dma_port, &status); if (ret < 0 && ret != -ETIMEDOUT) return ret; if (ret > 0) { if (status) { tb_sw_warn(sw, "failed to authenticate NVM\n"); nvm_set_auth_status(sw, status); } tb_sw_info(sw, "power cycling the switch now\n"); dma_port_power_cycle(sw->dma_port); return 0; } msleep(500); } while (--retries); return -ETIMEDOUT; } static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val, size_t bytes) { struct tb_switch *sw = priv; int ret; pm_runtime_get_sync(&sw->dev); ret = dma_port_flash_read(sw->dma_port, offset, val, bytes); pm_runtime_mark_last_busy(&sw->dev); pm_runtime_put_autosuspend(&sw->dev); return ret; } static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val, size_t bytes) { struct tb_switch *sw = priv; int ret = 0; if (!mutex_trylock(&sw->tb->lock)) return restart_syscall(); /* * Since writing the NVM image might require some special steps, * for example when CSS headers are written, we cache the image * locally here and handle the special cases when the user asks * us to authenticate the image. */ if (!sw->nvm->buf) { sw->nvm->buf = vmalloc(NVM_MAX_SIZE); if (!sw->nvm->buf) { ret = -ENOMEM; goto unlock; } } sw->nvm->buf_data_size = offset + bytes; memcpy(sw->nvm->buf + offset, val, bytes); unlock: mutex_unlock(&sw->tb->lock); return ret; } static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id, size_t size, bool active) { struct nvmem_config config; memset(&config, 0, sizeof(config)); if (active) { config.name = "nvm_active"; config.reg_read = tb_switch_nvm_read; config.read_only = true; } else { config.name = "nvm_non_active"; config.reg_write = tb_switch_nvm_write; config.root_only = true; } config.id = id; config.stride = 4; config.word_size = 4; config.size = size; config.dev = &sw->dev; config.owner = THIS_MODULE; config.priv = sw; return nvmem_register(&config); } static int tb_switch_nvm_add(struct tb_switch *sw) { struct nvmem_device *nvm_dev; struct tb_switch_nvm *nvm; u32 val; int ret; if (!sw->dma_port) return 0; nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); if (!nvm) return -ENOMEM; nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL); /* * If the switch is in safe-mode the only accessible portion of * the NVM is the non-active one where userspace is expected to * write new functional NVM. */ if (!sw->safe_mode) { u32 nvm_size, hdr_size; ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val, sizeof(val)); if (ret) goto err_ida; hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K; nvm_size = (SZ_1M << (val & 7)) / 8; nvm_size = (nvm_size - hdr_size) / 2; ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val, sizeof(val)); if (ret) goto err_ida; nvm->major = val >> 16; nvm->minor = val >> 8; nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true); if (IS_ERR(nvm_dev)) { ret = PTR_ERR(nvm_dev); goto err_ida; } nvm->active = nvm_dev; } nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false); if (IS_ERR(nvm_dev)) { ret = PTR_ERR(nvm_dev); goto err_nvm_active; } nvm->non_active = nvm_dev; sw->nvm = nvm; return 0; err_nvm_active: if (nvm->active) nvmem_unregister(nvm->active); err_ida: ida_simple_remove(&nvm_ida, nvm->id); kfree(nvm); return ret; } static void tb_switch_nvm_remove(struct tb_switch *sw) { struct tb_switch_nvm *nvm; nvm = sw->nvm; sw->nvm = NULL; if (!nvm) return; /* Remove authentication status in case the switch is unplugged */ if (!nvm->authenticating) nvm_clear_auth_status(sw); nvmem_unregister(nvm->non_active); if (nvm->active) nvmem_unregister(nvm->active); ida_simple_remove(&nvm_ida, nvm->id); vfree(nvm->buf); kfree(nvm); } /* port utility functions */ static const char *tb_port_type(struct tb_regs_port_header *port) { switch (port->type >> 16) { case 0: switch ((u8) port->type) { case 0: return "Inactive"; case 1: return "Port"; case 2: return "NHI"; default: return "unknown"; } case 0x2: return "Ethernet"; case 0x8: return "SATA"; case 0xe: return "DP/HDMI"; case 0x10: return "PCIe"; case 0x20: return "USB"; default: return "unknown"; } } static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port) { tb_info(tb, " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n", port->port_number, port->vendor_id, port->device_id, port->revision, port->thunderbolt_version, tb_port_type(port), port->type); tb_info(tb, " Max hop id (in/out): %d/%d\n", port->max_in_hop_id, port->max_out_hop_id); tb_info(tb, " Max counters: %d\n", port->max_counters); tb_info(tb, " NFC Credits: %#x\n", port->nfc_credits); } /** * tb_port_state() - get connectedness state of a port * * The port must have a TB_CAP_PHY (i.e. it should be a real port). * * Return: Returns an enum tb_port_state on success or an error code on failure. */ static int tb_port_state(struct tb_port *port) { struct tb_cap_phy phy; int res; if (port->cap_phy == 0) { tb_port_WARN(port, "does not have a PHY\n"); return -EINVAL; } res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2); if (res) return res; return phy.state; } /** * tb_wait_for_port() - wait for a port to become ready * * Wait up to 1 second for a port to reach state TB_PORT_UP. If * wait_if_unplugged is set then we also wait if the port is in state * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after * switch resume). Otherwise we only wait if a device is registered but the link * has not yet been established. * * Return: Returns an error code on failure. Returns 0 if the port is not * connected or failed to reach state TB_PORT_UP within one second. Returns 1 * if the port is connected and in state TB_PORT_UP. */ int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged) { int retries = 10; int state; if (!port->cap_phy) { tb_port_WARN(port, "does not have PHY\n"); return -EINVAL; } if (tb_is_upstream_port(port)) { tb_port_WARN(port, "is the upstream port\n"); return -EINVAL; } while (retries--) { state = tb_port_state(port); if (state < 0) return state; if (state == TB_PORT_DISABLED) { tb_port_info(port, "is disabled (state: 0)\n"); return 0; } if (state == TB_PORT_UNPLUGGED) { if (wait_if_unplugged) { /* used during resume */ tb_port_info(port, "is unplugged (state: 7), retrying...\n"); msleep(100); continue; } tb_port_info(port, "is unplugged (state: 7)\n"); return 0; } if (state == TB_PORT_UP) { tb_port_info(port, "is connected, link is up (state: 2)\n"); return 1; } /* * After plug-in the state is TB_PORT_CONNECTING. Give it some * time. */ tb_port_info(port, "is connected, link is not up (state: %d), retrying...\n", state); msleep(100); } tb_port_warn(port, "failed to reach state TB_PORT_UP. Ignoring port...\n"); return 0; } /** * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port * * Change the number of NFC credits allocated to @port by @credits. To remove * NFC credits pass a negative amount of credits. * * Return: Returns 0 on success or an error code on failure. */ int tb_port_add_nfc_credits(struct tb_port *port, int credits) { if (credits == 0) return 0; tb_port_info(port, "adding %#x NFC credits (%#x -> %#x)", credits, port->config.nfc_credits, port->config.nfc_credits + credits); port->config.nfc_credits += credits; return tb_port_write(port, &port->config.nfc_credits, TB_CFG_PORT, 4, 1); } /** * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER * * Return: Returns 0 on success or an error code on failure. */ int tb_port_clear_counter(struct tb_port *port, int counter) { u32 zero[3] = { 0, 0, 0 }; tb_port_info(port, "clearing counter %d\n", counter); return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3); } /** * tb_init_port() - initialize a port * * This is a helper method for tb_switch_alloc. Does not check or initialize * any downstream switches. * * Return: Returns 0 on success or an error code on failure. */ static int tb_init_port(struct tb_port *port) { int res; int cap; res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8); if (res) return res; /* Port 0 is the switch itself and has no