/* * Copyright (C) 1994 Linus Torvalds * * Pentium III FXSR, SSE support * General FPU state handling cleanups * Gareth Hughes , May 2000 */ #include #include #include #include #include /* * Represents the initial FPU state. It's mostly (but not completely) zeroes, * depending on the FPU hardware format: */ union thread_xstate init_fpstate __read_mostly; /* * Track whether the kernel is using the FPU state * currently. * * This flag is used: * * - by IRQ context code to potentially use the FPU * if it's unused. * * - to debug kernel_fpu_begin()/end() correctness */ static DEFINE_PER_CPU(bool, in_kernel_fpu); /* * Track which context is using the FPU on the CPU: */ DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); static void kernel_fpu_disable(void) { WARN_ON(this_cpu_read(in_kernel_fpu)); this_cpu_write(in_kernel_fpu, true); } static void kernel_fpu_enable(void) { WARN_ON_ONCE(!this_cpu_read(in_kernel_fpu)); this_cpu_write(in_kernel_fpu, false); } static bool kernel_fpu_disabled(void) { return this_cpu_read(in_kernel_fpu); } /* * Were we in an interrupt that interrupted kernel mode? * * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that * pair does nothing at all: the thread must not have fpu (so * that we don't try to save the FPU state), and TS must * be set (so that the clts/stts pair does nothing that is * visible in the interrupted kernel thread). * * Except for the eagerfpu case when we return true; in the likely case * the thread has FPU but we are not going to set/clear TS. */ static bool interrupted_kernel_fpu_idle(void) { if (kernel_fpu_disabled()) return false; if (use_eager_fpu()) return true; return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS); } /* * Were we in user mode (or vm86 mode) when we were * interrupted? * * Doing kernel_fpu_begin/end() is ok if we are running * in an interrupt context from user mode - we'll just * save the FPU state as required. */ static bool interrupted_user_mode(void) { struct pt_regs *regs = get_irq_regs(); return regs && user_mode(regs); } /* * Can we use the FPU in kernel mode with the * whole "kernel_fpu_begin/end()" sequence? * * It's always ok in process context (ie "not interrupt") * but it is sometimes ok even from an irq. */ bool irq_fpu_usable(void) { return !in_interrupt() || interrupted_user_mode() || interrupted_kernel_fpu_idle(); } EXPORT_SYMBOL(irq_fpu_usable); void __kernel_fpu_begin(void) { struct fpu *fpu = ¤t->thread.fpu; kernel_fpu_disable(); if (fpu->fpregs_active) { copy_fpregs_to_fpstate(fpu); } else { this_cpu_write(fpu_fpregs_owner_ctx, NULL); __fpregs_activate_hw(); } } EXPORT_SYMBOL(__kernel_fpu_begin); void __kernel_fpu_end(void) { struct fpu *fpu = ¤t->thread.fpu; if (fpu->fpregs_active) { if (WARN_ON(copy_fpstate_to_fpregs(fpu))) fpu__clear(fpu); } else { __fpregs_deactivate_hw(); } kernel_fpu_enable(); } EXPORT_SYMBOL(__kernel_fpu_end); void kernel_fpu_begin(void) { preempt_disable(); WARN_ON_ONCE(!irq_fpu_usable()); __kernel_fpu_begin(); } EXPORT_SYMBOL_GPL(kernel_fpu_begin); void kernel_fpu_end(void) { __kernel_fpu_end(); preempt_enable(); } EXPORT_SYMBOL_GPL(kernel_fpu_end); /* * CR0::TS save/restore functions: */ int irq_ts_save(void) { /* * If in process context and not atomic, we can take a spurious DNA fault. * Otherwise, doing clts() in process context requires disabling preemption * or some heavy lifting like kernel_fpu_begin() */ if (!in_atomic()) return 0; if (read_cr0() & X86_CR0_TS) { clts(); return 1; } return 0; } EXPORT_SYMBOL_GPL(irq_ts_save); void irq_ts_restore(int TS_state) { if (TS_state) stts(); } EXPORT_SYMBOL_GPL(irq_ts_restore); /* * Save the FPU state (mark it for reload if necessary): * * This only ever gets called for the current task. */ void fpu__save(struct fpu *fpu) { WARN_ON(fpu != ¤t->thread.fpu); preempt_disable(); if (fpu->fpregs_active) { if (!copy_fpregs_to_fpstate(fpu)) fpregs_deactivate(fpu); } preempt_enable(); } EXPORT_SYMBOL_GPL(fpu__save); /* * Legacy x87 fpstate state init: */ static inline void fpstate_init_fstate(struct i387_fsave_struct *fp) { fp->cwd = 0xffff037fu; fp->swd = 0xffff0000u; fp->twd = 0xffffffffu; fp->fos = 0xffff0000u; } void fpstate_init(union thread_xstate *state) { if (!cpu_has_fpu) { fpstate_init_soft(&state->soft); return; } memset(state, 0, xstate_size); if (cpu_has_fxsr) fpstate_init_fxstate(&state->fxsave); else fpstate_init_fstate(&state->fsave); } EXPORT_SYMBOL_GPL(fpstate_init); /* * Copy the current task's FPU state to a new task's FPU context. * * In the 'eager' case we just save to the destination context. * * In the 'lazy' case we save to the source context, mark the FPU lazy * via stts() and copy the source context into the destination context. */ static void fpu_copy(struct fpu *dst_fpu, struct fpu *src_fpu) { WARN_ON(src_fpu != ¤t->thread.fpu); /* * Don't let 'init optimized' areas of the XSAVE area * leak into the child task: */ if (use_eager_fpu()) memset(&dst_fpu->state.xsave, 0, xstate_size); /* * Save current FPU registers directly into the child * FPU context, without any memory-to-memory copying. * * If the FPU context got destroyed in the process (FNSAVE * done on old CPUs) then copy it back into the source * context and mark the current task for lazy restore. * * We have to do all this with preemption disabled, * mostly because of the FNSAVE case, because in that * case we must not allow preemption in the window * between the FNSAVE and us marking the context lazy. * * It shouldn't be an issue as even FNSAVE is plenty * fast in terms of critical section length. */ preempt_disable(); if (!copy_fpregs_to_fpstate(dst_fpu)) { memcpy(&src_fpu->state, &dst_fpu->state, xstate_size); fpregs_deactivate(src_fpu); } preempt_enable(); } int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu) { dst_fpu->counter = 0; dst_fpu->fpregs_active = 0; dst_fpu->last_cpu = -1; if (src_fpu->fpstate_active) fpu_copy(dst_fpu, src_fpu); return 0; } /* * Activate the current task's in-memory FPU context, * if it has not been used before: */ void fpu__activate_curr(struct fpu *fpu) { WARN_ON_ONCE(fpu != ¤t->thread.fpu); if (!fpu->fpstate_active) { fpstate_init(&fpu->state); /* Safe to do for the current task: */ fpu->fpstate_active = 1; } } EXPORT_SYMBOL_GPL(fpu__activate_curr); /* * This function must be called before we modify a stopped child's * fpstate. * * If the child has not used the FPU before then initialize its * fpstate. * * If the child has used the FPU before then unlazy it. * * [ After this function call, after registers in the fpstate are * modified and the child task has woken up, the child task will * restore the modified FPU state from the modified context. If we * didn't clear its lazy status here then the lazy in-registers * state pending on its former CPU could be restored, corrupting * the modifications. ] * * This function is also called before we read a stopped child's * FPU state - to make sure it's initialized if the child has * no active FPU state. * * TODO: A future optimization would be to skip the unlazying in * the read-only case, it's not strictly necessary for * read-only access to the context. */ static void fpu__activate_stopped(struct fpu *child_fpu) { WARN_ON_ONCE(child_fpu == ¤t->thread.fpu); if (child_fpu->fpstate_active) { child_fpu->last_cpu = -1; } else { fpstate_init(&child_fpu->state); /* Safe to do for stopped child tasks: */ child_fpu->fpstate_active = 1; } } /* * 'fpu__restore()' is called to copy FPU registers from * the FPU fpstate to the live hw registers and to activate * access to the hardware registers, so that FPU instructions * can be used afterwards. * * Must be called with kernel preemption disabled (for example * with local interrupts disabled, as it is in the case of * do_device_not_available()). */ void