/* * Broadcom GENET (Gigabit Ethernet) controller driver * * Copyright (c) 2014 Broadcom Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #define pr_fmt(fmt) "bcmgenet: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bcmgenet.h" /* Maximum number of hardware queues, downsized if needed */ #define GENET_MAX_MQ_CNT 4 /* Default highest priority queue for multi queue support */ #define GENET_Q0_PRIORITY 0 #define GENET_DEFAULT_BD_CNT \ (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->bds_cnt) #define RX_BUF_LENGTH 2048 #define SKB_ALIGNMENT 32 /* Tx/Rx DMA register offset, skip 256 descriptors */ #define WORDS_PER_BD(p) (p->hw_params->words_per_bd) #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32)) #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \ TOTAL_DESC * DMA_DESC_SIZE) #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \ TOTAL_DESC * DMA_DESC_SIZE) static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv, void __iomem *d, u32 value) { __raw_writel(value, d + DMA_DESC_LENGTH_STATUS); } static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv, void __iomem *d) { return __raw_readl(d + DMA_DESC_LENGTH_STATUS); } static inline void dmadesc_set_addr(struct bcmgenet_priv *priv, void __iomem *d, dma_addr_t addr) { __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO); /* Register writes to GISB bus can take couple hundred nanoseconds * and are done for each packet, save these expensive writes unless * the platform is explicitely configured for 64-bits/LPAE. */ #ifdef CONFIG_PHYS_ADDR_T_64BIT if (priv->hw_params->flags & GENET_HAS_40BITS) __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI); #endif } /* Combined address + length/status setter */ static inline void dmadesc_set(struct bcmgenet_priv *priv, void __iomem *d, dma_addr_t addr, u32 val) { dmadesc_set_length_status(priv, d, val); dmadesc_set_addr(priv, d, addr); } static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv, void __iomem *d) { dma_addr_t addr; addr = __raw_readl(d + DMA_DESC_ADDRESS_LO); /* Register writes to GISB bus can take couple hundred nanoseconds * and are done for each packet, save these expensive writes unless * the platform is explicitely configured for 64-bits/LPAE. */ #ifdef CONFIG_PHYS_ADDR_T_64BIT if (priv->hw_params->flags & GENET_HAS_40BITS) addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32; #endif return addr; } #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x" #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ NETIF_MSG_LINK) static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv) { if (GENET_IS_V1(priv)) return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1); else return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL); } static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) { if (GENET_IS_V1(priv)) bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1); else bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL); } /* These macros are defined to deal with register map change * between GENET1.1 and GENET2. Only those currently being used * by driver are defined. */ static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv) { if (GENET_IS_V1(priv)) return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1); else return __raw_readl(priv->base + priv->hw_params->tbuf_offset + TBUF_CTRL); } static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) { if (GENET_IS_V1(priv)) bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1); else __raw_writel(val, priv->base + priv->hw_params->tbuf_offset + TBUF_CTRL); } static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv) { if (GENET_IS_V1(priv)) return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1); else return __raw_readl(priv->base + priv->hw_params->tbuf_offset + TBUF_BP_MC); } static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val) { if (GENET_IS_V1(priv)) bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1); else __raw_writel(val, priv->base + priv->hw_params->tbuf_offset + TBUF_BP_MC); } /* RX/TX DMA register accessors */ enum dma_reg { DMA_RING_CFG = 0, DMA_CTRL, DMA_STATUS, DMA_SCB_BURST_SIZE, DMA_ARB_CTRL, DMA_PRIORITY, DMA_RING_PRIORITY, }; static const u8 bcmgenet_dma_regs_v3plus[] = { [DMA_RING_CFG] = 0x00, [DMA_CTRL] = 0x04, [DMA_STATUS] = 0x08, [DMA_SCB_BURST_SIZE] = 0x0C, [DMA_ARB_CTRL] = 0x2C, [DMA_PRIORITY] = 0x30, [DMA_RING_PRIORITY] = 0x38, }; static const u8 bcmgenet_dma_regs_v2[] = { [DMA_RING_CFG] = 0x00, [DMA_CTRL] = 0x04, [DMA_STATUS] = 0x08, [DMA_SCB_BURST_SIZE] = 0x0C, [DMA_ARB_CTRL] = 0x30, [DMA_PRIORITY] = 0x34, [DMA_RING_PRIORITY] = 0x3C, }; static const u8 bcmgenet_dma_regs_v1[] = { [DMA_CTRL] = 0x00, [DMA_STATUS] = 0x04, [DMA_SCB_BURST_SIZE] = 0x0C, [DMA_ARB_CTRL] = 0x30, [DMA_PRIORITY] = 0x34, [DMA_RING_PRIORITY] = 0x3C, }; /* Set at runtime once bcmgenet version is known */ static const u8 *bcmgenet_dma_regs; static inline struct bcmgenet_priv *dev_to_priv(struct device *dev) { return netdev_priv(dev_get_drvdata(dev)); } static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv, enum dma_reg