PHY. */ if (port->config.type == TB_TYPE_PORT && port->port != 0) { cap = tb_port_find_cap(port, TB_PORT_CAP_PHY); if (cap > 0) port->cap_phy = cap; else tb_port_WARN(port, "non switch port without a PHY\n"); } tb_dump_port(port->sw->tb, &port->config); /* TODO: Read dual link port, DP port and more from EEPROM. */ return 0; } /* switch utility functions */ static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw) { tb_info(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n", sw->vendor_id, sw->device_id, sw->revision, sw->thunderbolt_version); tb_info(tb, " Max Port Number: %d\n", sw->max_port_number); tb_info(tb, " Config:\n"); tb_info(tb, " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n", sw->upstream_port_number, sw->depth, (((u64) sw->route_hi) << 32) | sw->route_lo, sw->enabled, sw->plug_events_delay); tb_info(tb, " unknown1: %#x unknown4: %#x\n", sw->__unknown1, sw->__unknown4); } /** * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET * * Return: Returns 0 on success or an error code on failure. */ int tb_switch_reset(struct tb *tb, u64 route) { struct tb_cfg_result res; struct tb_regs_switch_header header = { header.route_hi = route >> 32, header.route_lo = route, header.enabled = true, }; tb_info(tb, "resetting switch at %llx\n", route); res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route, 0, 2, 2, 2); if (res.err) return res.err; res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT); if (res.err > 0) return -EIO; return res.err; } struct tb_switch *get_switch_at_route(struct tb_switch *sw, u64 route) { u8 next_port = route; /* * Routes use a stride of 8 bits, * eventhough a port index has 6 bits at most. * */ if (route == 0) return sw; if (next_port > sw->config.max_port_number) return NULL; if (tb_is_upstream_port(&sw->ports[next_port])) return NULL; if (!sw->ports[next_port].remote) return NULL; return get_switch_at_route(sw->ports[next_port].remote->sw, route >> TB_ROUTE_SHIFT); } /** * tb_plug_events_active() - enable/disable plug events on a switch * * Also configures a sane plug_events_delay of 255ms. * * Return: Returns 0 on success or an error code on failure. */ static int tb_plug_events_active(struct tb_switch *sw, bool active) { u32 data; int res; if (!sw->config.enabled) return 0; sw->config.plug_events_delay = 0xff; res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1); if (res) return res; res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); if (res) return res; if (active) { data = data & 0xFFFFFF83; switch (sw->config.device_id) { case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: case PCI_DEVICE_ID_INTEL_PORT_RIDGE: break; default: data |= 4; } } else { data = data | 0x7c; } return tb_sw_write(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1); } static ssize_t authorized_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%u\n", sw->authorized); } static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val) { int ret = -EINVAL; if (!mutex_trylock(&sw->tb->lock)) return restart_syscall(); if (sw->authorized) goto unlock; /* * Make sure there is no PCIe rescan ongoing when a new PCIe * tunnel is created. Otherwise the PCIe rescan code might find * the new tunnel too early. */ pci_lock_rescan_remove(); pm_runtime_get_sync(&sw->dev); switch (val) { /* Approve switch */ case 1: if (sw->key) ret = tb_domain_approve_switch_key(sw->tb, sw); else ret = tb_domain_approve_switch(sw->tb, sw); break; /* Challenge switch */ case 2: if (sw->key) ret = tb_domain_challenge_switch_key(sw->tb, sw); break; default: break; } pm_runtime_mark_last_busy(&sw->dev); pm_runtime_put_autosuspend(&sw->dev); pci_unlock_rescan_remove(); if (!ret) { sw->authorized = val; /* Notify status change to the userspace */ kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE); } unlock: mutex_unlock(&sw->tb->lock); return ret; } static ssize_t authorized_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct tb_switch *sw = tb_to_switch(dev); unsigned int val; ssize_t ret; ret = kstrtouint(buf, 0, &val); if (ret) return ret; if (val > 2) return -EINVAL; ret = tb_switch_set_authorized(sw, val); return ret ? ret : count; } static DEVICE_ATTR_RW(authorized); static ssize_t boot_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%u\n", sw->boot); } static DEVICE_ATTR_RO(boot); static ssize_t device_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%#x\n", sw->device); } static DEVICE_ATTR_RO(device); static ssize_t device_name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : ""); } static DEVICE_ATTR_RO(device_name); static ssize_t key_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); ssize_t ret; if (!mutex_trylock(&sw->tb->lock)) return restart_syscall(); if (sw->key) ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key); else ret = sprintf(buf, "\n"); mutex_unlock(&sw->tb->lock); return ret; } static ssize_t key_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct tb_switch *sw = tb_to_switch(dev); u8 key[TB_SWITCH_KEY_SIZE]; ssize_t ret = count; bool clear = false; if (!strcmp(buf, "\n")) clear = true; else if (hex2bin(key, buf, sizeof(key))) return -EINVAL; if (!mutex_trylock(&sw->tb->lock)) return restart_syscall(); if (sw->authorized) { ret = -EBUSY; } else { kfree(sw->key); if (clear) { sw->key = NULL; } else { sw->key = kmemdup(key, sizeof(key), GFP_KERNEL); if (!sw->key) ret = -ENOMEM; } } mutex_unlock(&sw->tb->lock); return ret; } static DEVICE_ATTR(key, 0600, key_show, key_store); static void nvm_authenticate_start(struct tb_switch *sw) { struct pci_dev *root_port; /* * During host router NVM upgrade we should not allow root port to * go into D3cold because some root ports cannot trigger PME * itself. To be on the safe side keep the root port in D0 during * the whole upgrade process. */ root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev); if (root_port) pm_runtime_get_noresume(&root_port->dev); } static void nvm_authenticate_complete(struct tb_switch *sw) { struct pci_dev *root_port; root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev); if (root_port) pm_runtime_put(&root_port->dev); } static ssize_t nvm_authenticate_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); u32 status; nvm_get_auth_status(sw, &status); return sprintf(buf, "%#x\n", status); } static ssize_t nvm_authenticate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct tb_switch *sw = tb_to_switch(dev); bool val; int ret; if (!mutex_trylock(&sw->tb->lock)) return restart_syscall(); /* If NVMem devices are not yet added */ if (!sw->nvm) { ret = -EAGAIN; goto exit_unlock; } ret = kstrtobool(buf, &val); if (ret) goto exit_unlock; /* Always clear the authentication status */ nvm_clear_auth_status(sw); if (val) { if (!sw->nvm->buf) { ret = -EINVAL; goto exit_unlock; } pm_runtime_get_sync(&sw->dev); ret = nvm_validate_and_write(sw); if (ret) { pm_runtime_mark_last_busy(&sw->dev); pm_runtime_put_autosuspend(&sw->dev); goto exit_unlock; } sw->nvm->authenticating = true; if (!tb_route(sw)) { /* * Keep root port from suspending as long as the * NVM upgrade process is running. */ nvm_authenticate_start(sw); ret = nvm_authenticate_host(sw); if (ret) nvm_authenticate_complete(sw); } else { ret = nvm_authenticate_device(sw); } pm_runtime_mark_last_busy(&sw->dev); pm_runtime_put_autosuspend(&sw->dev); } exit_unlock: mutex_unlock(&sw->tb->lock); if (ret) return ret; return count; } static DEVICE_ATTR_RW(nvm_authenticate); static ssize_t nvm_version_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); int ret; if (!mutex_trylock(&sw->tb->lock)) return restart_syscall(); if (sw->safe_mode) ret = -ENODATA; else if (!sw->nvm) ret = -EAGAIN; else ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor); mutex_unlock(&sw->tb->lock); return ret; } static DEVICE_ATTR_RO(nvm_version); static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%#x\n", sw->vendor); } static DEVICE_ATTR_RO(vendor); static