fpu__restore(void) { struct task_struct *tsk = current; struct fpu *fpu = &tsk->thread.fpu; fpu__activate_curr(fpu); /* Avoid __kernel_fpu_begin() right after fpregs_activate() */ kernel_fpu_disable(); fpregs_activate(fpu); if (unlikely(copy_fpstate_to_fpregs(fpu))) { fpu__clear(fpu); force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk); } else { tsk->thread.fpu.counter++; } kernel_fpu_enable(); } EXPORT_SYMBOL_GPL(fpu__restore); /* * Drops current FPU state: deactivates the fpregs and * the fpstate. NOTE: it still leaves previous contents * in the fpregs in the eager-FPU case. * * This function can be used in cases where we know that * a state-restore is coming: either an explicit one, * or a reschedule. */ void fpu__drop(struct fpu *fpu) { preempt_disable(); fpu->counter = 0; if (fpu->fpregs_active) { /* Ignore delayed exceptions from user space */ asm volatile("1: fwait\n" "2:\n" _ASM_EXTABLE(1b, 2b)); fpregs_deactivate(fpu); } fpu->fpstate_active = 0; preempt_enable(); } /* * Clear FPU registers by setting them up from * the init fpstate: */ static inline void copy_init_fpstate_to_fpregs(void) { if (use_xsave()) xrstor_state(&init_fpstate.xsave, -1); else fxrstor_checking(&init_fpstate.fxsave); } /* * Clear the FPU state back to init state. * * Called by sys_execve(), by the signal handler code and by various * error paths. */ void fpu__clear(struct fpu *fpu) { WARN_ON_ONCE(fpu != ¤t->thread.fpu); /* Almost certainly an anomaly */ if (!use_eager_fpu()) { /* FPU state will be reallocated lazily at the first use. */ fpu__drop(fpu); } else { if (!fpu->fpstate_active) { fpu__activate_curr(fpu); user_fpu_begin(); } copy_init_fpstate_to_fpregs(); } } /* * The xstateregs_active() routine is the same as the regset_fpregs_active() routine, * as the "regset->n" for the xstate regset will be updated based on the feature * capabilites supported by the xsave. */ int regset_fpregs_active(struct task_struct *target, const struct user_regset *regset) { struct fpu *target_fpu = &target->thread.fpu; return target_fpu->fpstate_active ? regset->n : 0; } int regset_xregset_fpregs_active(struct task_struct *target, const struct user_regset *regset) { struct fpu *target_fpu = &target->thread.fpu; return (cpu_has_fxsr && target_fpu->fpstate_active) ? regset->n : 0; } int xfpregs_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { struct fpu *fpu = &target->thread.fpu; if (!cpu_has_fxsr) return -ENODEV; fpu__activate_stopped(fpu); fpstate_sanitize_xstate(fpu); return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &fpu->state.fxsave, 0, -1); } int xfpregs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct fpu *fpu = &target->thread.fpu; int ret; if (!cpu_has_fxsr) return -ENODEV; fpu__activate_stopped(fpu); fpstate_sanitize_xstate(fpu); ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpu->state.fxsave, 0, -1); /* * mxcsr reserved bits must be masked to zero for security reasons. */ fpu->state.fxsave.mxcsr &= mxcsr_feature_mask; /* * update the header bits in the xsave header, indicating the * presence of FP and SSE state. */ if (cpu_has_xsave) fpu->state.xsave.header.xfeatures |= XSTATE_FPSSE; return ret; } int xstateregs_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { struct fpu *fpu = &target->thread.fpu; struct xsave_struct *xsave; int ret; if (!cpu_has_xsave) return -ENODEV; fpu__activate_stopped(fpu); xsave = &fpu->state.xsave; /* * Copy the 48bytes defined by the software first into the xstate * memory layout in the thread struct, so that we can copy the entire * xstateregs to the user using one user_regset_copyout(). */ memcpy(&xsave->i387.sw_reserved, xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes)); /* * Copy the xstate memory layout. */ ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, xsave, 0, -1); return ret; } int xstateregs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct fpu *fpu = &target->thread.fpu; struct xsave_struct *xsave; int ret; if (!cpu_has_xsave) return -ENODEV; fpu__activate_stopped(fpu); xsave = &fpu->state.xsave; ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1); /* * mxcsr reserved bits must be masked to zero for security reasons. */ xsave->i387.mxcsr &= mxcsr_feature_mask; xsave->header.xfeatures &= xfeatures_mask; /* * These bits must be zero. */ memset(&xsave->header.reserved, 0, 48); return ret; } #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION /* * FPU tag word conversions. */ static inline unsigned short twd_i387_to_fxsr(unsigned short twd) { unsigned int tmp; /* to avoid 16 bit prefixes in the code */ /* Transform each pair of bits into 01 (valid) or 00 (empty) */ tmp = ~twd; tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */ /* and move the valid bits to the lower byte. */ tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */ tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */ tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */ return tmp; } #define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16) #define FP_EXP_TAG_VALID 0 #define FP_EXP_TAG_ZERO 1 #define FP_EXP_TAG_SPECIAL 2 #define FP_EXP_TAG_EMPTY 3 static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave) { struct _fpxreg *st; u32 tos = (fxsave->swd >> 11) & 7; u32 twd = (unsigned long) fxsave->twd; u32 tag; u32 ret = 0xffff0000u; int i; for (i = 0; i < 8; i++, twd >>= 1) { if (twd & 0x1) { st = FPREG_ADDR(fxsave, (i - tos) & 7); switch (st->exponent & 0x7fff) { case 0x7fff: tag = FP_EXP_TAG_SPECIAL; break; case 0x0000: if (!st->significand[0] && !st->significand[1] && !st->significand[2] && !st->significand[3]) tag = FP_EXP_TAG_ZERO; else tag = FP_EXP_TAG_SPECIAL; break; default: if (st->significand[3] & 0x8000) tag = FP_EXP_TAG_VALID; else tag = FP_EXP_TAG_SPECIAL; break; } } else { tag = FP_EXP_TAG_EMPTY; } ret |= tag << (2 * i); } return ret; } /* * FXSR floating point environment conversions. */ void convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk) { struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state.fxsave; struct _fpreg *to = (struct _fpreg *) &env->st_space[0]; struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0]; int i; env->cwd = fxsave->cwd | 0xffff0000u; env->swd = fxsave->swd | 0xffff0000u; env->twd = twd_fxsr_to_i387(fxsave); #ifdef CONFIG_X86_64 env->fip = fxsave->rip; env->foo = fxsave->rdp; /* * should be actually ds/cs at fpu exception time, but * that information is not available in 64bit mode. */ env->fcs = task_pt_regs(tsk)->cs; if (tsk == current) { savesegment(ds, env->fos); } else { env->fos = tsk->thread.ds; } env->fos |= 0xffff0000; #else env->fip = fxsave->fip; env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16); env->foo = fxsave->foo; env->fos = fxsave->fos; #endif for (i = 0; i < 8; ++i) memcpy(&to[i], &from[i], sizeof(to[0])); } void convert_to_fxsr(struct task_struct *tsk, const struct user_i387_ia32_struct *env) { struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state.fxsave; struct _fpreg *from = (struct _fpreg *) &env->st_space[0]; struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0]; int i; fxsave->cwd = env->cwd; fxsave->swd = env->swd; fxsave->twd = twd_i387_to_fxsr(env->twd); fxsave->fop = (u16) ((u32) env->fcs >> 16); #ifdef CONFIG_X86_64 fxsave->rip = env->fip; fxsave->rdp = env->foo; /* cs and ds ignored */ #else fxsave->fip = env->fip; fxsave->fcs = (env->fcs & 0xffff); fxsave->foo = env->foo; fxsave->fos = env->fos; #endif for (i = 0; i < 8; ++i) memcpy(&to[i], &from[i], sizeof(from[0])); } int fpregs_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { struct fpu *fpu = &target->thread.fpu; struct user_i387_ia32_struct env; fpu__activate_stopped(fpu); if (!static_cpu_has(X86_FEATURE_FPU)) return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf); if (!cpu_has_fxsr) return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &fpu->state.fsave, 0, -1); fpstate_sanitize_xstate(fpu); if (kbuf && pos == 0 && count == sizeof(env)) { convert_from_fxsr(kbuf, target); return 0; } convert_from_fxsr(&env, target); return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1); } int fpregs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct fpu *fpu = &target->thread.fpu; struct user_i387_ia32_struct env; int ret; fpu__activate_stopped(fpu); fpstate_sanitize_xstate(fpu); if (!static_cpu_has(X86_FEATURE_FPU)) return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf); if (!cpu_has_fxsr) return user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpu->state.fsave, 0, -1); if (pos > 0 || count < sizeof(env)) convert_from_fxsr(&env, target); ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1); if (!ret) convert_to_fxsr(target, &env); /* * update the header bit in the xsave header, indicating the * presence of FP. */ if (cpu_has_xsave) fpu->state.xsave.header.xfeatures |= XSTATE_FP; return ret; } /* * FPU state for core dumps. * This is only used for a.out dumps now. * It is declared generically using elf_fpregset_t (which is * struct user_i387_struct) but is in fact only used for 32-bit * dumps, so on 64-bit it is really struct user_i387_ia32_struct. */ int dump_fpu(struct pt_regs *regs, struct user_i387_struct *ufpu) { struct task_struct *tsk = current; struct fpu *fpu = &tsk->thread.fpu; int fpvalid; fpvalid = fpu->fpstate_active; if (fpvalid) fpvalid = !fpregs_get(tsk, NULL, 0, sizeof(struct user_i387_ia32_struct), ufpu, NULL); return fpvalid; } EXPORT_SYMBOL(dump_fpu); #endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */ /* * x87 math exception handling: */ static inline unsigned short get_fpu_cwd(struct fpu *fpu) { if (cpu_has_fxsr) { return fpu->state.fxsave.cwd; } else { return (unsigned short)fpu->state.fsave.cwd; } } static inline unsigned short get_fpu_swd(struct fpu *fpu) { if (cpu_has_fxsr) { return fpu->state.fxsave.swd; } else { return (unsigned short)fpu->state.fsave.swd; } } static inline unsigned short get_fpu_mxcsr(struct fpu *fpu) { if (cpu_has_xmm) { return fpu->state.fxsave.mxcsr; } else { return MXCSR_DEFAULT; } } int fpu__exception_code(struct fpu *fpu, int trap_nr) { int err; if (trap_nr == X86_TRAP_MF) { unsigned short cwd, swd; /* * (~cwd & swd) will mask out exceptions that are not set to unmasked * status. 0x3f is the exception bits in these regs, 0x200 is the * C1 reg you need in case of a stack fault, 0x040 is the stack * fault bit. We should only be taking one exception at a time, * so if this combination doesn't produce any single exception, * then we have a bad program that isn't synchronizing its FPU usage * and it will suffer the consequences since we won't be able to * fully reproduce the context of the exception */ cwd = get_fpu_cwd(fpu); swd = get_fpu_swd(fpu); err = swd & ~cwd; } else { /* * The SIMD FPU exceptions are handled a little differently, as there * is only a single status/control register. Thus, to determine which * unmasked exception was caught we must mask the exception mask bits * at 0x1f80, and then use these to mask the exception bits at 0x3f. */ unsigned short mxcsr = get_fpu_mxcsr(fpu); err = ~(mxcsr >> 7) & mxcsr; } if (err & 0x001) { /* Invalid op */ /* * swd & 0x240 == 0x040: Stack Underflow * swd & 0x240 == 0x240: Stack Overflow * User must clear the SF bit (0x40) if set */ return FPE_FLTINV; } else if (err & 0x004) { /* Divide by Zero */ return FPE_FLTDIV; } else if (err & 0x008) { /* Overflow */ return FPE_FLTOVF; } else if (err & 0x012) { /* Denormal, Underflow */ return FPE_FLTUND; } else if (err & 0x020) { /* Precision */ return FPE_FLTRES; } /* * If we're using IRQ 13, or supposedly even some trap * X86_TRAP_MF implementations, it's possible * we get a spurious trap, which is not an error. */ return 0; }