r) { return __raw_readl(priv->base + GENET_TDMA_REG_OFF + DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); } static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv, u32 val, enum dma_reg r) { __raw_writel(val, priv->base + GENET_TDMA_REG_OFF + DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); } static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv, enum dma_reg r) { return __raw_readl(priv->base + GENET_RDMA_REG_OFF + DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); } static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv, u32 val, enum dma_reg r) { __raw_writel(val, priv->base + GENET_RDMA_REG_OFF + DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); } /* RDMA/TDMA ring registers and accessors * we merge the common fields and just prefix with T/D the registers * having different meaning depending on the direction */ enum dma_ring_reg { TDMA_READ_PTR = 0, RDMA_WRITE_PTR = TDMA_READ_PTR, TDMA_READ_PTR_HI, RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI, TDMA_CONS_INDEX, RDMA_PROD_INDEX = TDMA_CONS_INDEX, TDMA_PROD_INDEX, RDMA_CONS_INDEX = TDMA_PROD_INDEX, DMA_RING_BUF_SIZE, DMA_START_ADDR, DMA_START_ADDR_HI, DMA_END_ADDR, DMA_END_ADDR_HI, DMA_MBUF_DONE_THRESH, TDMA_FLOW_PERIOD, RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD, TDMA_WRITE_PTR, RDMA_READ_PTR = TDMA_WRITE_PTR, TDMA_WRITE_PTR_HI, RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI }; /* GENET v4 supports 40-bits pointer addressing * for obvious reasons the LO and HI word parts * are contiguous, but this offsets the other * registers. */ static const u8 genet_dma_ring_regs_v4[] = { [TDMA_READ_PTR] = 0x00, [TDMA_READ_PTR_HI] = 0x04, [TDMA_CONS_INDEX] = 0x08, [TDMA_PROD_INDEX] = 0x0C, [DMA_RING_BUF_SIZE] = 0x10, [DMA_START_ADDR] = 0x14, [DMA_START_ADDR_HI] = 0x18, [DMA_END_ADDR] = 0x1C, [DMA_END_ADDR_HI] = 0x20, [DMA_MBUF_DONE_THRESH] = 0x24, [TDMA_FLOW_PERIOD] = 0x28, [TDMA_WRITE_PTR] = 0x2C, [TDMA_WRITE_PTR_HI] = 0x30, }; static const u8 genet_dma_ring_regs_v123[] = { [TDMA_READ_PTR] = 0x00, [TDMA_CONS_INDEX] = 0x04, [TDMA_PROD_INDEX] = 0x08, [DMA_RING_BUF_SIZE] = 0x0C, [DMA_START_ADDR] = 0x10, [DMA_END_ADDR] = 0x14, [DMA_MBUF_DONE_THRESH] = 0x18, [TDMA_FLOW_PERIOD] = 0x1C, [TDMA_WRITE_PTR] = 0x20, }; /* Set at runtime once GENET version is known */ static const u8 *genet_dma_ring_regs; static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv, unsigned int ring, enum dma_ring_reg r) { return __raw_readl(priv->base + GENET_TDMA_REG_OFF + (DMA_RING_SIZE * ring) + genet_dma_ring_regs[r]); } static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv, unsigned int ring, u32 val, enum dma_ring_reg r) { __raw_writel(val, priv->base + GENET_TDMA_REG_OFF + (DMA_RING_SIZE * ring) + genet_dma_ring_regs[r]); } static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv, unsigned int ring, enum dma_ring_reg r) { return __raw_readl(priv->base + GENET_RDMA_REG_OFF + (DMA_RING_SIZE * ring) + genet_dma_ring_regs[r]); } static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv, unsigned int ring, u32 val, enum dma_ring_reg r) { __raw_writel(val, priv->base + GENET_RDMA_REG_OFF + (DMA_RING_SIZE * ring) + genet_dma_ring_regs[r]); } static int bcmgenet_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct bcmgenet_priv *priv = netdev_priv(dev); if (!netif_running(dev)) return -EINVAL; if (!priv->phydev) return -ENODEV; return phy_ethtool_gset(priv->phydev, cmd); } static int bcmgenet_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct bcmgenet_priv *priv = netdev_priv(dev); if (!netif_running(dev)) return -EINVAL; if (!priv->phydev) return -ENODEV; return phy_ethtool_sset(priv->phydev, cmd); } static int bcmgenet_set_rx_csum(struct net_device *dev, netdev_features_t wanted) { struct bcmgenet_priv *priv = netdev_priv(dev); u32 rbuf_chk_ctrl; bool rx_csum_en; rx_csum_en = !!(wanted & NETIF_F_RXCSUM); rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL); /* enable rx checksumming */ if (rx_csum_en) rbuf_chk_ctrl |= RBUF_RXCHK_EN; else rbuf_chk_ctrl &= ~RBUF_RXCHK_EN; priv->desc_rxchk_en = rx_csum_en; bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL); return 0; } static int bcmgenet_set_tx_csum(struct net_device *dev, netdev_features_t wanted) { struct bcmgenet_priv *priv = netdev_priv(dev); bool desc_64b_en; u32 tbuf_ctrl, rbuf_ctrl; tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv); rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL); desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */ if (desc_64b_en) { tbuf_ctrl |= RBUF_64B_EN; rbuf_ctrl |= RBUF_64B_EN; } else { tbuf_ctrl &= ~RBUF_64B_EN; rbuf_ctrl &= ~RBUF_64B_EN; } priv->desc_64b_en = desc_64b_en; bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl); bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL); return 0; } static int bcmgenet_set_features(struct net_device *dev, netdev_features_t features) { netdev_features_t changed = features ^ dev->features; netdev_features_t wanted = dev->wanted_features; int ret = 0; if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ret = bcmgenet_set_tx_csum(dev, wanted); if (changed & (NETIF_F_RXCSUM)) ret = bcmgenet_set_rx_csum(dev, wanted); return ret; } static u32 bcmgenet_get_msglevel(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); return priv->msg_enable; } static void bcmgenet_set_msglevel(struct net_device *dev, u32 level) { struct bcmgenet_priv *priv = netdev_priv(dev); priv->msg_enable = level; } /* standard ethtool support functions. */ enum bcmgenet_stat_type { BCMGENET_STAT_NETDEV = -1, BCMGENET_STAT_MIB_RX, BCMGENET_STAT_MIB_TX, BCMGENET_STAT_RUNT, BCMGENET_STAT_MISC, }; struct bcmgenet_stats { char stat_string[ETH_GSTRING_LEN]; int stat_sizeof; int stat_offset; enum bcmgenet_stat_type type; /* reg offset from UMAC base for misc counters */ u16 reg_offset; }; #define STAT_NETDEV(m) { \ .stat_string = __stringify(m), \ .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \ .stat_offset = offsetof(struct net_device_stats, m), \ .type = BCMGENET_STAT_NETDEV, \ } #define STAT_GENET_MIB(str, m, _type) { \ .stat_string = str, \ .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ .stat_offset = offsetof(struct bcmgenet_priv, m), \ .type = _type, \ } #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX) #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX) #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT) #define STAT_GENET_MISC(str, m, offset) { \ .stat_string = str, \ .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ .stat_offset = offsetof(struct bcmgenet_priv, m), \ .type = BCMGENET_STAT_MISC, \ .reg_offset = offset, \ } /* There is a 0xC gap between the end of RX and beginning of TX stats and then * between the end of TX stats and the beginning of the RX RUNT */ #define BCMGENET_STAT_OFFSET 0xc /* Hardware counters must be kept in sync because the order/offset * is important here (order in structure declaration = order in hardware) */ static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = { /* general stats */ STAT_NETDEV(rx_packets), STAT_NETDEV(tx_packets), STAT_NETDEV(rx_bytes), STAT_NETDEV(tx_bytes), STAT_NETDEV(rx_errors), STAT_NETDEV(tx_errors), STAT_NETDEV(rx_dropped), STAT_NETDEV(tx_dropped), STAT_NETDEV(multicast), /* UniMAC RSV counters */ STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64), STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127), STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255), STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511), STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023), STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518), STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv), STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047), STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095), STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216), STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt), STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes), STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca), STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca), STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs), STAT_GENET_MIB_RX("rx_control", mib.rx.cf), STAT_GENET_MIB_RX("rx_pause", mib.rx.pf), STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo), STAT_GENET_MIB_RX("rx_align", mib.rx.aln), STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr), STAT_GENET_MIB_RX("rx_code", mib.rx.cde), STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr), STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr), STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr), STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue), STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok), STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc), STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp), STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc), /* UniMAC TSV counters */ STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64), STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127), STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255), STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511), STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023), STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518), STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv), STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047), STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095), STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216), STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts), STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca), STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca), STAT_GENET_MIB_TX("tx_pause", mib.tx.pf), STAT_GENET_MIB_TX("tx_control", mib.tx.cf), STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs), STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr), STAT_GENET_MIB_TX("tx_defer", mib.tx.drf), STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf), STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl), STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl), STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl), STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl), STAT_GENET_MIB_TX("tx_frags", mib.tx.frg), STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl), STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr), STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes), STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok), STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc), /* UniMAC