ssize_t vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : ""); } static DEVICE_ATTR_RO(vendor_name); static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tb_switch *sw = tb_to_switch(dev); return sprintf(buf, "%pUb\n", sw->uuid); } static DEVICE_ATTR_RO(unique_id); static struct attribute *switch_attrs[] = { &dev_attr_authorized.attr, &dev_attr_boot.attr, &dev_attr_device.attr, &dev_attr_device_name.attr, &dev_attr_key.attr, &dev_attr_nvm_authenticate.attr, &dev_attr_nvm_version.attr, &dev_attr_vendor.attr, &dev_attr_vendor_name.attr, &dev_attr_unique_id.attr, NULL, }; static umode_t switch_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) { struct device *dev = container_of(kobj, struct device, kobj); struct tb_switch *sw = tb_to_switch(dev); if (attr == &dev_attr_key.attr) { if (tb_route(sw) && sw->tb->security_level == TB_SECURITY_SECURE && sw->security_level == TB_SECURITY_SECURE) return attr->mode; return 0; } else if (attr == &dev_attr_nvm_authenticate.attr || attr == &dev_attr_nvm_version.attr) { if (sw->dma_port) return attr->mode; return 0; } else if (attr == &dev_attr_boot.attr) { if (tb_route(sw)) return attr->mode; return 0; } return sw->safe_mode ? 0 : attr->mode; } static struct attribute_group switch_group = { .is_visible = switch_attr_is_visible, .attrs = switch_attrs, }; static const struct attribute_group *switch_groups[] = { &switch_group, NULL, }; static void tb_switch_release(struct device *dev) { struct tb_switch *sw = tb_to_switch(dev); dma_port_free(sw->dma_port); kfree(sw->uuid); kfree(sw->device_name); kfree(sw->vendor_name); kfree(sw->ports); kfree(sw->drom); kfree(sw->key); kfree(sw); } /* * Currently only need to provide the callbacks. Everything else is handled * in the connection manager. */ static int __maybe_unused tb_switch_runtime_suspend(struct device *dev) { return 0; } static int __maybe_unused tb_switch_runtime_resume(struct device *dev) { return 0; } static const struct dev_pm_ops tb_switch_pm_ops = { SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume, NULL) }; struct device_type tb_switch_type = { .name = "thunderbolt_device", .release = tb_switch_release, .pm = &tb_switch_pm_ops, }; static int tb_switch_get_generation(struct tb_switch *sw) { switch (sw->config.device_id) { case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE: case PCI_DEVICE_ID_INTEL_LIGHT_PEAK: case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C: case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: case PCI_DEVICE_ID_INTEL_PORT_RIDGE: case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE: return 1; case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE: return 2; case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE: case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE: case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE: case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE: case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE: case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE: return 3; default: /* * For unknown switches assume generation to be 1 to be * on the safe side. */ tb_sw_warn(sw, "unsupported switch device id %#x\n", sw->config.device_id); return 1; } } /** * tb_switch_alloc() - allocate a switch * @tb: Pointer to the owning domain * @parent: Parent device for this switch * @route: Route string for this switch * * Allocates and initializes a switch. Will not upload configuration to * the switch. For that you need to call tb_switch_configure() * separately. The returned switch should be released by calling * tb_switch_put(). * * Return: Pointer to the allocated switch or %NULL in case of failure */ struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent, u64 route) { int i; int cap; struct tb_switch *sw; int upstream_port = tb_cfg_get_upstream_port(tb->ctl, route); if (upstream_port < 0) return NULL; sw = kzalloc(sizeof(*sw), GFP_KERNEL); if (!sw) return