// SPDX-License-Identifier: GPL-2.0 /* * Basic worker thread pool for io_uring * * Copyright (C) 2019 Jens Axboe * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "io-wq.h" #define WORKER_IDLE_TIMEOUT (5 * HZ) enum { IO_WORKER_F_UP = 1, /* up and active */ IO_WORKER_F_RUNNING = 2, /* account as running */ IO_WORKER_F_FREE = 4, /* worker on free list */ IO_WORKER_F_EXITING = 8, /* worker exiting */ IO_WORKER_F_FIXED = 16, /* static idle worker */ IO_WORKER_F_BOUND = 32, /* is doing bounded work */ }; enum { IO_WQ_BIT_EXIT = 0, /* wq exiting */ IO_WQ_BIT_CANCEL = 1, /* cancel work on list */ }; enum { IO_WQE_FLAG_STALLED = 1, /* stalled on hash */ }; /* * One for each thread in a wqe pool */ struct io_worker { refcount_t ref; unsigned flags; struct hlist_nulls_node nulls_node; struct task_struct *task; wait_queue_head_t wait; struct io_wqe *wqe; struct io_wq_work *cur_work; struct rcu_head rcu; struct mm_struct *mm; struct files_struct *restore_files; }; struct io_wq_nulls_list { struct hlist_nulls_head head; unsigned long nulls; }; #if BITS_PER_LONG == 64 #define IO_WQ_HASH_ORDER 6 #else #define IO_WQ_HASH_ORDER 5 #endif struct io_wqe_acct { unsigned nr_workers; unsigned max_workers; atomic_t nr_running; }; enum { IO_WQ_ACCT_BOUND, IO_WQ_ACCT_UNBOUND, }; /* * Per-node worker thread pool */ struct io_wqe { struct { spinlock_t lock; struct list_head work_list; unsigned long hash_map; unsigned flags; } ____cacheline_aligned_in_smp; int node; struct io_wqe_acct acct[2]; struct io_wq_nulls_list free_list; struct io_wq_nulls_list busy_list; struct io_wq *wq; }; /* * Per io_wq state */ struct io_wq { struct io_wqe **wqes; unsigned long state; unsigned nr_wqes; struct task_struct *manager; struct user_struct *user; struct mm_struct *mm; refcount_t refs; struct completion done; }; static bool io_worker_get(struct io_worker *worker) { return refcount_inc_not_zero(&worker->ref); } static void io_worker_release(struct io_worker *worker) { if (refcount_dec_and_test(&worker->ref)) wake_up_process(worker->task); } /* * Note: drops the wqe->lock if returning true! The caller must re-acquire * the lock in that case. Some callers need to restart handling if this * happens, so we can't just re-acquire the lock on behalf of the caller. */ static bool __io_worker_unuse(struct io_wqe *wqe, struct io_worker *worker) { bool dropped_lock = false; if (current->files != worker->restore_files) { __acquire(&wqe->lock); spin_unlock_irq(&wqe->lock); dropped_lock = true; task_lock(current); current->files = worker->restore_files; task_unlock(current); } /* * If we have an active mm, we need to drop the wq lock before unusing * it. If we do, return true and let the caller retry the idle loop. */ if (worker->mm) { if (!dropped_lock) { __acquire(&wqe->lock); spin_unlock_irq(&wqe->lock); dropped_lock = true; } __set_current_state(TASK_RUNNING); set_fs(KERNEL_DS); unuse_mm(worker->mm); mmput(worker->mm); worker->mm = NULL; } return dropped_lock; } static inline struct io_wqe_acct *io_work_get_acct(struct io_wqe *wqe, struct io_wq_work *work) { if (work->flags & IO_WQ_WORK_UNBOUND) return &wqe->acct[IO_WQ_ACCT_UNBOUND]; return &wqe->acct[IO_WQ_ACCT_BOUND]; } static inline struct io_wqe_acct *io_wqe_get_acct(struct io_wqe *wqe, struct io_worker *worker) { if (worker->flags & IO_WORKER_F_BOUND) return &wqe->acct[IO_WQ_ACCT_BOUND]; return &wqe->acct[IO_WQ_ACCT_UNBOUND]; } static void io_worker_exit(struct io_worker *worker) { struct io_wqe *wqe = worker->wqe; struct io_wqe_acct *acct = io_wqe_get_acct(wqe, worker); unsigned nr_workers; /* * If we're not at zero, someone else is holding a brief reference * to the worker. Wait for that to go away. */ set_current_state(TASK_INTERRUPTIBLE); if (!refcount_dec_and_test(&worker->ref)) schedule(); __set_current_state(TASK_RUNNING); preempt_disable(); current->flags &= ~PF_IO_WORKER; if (worker->flags & IO_WORKER_F_RUNNING) atomic_dec(&acct->nr_running); if (!