RUNT counters */ STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt), STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs), STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align), STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes), /* Misc UniMAC counters */ STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, UMAC_RBUF_OVFL_CNT), STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT), STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT), }; #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats) static void bcmgenet_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strlcpy(info->driver, "bcmgenet", sizeof(info->driver)); strlcpy(info->version, "v2.0", sizeof(info->version)); info->n_stats = BCMGENET_STATS_LEN; } static int bcmgenet_get_sset_count(struct net_device *dev, int string_set) { switch (string_set) { case ETH_SS_STATS: return BCMGENET_STATS_LEN; default: return -EOPNOTSUPP; } } static void bcmgenet_get_strings(struct net_device *dev, u32 stringset, u8 *data) { int i; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < BCMGENET_STATS_LEN; i++) { memcpy(data + i * ETH_GSTRING_LEN, bcmgenet_gstrings_stats[i].stat_string, ETH_GSTRING_LEN); } break; } } static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv) { int i, j = 0; for (i = 0; i < BCMGENET_STATS_LEN; i++) { const struct bcmgenet_stats *s; u8 offset = 0; u32 val = 0; char *p; s = &bcmgenet_gstrings_stats[i]; switch (s->type) { case BCMGENET_STAT_NETDEV: continue; case BCMGENET_STAT_MIB_RX: case BCMGENET_STAT_MIB_TX: case BCMGENET_STAT_RUNT: if (s->type != BCMGENET_STAT_MIB_RX) offset = BCMGENET_STAT_OFFSET; val = bcmgenet_umac_readl(priv, UMAC_MIB_START + j + offset); break; case BCMGENET_STAT_MISC: val = bcmgenet_umac_readl(priv, s->reg_offset); /* clear if overflowed */ if (val == ~0) bcmgenet_umac_writel(priv, 0, s->reg_offset); break; } j += s->stat_sizeof; p = (char *)priv + s->stat_offset; *(u32 *)p = val; } } static void bcmgenet_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct bcmgenet_priv *priv = netdev_priv(dev); int i; if (netif_running(dev)) bcmgenet_update_mib_counters(priv); for (i = 0; i < BCMGENET_STATS_LEN; i++) { const struct bcmgenet_stats *s; char *p; s = &bcmgenet_gstrings_stats[i]; if (s->type == BCMGENET_STAT_NETDEV) p = (char *)&dev->stats; else p = (char *)priv; p += s->stat_offset; data[i] = *(u32 *)p; } } /* standard ethtool support functions. */ static struct ethtool_ops bcmgenet_ethtool_ops = { .get_strings = bcmgenet_get_strings, .get_sset_count = bcmgenet_get_sset_count, .get_ethtool_stats = bcmgenet_get_ethtool_stats, .get_settings = bcmgenet_get_settings, .set_settings = bcmgenet_set_settings, .get_drvinfo = bcmgenet_get_drvinfo, .get_link = ethtool_op_get_link, .get_msglevel = bcmgenet_get_msglevel, .set_msglevel = bcmgenet_set_msglevel, }; /* Power down the unimac, based on mode. */ static void bcmgenet_power_down(struct bcmgenet_priv *priv, enum bcmgenet_power_mode mode) { u32 reg; switch (mode) { case GENET_POWER_CABLE_SENSE: phy_detach(priv->phydev); break; case GENET_POWER_PASSIVE: /* Power down LED */ bcmgenet_mii_reset(priv->dev); if (priv->hw_params->flags & GENET_HAS_EXT) { reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); reg |= (EXT_PWR_DOWN_PHY | EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS); bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); } break; default: break; } } static void bcmgenet_power_up(struct bcmgenet_priv *priv, enum bcmgenet_power_mode mode) { u32 reg; if (!(priv->hw_params->flags & GENET_HAS_EXT)) return; reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); switch (mode) { case GENET_POWER_PASSIVE: reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY | EXT_PWR_DOWN_BIAS); /* fallthrough */ case GENET_POWER_CABLE_SENSE: /* enable APD */ reg |= EXT_PWR_DN_EN_LD; break; default: break; } bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); bcmgenet_mii_reset(priv->dev); } /* ioctl handle special commands that are not present in ethtool. */ static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct bcmgenet_priv *priv = netdev_priv(dev); int val = 0; if (!netif_running(dev)) return -EINVAL; switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: if (!priv->phydev) val = -ENODEV; else val = phy_mii_ioctl(priv->phydev, rq, cmd); break; default: val = -EINVAL; break; } return val; } static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv, struct bcmgenet_tx_ring *ring) { struct enet_cb *tx_cb_ptr; tx_cb_ptr = ring->cbs; tx_cb_ptr += ring->write_ptr - ring->cb_ptr; tx_cb_ptr->bd_addr = priv->tx_bds + ring->write_ptr * DMA_DESC_SIZE; /* Advancing local write pointer */ if (ring->write_ptr == ring->end_ptr) ring->write_ptr = ring->cb_ptr; else ring->write_ptr++; return tx_cb_ptr; } /* Simple helper to free a control block's resources */ static void bcmgenet_free_cb(struct enet_cb *cb) { dev_kfree_skb_any(cb->skb); cb->skb = NULL; dma_unmap_addr_set(cb, dma_addr, 0); } static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_priv *priv, struct bcmgenet_tx_ring *ring) { bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE, INTRL2_CPU_MASK_SET); } static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_priv *priv, struct bcmgenet_tx_ring *ring) { bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE, INTRL2_CPU_MASK_CLEAR); } static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_priv *priv, struct bcmgenet_tx_ring *ring) { bcmgenet_intrl2_1_writel(priv, (1 << ring->index), INTRL2_CPU_MASK_CLEAR); priv->int1_mask &= ~(1 << ring->index); } static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_priv *priv, struct bcmgenet_tx_ring *ring) { bcmgenet_intrl2_1_writel(priv, (1 << ring->index), INTRL2_CPU_MASK_SET); priv->int1_mask |= (1 << ring->index); } /* Unlocked version of the reclaim routine */ static void __bcmgenet_tx_reclaim(struct net_device *dev, struct bcmgenet_tx_ring *ring) { struct bcmgenet_priv *priv = netdev_priv(dev); int last_tx_cn, last_c_index, num_tx_bds; struct enet_cb *tx_cb_ptr; unsigned int c_index; /* Compute how many buffers are transmited since last xmit call */ c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX); last_c_index = ring->c_index; num_tx_bds = ring->size; c_index &= (num_tx_bds - 1); if (c_index >= last_c_index) last_tx_cn = c_index - last_c_index; else last_tx_cn = num_tx_bds - last_c_index + c_index; netif_dbg(priv, tx_done, dev, "%s ring=%d index=%d last_tx_cn=%d last_index=%d\n", __func__, ring->index, c_index, last_tx_cn, last_c_index); /* Reclaim transmitted buffers */ while (last_tx_cn-- > 0) { tx_cb_ptr = ring->cbs + last_c_index; if (tx_cb_ptr->skb) { dev->stats.tx_bytes += tx_cb_ptr->skb->len; dma_unmap_single(&dev->dev, dma_unmap_addr(tx_cb_ptr, dma_addr), tx_cb_ptr->skb->len, DMA_TO_DEVICE); bcmgenet_free_cb(tx_cb_ptr); } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) { dev->stats.tx_bytes += dma_unmap_len(tx_cb_ptr, dma_len); dma_unmap_page(&dev->dev, dma_unmap_addr(tx_cb_ptr, dma_addr), dma_unmap_len(tx_cb_ptr, dma_len), DMA_TO_DEVICE); dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0); } dev->stats.tx_packets++; ring->free_bds += 1; last_c_index++; last_c_index &= (num_tx_bds - 1); } if (ring->free_bds > (MAX_SKB_FRAGS + 1)) ring->int_disable(priv, ring); if (__netif_subqueue_stopped(dev, ring->queue)) netif_wake_subqueue(dev, ring->queue); ring->c_index = c_index; } static void bcmgenet_tx_reclaim(struct net_device *dev, struct bcmgenet_tx_ring *ring) { unsigned long flags; spin_lock_irqsave(&ring->lock, flags); __bcmgenet_tx_reclaim(dev, ring); spin_unlock_irqrestore(&ring->lock, flags); } static void bcmgenet_tx_reclaim_all(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); int i; if (netif_is_multiqueue(dev)) { for (i = 0; i < priv->hw_params->tx_queues; i++) bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]); } bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]); } /* Transmits a single SKB (either head of a fragment or a single SKB) * caller must hold priv->lock */ static int bcmgenet_xmit_single(struct net_device *dev, struct sk_buff *skb, u16 dma_desc_flags, struct bcmgenet_tx_ring *ring) { struct bcmgenet_priv *priv = netdev_priv(dev); struct device *kdev = &priv->pdev->dev; struct enet_cb *tx_cb_ptr; unsigned int skb_len; dma_addr_t mapping; u32 length_status; int ret; tx_cb_ptr = bcmgenet_get_txcb(priv, ring); if (unlikely(!tx_cb_ptr)) BUG(); tx_cb_ptr->skb = skb; skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb); mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE); ret = dma_mapping_error(kdev, mapping); if (ret) { netif_err(priv, tx_err, dev, "Tx DMA map failed\n"); dev_kfree_skb(skb); return ret; } dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping); dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len); length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags | (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) | DMA_TX_APPEND_CRC; if (skb->ip_summed == CHECKSUM_PARTIAL) length_status |= DMA_TX_DO_CSUM; dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status); /* Decrement total BD count and advance our write pointer */ ring->free_bds -= 1; ring->prod_index += 1; ring->prod_index &= DMA_P_INDEX_MASK; return 0; } /* Transmit a SKB fragement */ static int bcmgenet_xmit_frag(struct net_device *dev, skb_frag_t *frag, u16 dma_desc_flags, struct bcmgenet_tx_ring *ring) { struct bcmgenet_priv *priv = netdev_priv(dev); struct device *kdev = &priv->pdev->dev; struct enet_cb *tx_cb_ptr; dma_addr_t mapping; int ret; tx_cb_ptr = bcmgenet_get_txcb(priv, ring); if (unlikely(!tx_cb_ptr)) BUG(); tx_cb_ptr->skb = NULL; mapping = skb_frag_dma_map(kdev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); ret = dma_mapping_error(kdev, mapping); if (ret) { netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n", __func__); return ret; } dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping); dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size); dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags | (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT)); ring->free_bds -= 1; ring->prod_index += 1; ring->prod_index &= DMA_P_INDEX_MASK; return 0; } /* Reallocate the SKB to put enough headroom in front of it and insert * the transmit checksum offsets in the descriptors */ static int bcmgenet_put_tx_csum(struct net_device *dev, struct sk_buff *skb) { struct status_64 *status = NULL; struct sk_buff *new_skb; u16 offset; u8 ip_proto; u16 ip_ver; u32 tx_csum_info; if (unlikely(skb_headroom(skb) < sizeof(*status))) { /* If 64 byte status block enabled, must make sure skb has * enough headroom for us to insert 64B status block. */ new_skb = skb_realloc_headroom(skb, sizeof(*status)); dev_kfree_skb(skb); if (!new_skb) { dev->stats.tx_errors++; dev->stats.tx_dropped++; return -ENOMEM; } skb = new_skb; } skb_push(skb, sizeof(*status)); status = (struct status_64 *)skb->data; if (skb->ip_summed == CHECKSUM_PARTIAL) { ip_ver = htons(skb->protocol); switch (ip_ver) { case ETH_P_IP: ip_proto = ip_hdr(skb)->protocol; break; case ETH_P_IPV6: ip_proto = ipv6_hdr(skb)->nexthdr; break; default: return 0; } offset = skb_checksum_start_offset(skb) - sizeof(*status); tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) | (offset + skb->csum_offset); /* Set the length valid bit for TCP and UDP and just set * the special UDP flag for IPv4, else just set to 0. */ if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) { tx_csum_info |= STATUS_TX_CSUM_LV; if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP) tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP; } else tx_csum_info = 0; status->tx_csum_info = tx_csum_info; } return 0; } static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); struct bcmgenet_tx_ring *ring = NULL; unsigned long flags = 0; int nr_frags, index; u16 dma_desc_flags; int ret; int i; index = skb_get_queue_mapping(skb); /* Mapping strategy: * queue_mapping = 0, unclassified, packet xmited through ring16 * queue_mapping = 1, goes to ring 0. (highest priority queue * queue_mapping = 2, goes to ring 1. * queue_mapping = 3, goes to ring 2. * queue_mapping = 4, goes to ring 3. */ if (index == 0) index = DESC_INDEX; else index -= 1; if ((index != DESC_INDEX) && (index > priv->hw_params->tx_queues - 1)) { netdev_err(dev, "%s: queue_mapping %d is invalid\n", __func__, skb_get_queue_mapping(skb)); dev->stats.tx_errors++; dev->stats.tx_dropped++; ret = NETDEV_TX_OK; goto out; } nr_frags = skb_shinfo(skb)->nr_frags; ring = &priv->tx_rings[index]; spin_lock_irqsave(&ring->lock, flags); if (ring->free_bds <= nr_frags + 1) { netif_stop_subqueue(dev, ring->queue); netdev_err(dev, "%s: tx ring %d full when queue %d awake\n", __func__, index, ring->queue); ret = NETDEV_TX_BUSY; goto out; } /* reclaim xmited skb every 8 packets. */ /*if (ring->free_bds < ring->size - 8)*/ /*__bcmgenet_tx_reclaim(dev, ring);*/ /* set the SKB transmit checksum */ if (priv->desc_64b_en) { ret = bcmgenet_put_tx_csum(dev, skb); if (ret) { ret = NETDEV_TX_OK; goto out; } } dma_desc_flags = DMA_SOP; if (nr_frags == 0) dma_desc_flags |= DMA_EOP; /* Transmit single SKB or head of fragment list */ ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring); if (ret) { ret = NETDEV_TX_OK; goto out; } /* xmit fragment */ for (i = 0; i < nr_frags; i++) { ret = bcmgenet_xmit_frag(dev, &skb_shinfo(skb)->frags[i], (i == nr_frags - 1) ? DMA_EOP : 0, ring); if (ret) { ret = NETDEV_TX_OK; goto out; } } /* we kept a software copy of how much we should advance the TDMA * producer index, now write it down to the hardware */ bcmgenet_tdma_ring_writel(priv, ring->index, ring->prod_index, TDMA_PROD_INDEX); if (ring->free_bds <= (MAX_SKB_FRAGS + 1)) { netif_stop_subqueue(dev, ring->queue); ring->int_enable(priv, ring); } out: spin_unlock_irqrestore(&ring->lock, flags); return ret; } static int bcmgenet_rx_refill(struct bcmgenet_priv *priv, struct enet_cb *cb) { struct device *kdev = &priv->pdev->dev; struct sk_buff *skb; dma_addr_t mapping; int ret; skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT); if (!skb) return -ENOMEM; /* a caller did not release this control block */ WARN_ON(cb->skb != NULL); cb->skb = skb; mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len, DMA_FROM_DEVICE); ret = dma_mapping_error(kdev, mapping); if (ret) { bcmgenet_free_cb(cb); netif_err(priv, rx_err, priv->dev, "%s DMA map failed\n", __func__); return ret; } dma_unmap_addr_set(cb, dma_addr, mapping); /* assign packet, prepare descriptor, and advance pointer */ dmadesc_set_addr(priv, priv->rx_bd_assign_ptr, mapping); /* turn on the newly assigned BD for DMA to use */ priv->rx_bd_assign_index++; priv->rx_bd_assign_index &= (priv->num_rx_bds - 