/* * Performance event support framework for SuperH hardware counters. * * Copyright (C) 2009 Paul Mundt * * Heavily based on the x86 and PowerPC implementations. * * x86: * Copyright (C) 2008 Thomas Gleixner * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar * Copyright (C) 2009 Jaswinder Singh Rajput * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra * Copyright (C) 2009 Intel Corporation, * * ppc: * Copyright 2008-2009 Paul Mackerras, IBM Corporation. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include struct cpu_hw_events { struct perf_event *events[MAX_HWEVENTS]; unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)]; unsigned long active_mask[BITS_TO_LONGS(MAX_HWEVENTS)]; }; DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); static struct sh_pmu *sh_pmu __read_mostly; /* Number of perf_events counting hardware events */ static atomic_t num_events; /* Used to avoid races in calling reserve/release_pmc_hardware */ static DEFINE_MUTEX(pmc_reserve_mutex); /* * Stub these out for now, do something more profound later. */ int reserve_pmc_hardware(void) { return 0; } void release_pmc_hardware(void) { } static inline int sh_pmu_initialized(void) { return !!sh_pmu; } const char *perf_pmu_name(void) { if (!sh_pmu) return NULL; return sh_pmu->name; } EXPORT_SYMBOL_GPL(perf_pmu_name); int perf_num_counters(void) { if (!sh_pmu) return 0; return sh_pmu->num_events; } EXPORT_SYMBOL_GPL(perf_num_counters); /* * Release the PMU if this is the last perf_event. */ static void hw_perf_event_destroy(struct perf_event *event) { if (!atomic_add_unless(&num_events, -1, 1)) { mutex_lock(&pmc_reserve_mutex); if (atomic_dec_return(&num_events) == 0) release_pmc_hardware(); mutex_unlock(&pmc_reserve_mutex); } } static int hw_perf_cache_event(int config, int *evp) { unsigned long type, op, result; int ev; if (!sh_pmu->cache_events) return -EINVAL; /* unpack config */ type = config & 0xff; op = (config >> 8) & 0xff; result = (config >> 16) & 0xff; if (type >= PERF_COUNT_HW_CACHE_MAX || op >= PERF_COUNT_HW_CACHE_OP_MAX || result >= PERF_COUNT_HW_CACHE_RESULT_MAX) return -EINVAL; ev = (*sh_pmu->cache_events)[type][op][result]; if (ev == 0) return -EOPNOTSUPP; if (ev == -1) return -EINVAL; *evp = ev; return 0; } static int __hw_perf_event_init(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; struct hw_perf_event *hwc = &event->hw; int config = -1; int err; if (!sh_pmu_initialized()) return -ENODEV; /* * All of the on-chip counters are "limited", in that they have * no interrupts, and are therefore unable to do sampling without * further work and timer assistance. */ if (hwc->sample_period) return -EINVAL; /* * See if we need to reserve the counter. * * If no events are currently in use, then we have to take a * mutex to ensure that we don't race with another task doing * reserve_pmc_hardware or release_pmc_hardware. */ err = 0; if (!atomic_inc_not_zero(&num_events)) { mutex_lock(&pmc_reserve_mutex); if (atomic_read(&num_events) == 0 && reserve_pmc_hardware()) err = -EBUSY; else atomic_inc(&num_events); mutex_unlock(&pmc_reserve_mutex); } if (err) return err; event->destroy = hw_perf_event_destroy; switch (attr->type) { case PERF_TYPE_RAW: config = attr->config & sh_pmu->raw_event_mask; break; case PERF_TYPE_HW_CACHE: err = hw_perf_cache_event(attr->config, &config); if (err) return err; break; case PERF_TYPE_HARDWARE: if (attr->config >= sh_pmu->max_events) return -EINVAL; config = sh_pmu->event_map(attr->config); break; } if (config == -1) return -EINVAL; hwc->config |= config; return 0; } static void sh_perf_event_update(struct perf_event *event, struct hw_perf_event *hwc, int idx) { u64 prev_raw_count, new_raw_count; s64 delta; int shift = 0; /* * Depending on the counter configuration, they may or may not * be chained, in which case the previous counter value can be * updated underneath us if the lower-half overflows. * * Our tactic to handle this is to first atomically read and * exchange a new raw count - then add that new-prev delta * count to the generic counter atomically. * * As there is no interrupt associated with the overflow events, * this is the simplest approach for maintaining consistency. */ again: prev_raw_count = local64_read(&hwc->prev_count); new_raw_count = sh_pmu->read(idx); if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; /* * Now we have the new raw value and have updated the prev * timestamp already. We can now calculate the elapsed delta * (counter-)time and add that to the generic counter. * * Careful, not all hw sign-extends above the physical width * of the count. */ delta = (new_raw_count << shift) - (prev_raw_count << shift); delta >>= shift; local64_add(delta, &event->count); } static void sh_pmu_disable(struct perf_event *event) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; clear_bit(idx, cpuc->active_mask); sh_pmu->disable(hwc, idx); barrier(); sh_perf_event_update(event, &event->hw, idx); cpuc->events[idx] = NULL; clear_bit(idx, cpuc->used_mask); perf_event_update_userpage(event); } static int sh_pmu_enable(struct perf_event *event) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; if (test_and_set_bit(idx, cpuc->used_mask)) { idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events); if (idx == sh_pmu->num_events) return -EAGAIN; set_bit(idx, cpuc->used_mask); hwc->idx = idx; } sh_pmu->disable(hwc, idx); cpuc->events[idx] = event; set_bit(idx, cpuc->active_mask); sh_pmu->enable(hwc, idx); perf_event_update_userpage(event); return 0; } static void sh_pmu_read(struct perf_event *event) { sh_perf_event_update(event, &event->hw, event->hw.idx); } static const struct pmu pmu = { .enable = sh_pmu_enable, .disable = sh_pmu_disable, .read = sh_pmu_read, }; const struct pmu *hw_perf_event_init(struct perf_event *event) { int err = __hw_perf_event_init(event); if (unlikely(err)) { if (event->destroy) event->destroy(event); return ERR_PTR(err); } return &pmu; } static void sh_pmu_setup(int cpu) { struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); memset(cpuhw, 0, sizeof(struct cpu_hw_events)); } static int __cpuinit sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) { unsigned int cpu = (long)hcpu; switch (action & ~CPU_TASKS_FROZEN) { case CPU_UP_PREPARE: sh_pmu_setup(cpu); break; default: break; } return NOTIFY_OK; } void hw_perf_enable(void) { if (!sh_pmu_initialized()) return; sh_pmu->enable_all(); } void hw_perf_disable(void) { if (!sh_pmu_initialized()) return; sh_pmu->disable_all(); } int __cpuinit register_sh_pmu(struct sh_pmu *pmu) { if (sh_pmu) return -EBUSY; sh_pmu = pmu; pr_info("Performance Events: %s support registered\n", pmu->name); WARN_ON(pmu->num_events > MAX_HWEVENTS); perf_cpu_notifier(sh_pmu_notifier); return 0; }