NULL; sw->tb = tb; if (tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5)) goto err_free_sw_ports; tb_info(tb, "current switch config:\n"); tb_dump_switch(tb, &sw->config); /* configure switch */ sw->config.upstream_port_number = upstream_port; sw->config.depth = tb_route_length(route); sw->config.route_lo = route; sw->config.route_hi = route >> 32; sw->config.enabled = 0; /* initialize ports */ sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports), GFP_KERNEL); if (!sw->ports) goto err_free_sw_ports; for (i = 0; i <= sw->config.max_port_number; i++) { /* minimum setup for tb_find_cap and tb_drom_read to work */ sw->ports[i].sw = sw; sw->ports[i].port = i; } sw->generation = tb_switch_get_generation(sw); cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS); if (cap < 0) { tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n"); goto err_free_sw_ports; } sw->cap_plug_events = cap; /* Root switch is always authorized */ if (!route) sw->authorized = true; device_initialize(&sw->dev); sw->dev.parent = parent; sw->dev.bus = &tb_bus_type; sw->dev.type = &tb_switch_type; sw->dev.groups = switch_groups; dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); return sw; err_free_sw_ports: kfree(sw->ports); kfree(sw); return NULL; } /** * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode * @tb: Pointer to the owning domain * @parent: Parent device for this switch * @route: Route string for this switch * * This creates a switch in safe mode. This means the switch pretty much * lacks all capabilities except DMA configuration port before it is * flashed with a valid NVM firmware. * * The returned switch must be released by calling tb_switch_put(). * * Return: Pointer to the allocated switch or %NULL in case of failure */ struct tb_switch * tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route) { struct tb_switch *sw; sw = kzalloc(sizeof(*sw), GFP_KERNEL); if (!sw) return NULL; sw->tb = tb; sw->config.depth = tb_route_length(route); sw->config.route_hi = upper_32_bits(route); sw->config.route_lo = lower_32_bits(route); sw->safe_mode = true; device_initialize(&sw->dev); sw->dev.parent = parent; sw->dev.bus = &tb_bus_type; sw->dev.type = &tb_switch_type; sw->dev.groups = switch_groups; dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw)); return sw; } /** * tb_switch_configure() - Uploads configuration to the switch * @sw: Switch to configure * * Call this function before the switch is added to the system. It will * upload configuration to the switch and makes it available for the * connection manager to use. * * Return: %0 in case of success and negative errno in case of failure */ int tb_switch_configure(struct tb_switch *sw) { struct tb *tb = sw->tb; u64 route; int ret; route = tb_route(sw); tb_info(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n", route, tb_route_length(route), sw->config.upstream_port_number); if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL) tb_sw_warn(sw, "unknown switch vendor id %#x\n", sw->config.vendor_id); sw->config.enabled = 1; /* upload configuration */ ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3); if (ret) return ret; return tb_plug_events_active(sw, true); } static void tb_switch_set_uuid(struct tb_switch *sw) { u32 uuid[4]; int cap; if (sw->uuid) return; /* * The newer controllers include fused UUID as part of link * controller specific registers */ cap = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER); if (cap > 0) { tb_sw_read(sw, uuid, TB_CFG_SWITCH, cap + 3, 4); } else { /* * ICM generates UUID based on UID and fills the upper * two words with ones. This is not strictly following * UUID format but we want to be compatible with it so * we do the same here. */ uuid[0] = sw->uid & 0xffffffff; uuid[1] = (sw->uid >> 32) & 0xffffffff; uuid[2] = 0xffffffff; uuid[3] = 0xffffffff; } sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL); } static int tb_switch_add_dma_port(struct tb_switch *sw) { u32 