1); priv->rx_bd_assign_ptr = priv->rx_bds + (priv->rx_bd_assign_index * DMA_DESC_SIZE); return 0; } /* bcmgenet_desc_rx - descriptor based rx process. * this could be called from bottom half, or from NAPI polling method. */ static unsigned int bcmgenet_desc_rx(struct bcmgenet_priv *priv, unsigned int budget) { struct net_device *dev = priv->dev; struct enet_cb *cb; struct sk_buff *skb; u32 dma_length_status; unsigned long dma_flag; int len, err; unsigned int rxpktprocessed = 0, rxpkttoprocess; unsigned int p_index; unsigned int chksum_ok = 0; p_index = bcmgenet_rdma_ring_readl(priv, DESC_INDEX, RDMA_PROD_INDEX); p_index &= DMA_P_INDEX_MASK; if (p_index < priv->rx_c_index) rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - priv->rx_c_index + p_index; else rxpkttoprocess = p_index - priv->rx_c_index; netif_dbg(priv, rx_status, dev, "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess); while ((rxpktprocessed < rxpkttoprocess) && (rxpktprocessed < budget)) { /* Unmap the packet contents such that we can use the * RSV from the 64 bytes descriptor when enabled and save * a 32-bits register read */ cb = &priv->rx_cbs[priv->rx_read_ptr]; skb = cb->skb; dma_unmap_single(&dev->dev, dma_unmap_addr(cb, dma_addr), priv->rx_buf_len, DMA_FROM_DEVICE); if (!priv->desc_64b_en) { dma_length_status = dmadesc_get_length_status(priv, priv->rx_bds + (priv->rx_read_ptr * DMA_DESC_SIZE)); } else { struct status_64 *status; status = (struct status_64 *)skb->data; dma_length_status = status->length_status; } /* DMA flags and length are still valid no matter how * we got the Receive Status Vector (64B RSB or register) */ dma_flag = dma_length_status & 0xffff; len = dma_length_status >> DMA_BUFLENGTH_SHIFT; netif_dbg(priv, rx_status, dev, "%s: p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n", __func__, p_index, priv->rx_c_index, priv->rx_read_ptr, dma_length_status); rxpktprocessed++; priv->rx_read_ptr++; priv->rx_read_ptr &= (priv->num_rx_bds - 1); /* out of memory, just drop packets at the hardware level */ if (unlikely(!skb)) { dev->stats.rx_dropped++; dev->stats.rx_errors++; goto refill; } if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) { netif_err(priv, rx_status, dev, "Droping fragmented packet!\n"); dev->stats.rx_dropped++; dev->stats.rx_errors++; dev_kfree_skb_any(cb->skb); cb->skb = NULL; goto refill; } /* report errors */ if (unlikely(dma_flag & (DMA_RX_CRC_ERROR | DMA_RX_OV | DMA_RX_NO | DMA_RX_LG | DMA_RX_RXER))) { netif_err(priv, rx_status, dev, "dma_flag=0x%x\n", (unsigned int)dma_flag); if (dma_flag & DMA_RX_CRC_ERROR) dev->stats.rx_crc_errors++; if (dma_flag & DMA_RX_OV) dev->stats.rx_over_errors++; if (dma_flag & DMA_RX_NO) dev->stats.rx_frame_errors++; if (dma_flag & DMA_RX_LG) dev->stats.rx_length_errors++; dev->stats.rx_dropped++; dev->stats.rx_errors++; /* discard the packet and advance consumer index.*/ dev_kfree_skb_any(cb->skb); cb->skb = NULL; goto refill; } /* error packet */ chksum_ok = (dma_flag & priv->dma_rx_chk_bit) && priv->desc_rxchk_en; skb_put(skb, len); if (priv->desc_64b_en) { skb_pull(skb, 64); len -= 64; } if (likely(chksum_ok)) skb->ip_summed = CHECKSUM_UNNECESSARY; /* remove hardware 2bytes added for IP alignment */ skb_pull(skb, 2); len -= 2; if (priv->crc_fwd_en) { skb_trim(skb, len - ETH_FCS_LEN); len -= ETH_FCS_LEN; } /*Finish setting up the received SKB and send it to the kernel*/ skb->protocol = eth_type_trans(skb, priv->dev); dev->stats.rx_packets++; dev->stats.rx_bytes += len; if (dma_flag & DMA_RX_MULT) dev->stats.multicast++; /* Notify kernel */ napi_gro_receive(&priv->napi, skb); cb->skb = NULL; netif_dbg(priv, rx_status, dev, "pushed up to kernel\n"); /* refill RX path on the current control block */ refill: err = bcmgenet_rx_refill(priv, cb); if (err) netif_err(priv, rx_err, dev, "Rx refill failed\n"); } return rxpktprocessed; } /* Assign skb to RX DMA descriptor. */ static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv) { struct enet_cb *cb; int ret = 0; int i; netif_dbg(priv, hw, priv->dev, "%s:\n", __func__); /* loop here for each buffer needing assign */ for (i = 0; i < priv->num_rx_bds; i++) { cb = &priv->rx_cbs[priv->rx_bd_assign_index]; if (cb->skb) continue; /* set the DMA descriptor length once and for all * it will only change if we support dynamically sizing * priv->rx_buf_len, but we do not */ dmadesc_set_length_status(priv, priv->rx_bd_assign_ptr, priv->rx_buf_len << DMA_BUFLENGTH_SHIFT); ret = bcmgenet_rx_refill(priv, cb); if (ret) break; } return ret; } static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv) { struct enet_cb *cb; int i; for (i = 0; i < priv->num_rx_bds; i++) { cb = &priv->rx_cbs[i]; if (dma_unmap_addr(cb, dma_addr)) { dma_unmap_single(&priv->dev->dev, dma_unmap_addr(cb, dma_addr), priv->rx_buf_len, DMA_FROM_DEVICE); dma_unmap_addr_set(cb, dma_addr, 0); } if (cb->skb) bcmgenet_free_cb(cb); } } static int reset_umac(struct bcmgenet_priv *priv) { struct device *kdev = &priv->pdev->dev; unsigned int timeout = 0; u32 reg; /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */ bcmgenet_rbuf_ctrl_set(priv, 0); udelay(10); /* disable MAC while updating its registers */ bcmgenet_umac_writel(priv, 0, UMAC_CMD); /* issue soft reset, wait for it to complete */ bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD); while (timeout++ < 1000) { reg = bcmgenet_umac_readl(priv, UMAC_CMD); if (!