(worker->flags & IO_WORKER_F_BOUND)) atomic_dec(&wqe->wq->user->processes); worker->flags = 0; preempt_enable(); spin_lock_irq(&wqe->lock); hlist_nulls_del_rcu(&worker->nulls_node); if (__io_worker_unuse(wqe, worker)) { __release(&wqe->lock); spin_lock_irq(&wqe->lock); } acct->nr_workers--; nr_workers = wqe->acct[IO_WQ_ACCT_BOUND].nr_workers + wqe->acct[IO_WQ_ACCT_UNBOUND].nr_workers; spin_unlock_irq(&wqe->lock); /* all workers gone, wq exit can proceed */ if (!nr_workers && refcount_dec_and_test(&wqe->wq->refs)) complete(&wqe->wq->done); kfree_rcu(worker, rcu); } static inline bool io_wqe_run_queue(struct io_wqe *wqe) __must_hold(wqe->lock) { if (!list_empty(&wqe->work_list) && !(wqe->flags & IO_WQE_FLAG_STALLED)) return true; return false; } /* * Check head of free list for an available worker. If one isn't available, * caller must wake up the wq manager to create one. */ static bool io_wqe_activate_free_worker(struct io_wqe *wqe) __must_hold(RCU) { struct hlist_nulls_node *n; struct io_worker *worker; n = rcu_dereference(hlist_nulls_first_rcu(&wqe->free_list.head)); if (is_a_nulls(n)) return false; worker = hlist_nulls_entry(n, struct io_worker, nulls_node); if (io_worker_get(worker)) { wake_up(&worker->wait); io_worker_release(worker); return true; } return false; } /* * We need a worker. If we find a free one, we're good. If not, and we're * below the max number of workers, wake up the manager to create one. */ static void io_wqe_wake_worker(struct io_wqe *wqe, struct io_wqe_acct *acct) { bool ret; /* * Most likely an attempt to queue unbounded work on an io_wq that * wasn't setup with any unbounded workers. */ WARN_ON_ONCE(!acct->max_workers); rcu_read_lock(); ret = io_wqe_activate_free_worker(wqe); rcu_read_unlock(); if (!ret && acct->nr_workers < acct->max_workers) wake_up_process(wqe->wq->manager); } static void io_wqe_inc_running(struct io_wqe *wqe, struct io_worker *worker) { struct io_wqe_acct *acct = io_wqe_get_acct(wqe, worker); atomic_inc(&acct->nr_running); } static void io_wqe_dec_running(struct io_wqe *wqe, struct io_worker *worker) __must_hold(wqe->lock) { struct io_wqe_acct *acct = io_wqe_get_acct(wqe, worker); if (atomic_dec_and_test(&acct->nr_running) && io_wqe_run_queue(wqe)) io_wqe_wake_worker(wqe, acct); } static void io_worker_start(struct io_wqe *wqe, struct io_worker *worker) { allow_kernel_signal(SIGINT); current->flags |= PF_IO_WORKER; worker->flags |= (IO_WORKER_F_UP | IO_WORKER_F_RUNNING); worker->restore_files = current->files; io_wqe_inc_running(wqe, worker); } /* * Worker will start processing some work. Move it to the busy list, if * it's currently on the freelist */ static void __io_worker_busy(struct io_wqe *wqe, struct io_worker *worker, struct io_wq_work *work) __must_hold(wqe->lock) { bool worker_bound, work_bound; if (worker->flags & IO_WORKER_F_FREE) { worker->flags &= ~IO_WORKER_F_FREE; hlist_nulls_del_init_rcu(&worker->nulls_node); hlist_nulls_add_head_rcu(&worker->nulls_node, &wqe->busy_list.head); } worker->cur_work = work; /* * If worker is moving from bound to unbound (or vice versa), then * ensure we update the running accounting. */ worker_bound = (worker->flags & IO_WORKER_F_BOUND) != 0; work_bound = (work->flags & IO_WQ_WORK_UNBOUND) == 0; if (worker_bound != work_bound) { io_wqe_dec_running(wqe, worker); if (work_bound) { worker->flags |= IO_WORKER_F_BOUND; wqe->acct[IO_WQ_ACCT_UNBOUND].nr_workers--; wqe->acct[IO_WQ_ACCT_BOUND].nr_workers++; atomic_dec(&wqe->wq->user->processes); } else { worker->flags &= ~IO_WORKER_F_BOUND; wqe->acct[IO_WQ_ACCT_UNBOUND].nr_workers++; wqe->acct[IO_WQ_ACCT_BOUND].nr_workers--; atomic_inc(&wqe->wq->user->processes); } io_wqe_inc_running(wqe, worker); } } /* * No work, worker going to sleep. Move to freelist, and unuse mm if we * have one attached. Dropping the mm may potentially sleep, so we drop * the lock in that case and return success. Since the caller has to * retry the loop in that case (we changed task state), we don't regrab * the lock if we return success. */ static bool __io_worker_idle(struct io_wqe *wqe, struct io_worker *worker) __must_hold(wqe->lock) { if (!(worker->flags & IO_WORKER_F_FREE)) { worker->flags |= IO_WORKER_F_FREE; hlist_nulls_del_init_rcu(&worker->nulls_node); hlist_nulls_add_head_rcu(&worker->nulls_node, &wqe->free_list.head); } return __io_worker_unuse(wqe, worker); } static struct io_wq_work *io_get_next_work(struct io_wqe *wqe, unsigned *hash) __must_hold(wqe->lock) { struct io_wq_work *work; list_for_each_entry(work, &wqe->work_list, list) { /* not hashed, can run anytime */ if (!(work->flags & IO_WQ_WORK_HASHED)) { list_del(&work->list); return work; } /* hashed, can run if not already running */ *hash = work->flags >> IO_WQ_HASH_SHIFT; if (!(wqe->hash_map & BIT_ULL(*hash))) { wqe->hash_map |= BIT_ULL(*hash); list_del(&work->list); return work; } } return NULL; } static void io_worker_handle_work(struct io_worker *worker) __releases(wqe->lock) { struct io_wq_work *work, *old_work; struct io_wqe *wqe = worker->wqe; struct io_wq *wq = wqe->wq; do { unsigned hash = -1U; /* * Signals are either sent to cancel specific work, or to just * cancel all work items. For the former, ->cur_work must * match. ->cur_work is NULL at this point, since we haven't * assigned any work, so it's safe to flush signals for that * case. For the latter case of cancelling all work, the caller * wil have set IO_WQ_BIT_CANCEL. */ if (signal_pending(current)) flush_signals(current); /* * If we got some work, mark us as busy. If we didn't, but * the list isn't empty, it means we stalled on hashed work. * Mark us stalled so we don't keep looking for work when we * can't make progress, any work completion or insertion will * clear the stalled flag. */ work = io_get_next_work(wqe, &hash); if (work) __io_worker_busy(wqe, worker, work); else if (!list_empty(&wqe->work_list)) wqe->flags |= IO_WQE_FLAG_STALLED; spin_unlock_irq(&wqe->lock); if (!work) break; next: if ((work->flags & IO_WQ_WORK_NEEDS_FILES) && current->files != work->files) { task_lock(current); current->files = work->files; task_unlock(current); } if ((work->flags & IO_WQ_WORK_NEEDS_USER) && !worker->mm && wq->mm && mmget_not_zero(wq->mm)) { use_mm(wq->mm); set_fs(USER_DS); worker->mm = wq->mm; } if (test_bit(IO_WQ_BIT_CANCEL, &wq->state)) work->flags |= IO_WQ_WORK_CANCEL; if (worker->mm) work->flags |= IO_WQ_WORK_HAS_MM; old_work = work; work->func(&work); spin_lock_irq(&wqe->lock); worker->cur_work = NULL; if (hash != -1U) { wqe->hash_map &= ~BIT_ULL(hash); wqe->flags &= ~IO_WQE_FLAG_STALLED; } if (work && work != old_work) { spin_unlock_irq(&wqe->lock); /* dependent work not hashed */ hash = -1U; goto next; } } while (1); } static int io_wqe_worker(void *data) { struct io_worker *worker = data; struct io_wqe *wqe = worker->wqe; struct io_wq *wq = wqe->wq; DEFINE_WAIT(wait); io_worker_start(wqe, worker); while (!test_bit(IO_WQ_BIT_EXIT, &wq->state)) { prepare_to_wait(&worker->wait, &wait, TASK_INTERRUPTIBLE); spin_lock_irq(&wqe->lock); if (io_wqe_run_queue(wqe)) { __set_current_state(TASK_RUNNING); io_worker_handle_work(worker); continue; } /* drops the lock on success, retry */ if (__io_worker_idle(wqe, worker)) { __release(&wqe->lock); continue; } spin_unlock_irq(&wqe->lock); if (signal_pending(current)) flush_signals(current); if (schedule_timeout(WORKER_IDLE_TIMEOUT)) continue; /* timed out, exit unless we're the fixed worker */ if (test_bit(IO_WQ_BIT_EXIT, &wq->state) || !(worker->flags & IO_WORKER_F_FIXED)) break; } finish_wait(&worker->wait, &wait); if (test_bit(IO_WQ_BIT_EXIT, &wq->state)) { spin_lock_irq(&wqe->lock); if (!list_empty(&wqe->work_list)) io_worker_handle_work(worker); else spin_unlock_irq(&wqe->lock); } io_worker_exit(worker); return 0; } /* * Called when a worker is scheduled in. Mark us as currently running. */ void io_wq_worker_running(struct task_struct *tsk) { struct io_worker *worker = kthread_data(tsk); struct io_wqe *wqe = worker->wqe; if (!(worker->flags & IO_WORKER_F_UP)) return; if (worker->flags & IO_WORKER_F_RUNNING) return; worker->flags |= IO_WORKER_F_RUNNING; io_wqe_inc_running(wqe, worker); } /* * Called when worker is going to sleep. If there are no workers currently * running and we have work pending, wake up a free one or have the manager * set one up. */ void io_wq_worker_sleeping(struct task_struct *tsk) { struct io_worker *worker = kthread_data(tsk); struct io_wqe *wqe = worker->wqe; if (!(worker->flags & IO_WORKER_F_UP)) return; if (!(worker->flags & IO_WORKER_F_RUNNING)) return; worker->flags &= ~IO_WORKER_F_RUNNING; spin_lock_irq(&wqe->lock); io_wqe_dec_running(wqe, worker); spin_unlock_irq(&wqe->lock); } static void create_io_worker(struct io_wq *wq, struct io_wqe *wqe, int index) { struct io_wqe_acct *acct =&wqe->acct[index]; struct io_worker *worker; worker = kcalloc_node(1, sizeof(*worker), GFP_KERNEL, wqe->node); if (!worker) return; refcount_set(&worker->ref, 1); worker->nulls_node.pprev = NULL; init_waitqueue_head(&worker->wait); worker->wqe = wqe; worker->task = kthread_create_on_node(io_wqe_worker, worker, wqe->node, "io_wqe_worker-%d/%d", index, wqe->node); if (IS_ERR(worker->task)) { kfree(worker); return; } spin_lock_irq(&wqe->lock); hlist_nulls_add_head_rcu(&worker->nulls_node, &wqe->free_list.head); worker->flags |= IO_WORKER_F_FREE; if (index == IO_WQ_ACCT_BOUND) worker->flags |= IO_WORKER_F_BOUND; if (!acct->nr_workers && (worker->flags & IO_WORKER_F_BOUND)) worker->flags |= IO_WORKER_F_FIXED; acct->nr_workers++; spin_unlock_irq(&wqe->lock); if (index == IO_WQ_ACCT_UNBOUND) atomic_inc(&wq->user->processes); wake_up_process(worker->task); } static inline bool io_wqe_need_worker(struct io_wqe *wqe, int index) __must_hold(wqe->lock) { struct io_wqe_acct *acct = &wqe->acct[index]; /* always ensure we have one bounded worker */ if (index == IO_WQ_ACCT_BOUND && !acct->nr_workers) return