status; int ret; switch (sw->generation) { case 3: break; case 2: /* Only root switch can be upgraded */ if (tb_route(sw)) return 0; break; default: /* * DMA port is the only thing available when the switch * is in safe mode. */ if (!sw->safe_mode) return 0; break; } if (sw->no_nvm_upgrade) return 0; sw->dma_port = dma_port_alloc(sw); if (!sw->dma_port) return 0; /* * Check status of the previous flash authentication. If there * is one we need to power cycle the switch in any case to make * it functional again. */ ret = dma_port_flash_update_auth_status(sw->dma_port, &status); if (ret <= 0) return ret; /* Now we can allow root port to suspend again */ if (!tb_route(sw)) nvm_authenticate_complete(sw); if (status) { tb_sw_info(sw, "switch flash authentication failed\n"); tb_switch_set_uuid(sw); nvm_set_auth_status(sw, status); } tb_sw_info(sw, "power cycling the switch now\n"); dma_port_power_cycle(sw->dma_port); /* * We return error here which causes the switch adding failure. * It should appear back after power cycle is complete. */ return -ESHUTDOWN; } /** * tb_switch_add() - Add a switch to the domain * @sw: Switch to add * * This is the last step in adding switch to the domain. It will read * identification information from DROM and initializes ports so that * they can be used to connect other switches. The switch will be * exposed to the userspace when this function successfully returns. To * remove and release the switch, call tb_switch_remove(). * * Return: %0 in case of success and negative errno in case of failure */ int tb_switch_add(struct tb_switch *sw) { int i, ret; /* * Initialize DMA control port now before we read DROM. Recent * host controllers have more complete DROM on NVM that includes * vendor and model identification strings which we then expose * to the userspace. NVM can be accessed through DMA * configuration based mailbox. */ ret = tb_switch_add_dma_port(sw); if (ret) return ret; if (!sw->safe_mode) { /* read drom */ ret = tb_drom_read(sw); if (ret) { tb_sw_warn(sw, "tb_eeprom_read_rom failed\n"); return ret; } tb_sw_info(sw, "uid: %#llx\n", sw->uid); tb_switch_set_uuid(sw); for (i = 0; i <= sw->config.max_port_number; i++) { if (sw->ports[i].disabled) { tb_port_info(&sw->ports[i], "disabled by eeprom\n"); continue; } ret = tb_init_port(&sw->ports[i]); if (ret) return ret; } } ret = device_add(&sw->dev); if (ret) return ret; ret = tb_switch_nvm_add(sw); if (ret) { device_del(&sw->dev); return ret; } pm_runtime_set_active(&sw->dev); if (sw->rpm) { pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(&sw->dev); pm_runtime_mark_last_busy(&sw->dev); pm_runtime_enable(&sw->dev); pm_request_autosuspend(&sw->dev); } return 0; } /** * tb_switch_remove() - Remove and release a switch * @sw: Switch to remove * * This will remove the switch from the domain and release it after last * reference count drops to zero. If there are switches connected below * this switch, they will be removed as well. */ void tb_switch_remove(struct tb_switch *sw) { int i; if (sw->rpm) { pm_runtime_get_sync(&sw->dev); pm_runtime_disable(&sw->dev); } /* port 0 is the switch itself and never has a remote */ for (i = 1; i <= sw->config.max_port_number; i++) { if (tb_is_upstream_port(&sw->ports[i])) continue; if (sw->ports[i].remote) tb_switch_remove(sw->ports[i].remote->sw); sw->ports[i].remote = NULL; if (sw->ports[i].xdomain) tb_xdomain_remove(sw->ports[i].xdomain); sw->ports[i].xdomain = NULL; } if (!sw->is_unplugged) tb_plug_events_active(sw, false); tb_switch_nvm_remove(sw); device_unregister(&sw->dev); } /** * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches */ void tb_sw_set_unplugged(struct tb_switch *sw) { int i; if (sw == sw->tb->root_switch) { tb_sw_WARN(sw, "cannot unplug root switch\n"); return; } if (sw->is_unplugged) { tb_sw_WARN(sw, "is_unplugged already set\n"); return; } sw->is_unplugged = true; for (i = 0; i <= sw->config.max_port_number; i++) { if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote) tb_sw_set_unplugged(sw->ports[i].remote->sw); } } int tb_switch_resume(struct tb_switch *sw) { int i, err; tb_sw_info(sw, "resuming switch\n"); /* * Check for UID of the connected switches except for root * switch which we assume cannot be removed. */ if (tb_route(sw)) { u64 uid; err = tb_drom_read_uid_only(sw, &uid); if (err) { tb_sw_warn(sw, "uid read failed\n"); return err; } if (sw->uid != uid) { tb_sw_info(sw, "changed while suspended (uid %#llx -> %#llx)\n", sw->uid, uid); return -ENODEV; } } /* upload configuration */ err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3); if (err) return err; err = tb_plug_events_active(sw, true); if (err) return err; /* check for surviving downstream switches */ for (i = 1; i <= sw->config.max_port_number; i++) { struct tb_port *port = &sw->ports[i]; if (tb_is_upstream_port(port)) continue; if (!port->remote) continue; if (tb_wait_for_port(port, true) <= 0 || tb_switch_resume(port->remote->sw)) { tb_port_warn(port, "lost during suspend, disconnecting\n"); tb_sw_set_unplugged(port->remote->sw); } } return 0; } void tb_switch_suspend(struct tb_switch *sw) { int i, err; err = tb_plug_events_active(sw, false); if (err) return; for (i = 1; i <= sw->config.max_port_number; i++) { if (!tb_is_upstream_port(&sw->ports[i]) && sw->ports[i].remote) tb_switch_suspend(sw->ports[i].remote->sw); } /* * TODO: invoke tb_cfg_prepare_to_sleep here? does not seem to have any * effect? */ } struct tb_sw_lookup { struct tb *tb; u8 link; u8 depth; const uuid_t *uuid; u64 route; }; static int tb_switch_match(struct device *dev, void *data) { struct tb_switch *sw = tb_to_switch(dev); struct tb_sw_lookup *lookup = data; if (!sw) return 0; if (sw->tb != lookup->tb) return 0; if (lookup->uuid) return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid)); if (lookup->route) { return sw->config.route_lo == lower_32_bits(lookup->route) && sw->config.route_hi == upper_32_bits(lookup->route); } /* Root switch is matched only by depth */ if (!lookup->depth) return !sw->depth; return sw->link == lookup->link && sw->depth == lookup->depth; } /** * tb_switch_find_by_link_depth() - Find switch by link and depth * @tb: Domain the switch belongs * @link: Link number the switch is connected * @depth: Depth of the switch in link * * Returned switch has reference count increased so the caller needs to * call tb_switch_put() when done with the switch. */ struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth) { struct tb_sw_lookup lookup; struct device *dev; memset(&lookup, 0, sizeof(lookup)); lookup.tb = tb; lookup.link = link; lookup.depth = depth; dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); if (dev) return tb_to_switch(dev); return NULL; } /** * tb_switch_find_by_uuid() - Find switch by UUID * @tb: Domain the switch belongs * @uuid: UUID to look for * * Returned switch has reference count increased so the caller needs to * call tb_switch_put() when done with the switch. */ struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid) { struct tb_sw_lookup lookup; struct device *dev; memset(&lookup, 0, sizeof(lookup)); lookup.tb = tb; lookup.uuid = uuid; dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); if (dev) return tb_to_switch(dev); return NULL; } /** * tb_switch_find_by_route() - Find switch by route string * @tb: Domain the switch belongs * @route: Route string to look for * * Returned switch has reference count increased so the caller needs to * call tb_switch_put() when done with the switch. */ struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route) { struct tb_sw_lookup lookup; struct device *dev; if (!route) return tb_switch_get(tb->root_switch); memset(&lookup, 0, sizeof(lookup)); lookup.tb = tb; lookup.route = route; dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match); if (dev) return tb_to_switch(dev); return NULL; } void tb_switch_exit(void) { ida_destroy(&nvm_ida); }