true; /* if we have available workers or no work, no need */ if (!hlist_nulls_empty(&wqe->free_list.head) || !io_wqe_run_queue(wqe)) return false; return acct->nr_workers < acct->max_workers; } /* * Manager thread. Tasked with creating new workers, if we need them. */ static int io_wq_manager(void *data) { struct io_wq *wq = data; while (!kthread_should_stop()) { int i; for (i = 0; i < wq->nr_wqes; i++) { struct io_wqe *wqe = wq->wqes[i]; bool fork_worker[2] = { false, false }; spin_lock_irq(&wqe->lock); if (io_wqe_need_worker(wqe, IO_WQ_ACCT_BOUND)) fork_worker[IO_WQ_ACCT_BOUND] = true; if (io_wqe_need_worker(wqe, IO_WQ_ACCT_UNBOUND)) fork_worker[IO_WQ_ACCT_UNBOUND] = true; spin_unlock_irq(&wqe->lock); if (fork_worker[IO_WQ_ACCT_BOUND]) create_io_worker(wq, wqe, IO_WQ_ACCT_BOUND); if (fork_worker[IO_WQ_ACCT_UNBOUND]) create_io_worker(wq, wqe, IO_WQ_ACCT_UNBOUND); } set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(HZ); } return 0; } static bool io_wq_can_queue(struct io_wqe *wqe, struct io_wqe_acct *acct, struct io_wq_work *work) { bool free_worker; if (!(work->flags & IO_WQ_WORK_UNBOUND)) return true; if (atomic_read(&acct->nr_running)) return true; rcu_read_lock(); free_worker = !hlist_nulls_empty(&wqe->free_list.head); rcu_read_unlock(); if (free_worker) return true; if (atomic_read(&wqe->wq->user->processes) >= acct->max_workers && !(capable(CAP_SYS_RESOURCE) || capable(CAP_SYS_ADMIN))) return false; return true; } static void io_wqe_enqueue(struct io_wqe *wqe, struct io_wq_work *work) { struct io_wqe_acct *acct = io_work_get_acct(wqe, work); unsigned long flags; /* * Do early check to see if we need a new unbound worker, and if we do, * if we're allowed to do so. This isn't 100% accurate as there's a * gap between this check and incrementing the value, but that's OK. * It's close enough to not be an issue, fork() has the same delay. */ if (unlikely(!io_wq_can_queue(wqe, acct, work))) { work->flags |= IO_WQ_WORK_CANCEL; work->func(&work); return; } spin_lock_irqsave(&wqe->lock, flags); list_add_tail(&work->list, &wqe->work_list); wqe->flags &= ~IO_WQE_FLAG_STALLED; spin_unlock_irqrestore(&wqe->lock, flags); if (!atomic_read(&acct->nr_running)) io_wqe_wake_worker(wqe, acct); } void io_wq_enqueue(struct io_wq *wq, struct io_wq_work *work) { struct io_wqe *wqe = wq->wqes[numa_node_id()]; io_wqe_enqueue(wqe, work); } /* * Enqueue work, hashed by some key. Work items that hash to the same value * will not be done in parallel. Used to limit concurrent writes, generally * hashed by inode. */ void io_wq_enqueue_hashed(struct io_wq *wq, struct io_wq_work *work, void *val) { struct io_wqe *wqe = wq->wqes[numa_node_id()]; unsigned bit; bit = hash_ptr(val, IO_WQ_HASH_ORDER); work->flags |= (IO_WQ_WORK_HASHED | (bit << IO_WQ_HASH_SHIFT)); io_wqe_enqueue(wqe, work); } static bool io_wqe_worker_send_sig(struct io_worker *worker, void *data) { send_sig(SIGINT, worker->task, 1); return false; } /* * Iterate the passed in list and call the specific function for each * worker that isn't exiting */ static bool io_wq_for_each_worker(struct io_wqe *wqe, struct io_wq_nulls_list *list, bool (*func)(struct io_worker *, void *), void *data) { struct hlist_nulls_node *n; struct io_worker *worker; bool ret = false; restart: hlist_nulls_for_each_entry_rcu(worker, n, &list->head, nulls_node) { if (io_worker_get(worker)) { ret = func(worker, data); io_worker_release(worker); if (ret) break; } } if (!ret && get_nulls_value(n) != list->nulls) goto restart; return ret; } void io_wq_cancel_all(struct io_wq *wq) { int i; set_bit(IO_WQ_BIT_CANCEL, &wq->state); /* * Browse both lists, as there's a gap between handing work off * to a worker and the worker putting itself on the busy_list */ rcu_read_lock(); for (i = 0; i < wq->nr_wqes; i++) { struct io_wqe *wqe = wq->wqes[i]; io_wq_for_each_worker(wqe, &wqe->busy_list, io_wqe_worker_send_sig, NULL); io_wq_for_each_worker(wqe, &wqe->free_list, io_wqe_worker_send_sig, NULL); } rcu_read_unlock(); } struct io_cb_cancel_data { struct io_wqe *wqe; work_cancel_fn *cancel; void *caller_data; }; static bool io_work_cancel(struct io_worker *worker, void *cancel_data) { struct io_cb_cancel_data *data = cancel_data; struct io_wqe *wqe = data->wqe; unsigned long flags; bool ret = false; /* * Hold the lock to avoid ->cur_work going out of scope, caller * may deference the passed in work. */ spin_lock_irqsave(&wqe->lock, flags); if (worker->cur_work && data->cancel(worker->cur_work, data->caller_data)) { send_sig(SIGINT, worker->task, 1); ret = true; } spin_unlock_irqrestore(&wqe->lock, flags); return ret; } static enum io_wq_cancel io_wqe_cancel_cb_work(struct io_wqe *wqe, work_cancel_fn *cancel, void *cancel_data) { struct io_cb_cancel_data data = { .wqe = wqe, .cancel = cancel, .caller_data = cancel_data, }; struct io_wq_work *work; unsigned long flags; bool found = false; spin_lock_irqsave(&wqe->lock, flags); list_for_each_entry(work, &wqe->work_list, list) { if (cancel(work, cancel_data)) { list_del(&work->list); found = true; break; } } spin_unlock_irqrestore(&wqe->lock, flags); if (found) { work->flags |= IO_WQ_WORK_CANCEL; work->func(&work); return IO_WQ_CANCEL_OK; } rcu_read_lock(); found = io_wq_for_each_worker(wqe, &wqe->free_list, io_work_cancel, &data); if (found) goto done; found = io_wq_for_each_worker(wqe, &wqe->busy_list, io_work_cancel, &data); done: rcu_read_unlock(); return found ? IO_WQ_CANCEL_RUNNING : IO_WQ_CANCEL_NOTFOUND; } enum io_wq_cancel io_wq_cancel_cb(struct io_wq *wq, work_cancel_fn *cancel, void *data) { enum io_wq_cancel ret = IO_WQ_CANCEL_NOTFOUND; int i; for (i = 0; i < wq->nr_wqes; i++) { struct io_wqe *wqe = wq->wqes[i]; ret = io_wqe_cancel_cb_work(wqe, cancel, data); if (ret != IO_WQ_CANCEL_NOTFOUND) break; } return ret; } static bool io_wq_worker_cancel(struct io_worker *worker, void *data) { struct io_wq_work *work = data; if (worker->cur_work == work) { send_sig(SIGINT, worker->task, 1); return true; } return false; } static enum io_wq_cancel io_wqe_cancel_work(struct io_wqe *wqe, struct io_wq_work *cwork) { struct io_wq_work *work; unsigned long flags; bool found = false; cwork->flags |= IO_WQ_WORK_CANCEL; /* * First check pending list, if we're lucky we can just remove it * from there. CANCEL_OK means that the work is returned as-new, * no completion will be posted for it. */ spin_lock_irqsave(&wqe->lock, flags); list_for_each_entry(work, &wqe->work_list, list) { if (work == cwork) { list_del(&work->list); found = true; break; } } spin_unlock_irqrestore(&wqe->lock, flags); if (found) { work->flags |= IO_WQ_WORK_CANCEL; work->func(&work); return IO_WQ_CANCEL_OK; } /* * Now check if a free (going busy) or busy worker has the work * currently running. If we find it there, we'll return CANCEL_RUNNING * as an indication that we attempte to signal cancellation. The * completion will run normally in this case. */ rcu_read_lock(); found = io_wq_for_each_worker(wqe, &wqe->free_list, io_wq_worker_cancel, cwork); if (found) goto done; found = io_wq_for_each_worker(wqe, &wqe->busy_list, io_wq_worker_cancel, cwork); done: rcu_read_unlock(); return found ? IO_WQ_CANCEL_RUNNING : IO_WQ_CANCEL_NOTFOUND; } enum io_wq_cancel io_wq_cancel_work(struct io_wq *wq, struct io_wq_work *cwork) { enum io_wq_cancel ret = IO_WQ_CANCEL_NOTFOUND; int i; for (i = 0; i < wq->nr_wqes; i++) { struct io_wqe *wqe = wq->wqes[i]; ret = io_wqe_cancel_work(wqe, cwork); if (ret != IO_WQ_CANCEL_NOTFOUND) break; } return ret; } struct io_wq_flush_data { struct io_wq_work work; struct completion done; }; static void io_wq_flush_func(struct io_wq_work **workptr) { struct io_wq_work *work = *workptr; struct io_wq_flush_data *data; data = container_of(work, struct io_wq_flush_data, work); complete(&data->done); } /* * Doesn't wait for previously queued work to finish. When this completes, * it just means that previously queued work was started. */ void io_wq_flush(struct io_wq *wq) { struct io_wq_flush_data data; int i; for (i = 0; i < wq->nr_wqes; i++) { struct io_wqe *wqe = wq->wqes[i]; init_completion(&data.done); INIT_IO_WORK(&data.work, io_wq_flush_func); io_wqe_enqueue(wqe, &data.work); wait_for_completion(&data.done); } } struct io_wq *io_wq_create(unsigned bounded, struct mm_struct *mm, struct user_struct *user) { int ret = -ENOMEM, i, node; struct io_wq *wq; wq = kcalloc(1, sizeof(*wq), GFP_KERNEL); if (!wq) return ERR_PTR(-ENOMEM); wq->nr_wqes = num_online_nodes(); wq->wqes = kcalloc(wq->nr_wqes, sizeof(struct io_wqe *), GFP_KERNEL); if (!wq->wqes) { kfree(wq); return ERR_PTR(-ENOMEM); } /* caller must already hold a reference to this */ wq->user = user; i = 0; refcount_set(&wq->refs, wq->nr_wqes); for_each_online_node(node) { struct io_wqe *wqe; wqe = kcalloc_node(1, sizeof(struct io_wqe), GFP_KERNEL, node); if (!wqe) break; wq->wqes[i] = wqe; wqe->node = node; wqe->acct[IO_WQ_ACCT_BOUND].max_workers = bounded; atomic_set(&wqe->acct[IO_WQ_ACCT_BOUND].nr_running, 0); if (user) { wqe->acct[IO_WQ_ACCT_UNBOUND].max_workers = task_rlimit(current, RLIMIT_NPROC); } atomic_set(&wqe->acct[IO_WQ_ACCT_UNBOUND].nr_running, 0); wqe->node = node; wqe->wq = wq; spin_lock_init(&wqe->lock); INIT_LIST_HEAD(&wqe->work_list); INIT_HLIST_NULLS_HEAD(&wqe->free_list.head, 0); wqe->free_list.nulls = 0; INIT_HLIST_NULLS_HEAD(&wqe->busy_list.head, 1); wqe->busy_list.nulls = 1; i++; } init_completion(&wq->done); if (i != wq->nr_wqes) goto err; /* caller must have already done mmgrab() on this mm */ wq->mm = mm; wq->manager = kthread_create(io_wq_manager, wq, "io_wq_manager"); if (!IS_ERR(wq->manager)) { wake_up_process(wq->manager); return wq; } ret = PTR_ERR(wq->manager); wq->manager = NULL; err: complete(&wq->done); io_wq_destroy(wq); return ERR_PTR(ret); } static bool io_wq_worker_wake(struct io_worker *worker, void *data) { wake_up_process(worker->task); return false; } void io_wq_destroy(struct io_wq *wq) { int i; if (wq->manager) { set_bit(IO_WQ_BIT_EXIT, &wq->state); kthread_stop(wq->manager); } rcu_read_lock(); for (i = 0; i < wq->nr_wqes; i++) { struct io_wqe *wqe = wq->wqes[i]; if (!wqe) continue; io_wq_for_each_worker(wqe, &wqe->free_list, io_wq_worker_wake, NULL); io_wq_for_each_worker(wqe, &wqe->busy_list, io_wq_worker_wake, NULL); } rcu_read_unlock(); wait_for_completion(&wq->done); for (i = 0; i < wq->nr_wqes; i++) kfree(wq->wqes[i]); kfree(wq->wqes); kfree(wq); }