(reg & CMD_SW_RESET)) return 0; udelay(1); } if (timeout == 1000) { dev_err(kdev, "timeout waiting for MAC to come out of resetn\n"); return -ETIMEDOUT; } return 0; } static int init_umac(struct bcmgenet_priv *priv) { struct device *kdev = &priv->pdev->dev; int ret; u32 reg, cpu_mask_clear; dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n"); ret = reset_umac(priv); if (ret) return ret; bcmgenet_umac_writel(priv, 0, UMAC_CMD); /* clear tx/rx counter */ bcmgenet_umac_writel(priv, MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT, UMAC_MIB_CTRL); bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL); bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN); /* init rx registers, enable ip header optimization */ reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL); reg |= RBUF_ALIGN_2B; bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL); if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv)) bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL); /* Mask all interrupts.*/ bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR); cpu_mask_clear = UMAC_IRQ_RXDMA_BDONE; dev_dbg(kdev, "%s:Enabling RXDMA_BDONE interrupt\n", __func__); /* Monitor cable plug/unpluged event for internal PHY */ if (phy_is_internal(priv->phydev)) cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP); else if (priv->ext_phy) cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP); else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { reg = bcmgenet_bp_mc_get(priv); reg |= BIT(priv->hw_params->bp_in_en_shift); /* bp_mask: back pressure mask */ if (netif_is_multiqueue(priv->dev)) reg |= priv->hw_params->bp_in_mask; else reg &= ~priv->hw_params->bp_in_mask; bcmgenet_bp_mc_set(priv, reg); } /* Enable MDIO interrupts on GENET v3+ */ if (priv->hw_params->flags & GENET_HAS_MDIO_INTR) cpu_mask_clear |= UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR; bcmgenet_intrl2_0_writel(priv, cpu_mask_clear, INTRL2_CPU_MASK_CLEAR); /* Enable rx/tx engine.*/ dev_dbg(kdev, "done init umac\n"); return 0; } /* Initialize all house-keeping variables for a TX ring, along * with corresponding hardware registers */ static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv, unsigned int index, unsigned int size, unsigned int write_ptr, unsigned int end_ptr) { struct bcmgenet_tx_ring *ring = &priv->tx_rings[index]; u32 words_per_bd = WORDS_PER_BD(priv); u32 flow_period_val = 0; unsigned int first_bd; spin_lock_init(&ring->lock); ring->index = index; if (index == DESC_INDEX) { ring->queue = 0; ring->int_enable = bcmgenet_tx_ring16_int_enable; ring->int_disable = bcmgenet_tx_ring16_int_disable; } else { ring->queue = index + 1; ring->int_enable = bcmgenet_tx_ring_int_enable; ring->int_disable = bcmgenet_tx_ring_int_disable; } ring->cbs = priv->tx_cbs + write_ptr; ring->size = size; ring->c_index = 0; ring->free_bds = size; ring->write_ptr = write_ptr; ring->cb_ptr = write_ptr; ring->end_ptr = end_ptr - 1; ring->prod_index = 0; /* Set flow period for ring != 16 */ if (index != DESC_INDEX) flow_period_val = ENET_MAX_MTU_SIZE << 16; bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX); bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX); bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH); /* Disable rate control for now */ bcmgenet_tdma_ring_writel(priv, index, flow_period_val, TDMA_FLOW_PERIOD); /* Unclassified traffic goes to ring 16 */ bcmgenet_tdma_ring_writel(priv, index, ((size << DMA_RING_SIZE_SHIFT) | RX_BUF_LENGTH), DMA_RING_BUF_SIZE); first_bd = write_ptr; /* Set start and end address, read and write pointers */ bcmgenet_tdma_ring_writel(priv, index, first_bd * words_per_bd, DMA_START_ADDR); bcmgenet_tdma_ring_writel(priv, index, first_bd * words_per_bd, TDMA_READ_PTR); bcmgenet_tdma_ring_writel(priv, index, first_bd, TDMA_WRITE_PTR); bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, DMA_END_ADDR); } /* Initialize a RDMA ring */ static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv, unsigned int index, unsigned int size) { u32 words_per_bd = WORDS_PER_BD(priv); int ret; priv->num_rx_bds = TOTAL_DESC; priv->rx_bds = priv->base + priv->hw_params->rdma_offset; priv->rx_bd_assign_ptr = priv->rx_bds; priv->rx_bd_assign_index = 0; priv->rx_c_index = 0; priv->rx_read_ptr = 0; priv->rx_cbs = kzalloc(priv->num_rx_bds * sizeof(struct enet_cb), GFP_KERNEL); if (!priv->rx_cbs) return -ENOMEM; ret = bcmgenet_alloc_rx_buffers(priv); if (ret) { kfree(priv->rx_cbs); return ret; } bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_WRITE_PTR); bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX); bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX); bcmgenet_rdma_ring_writel(priv, index, ((size << DMA_RING_SIZE_SHIFT) | RX_BUF_LENGTH), DMA_RING_BUF_SIZE); bcmgenet_rdma_ring_writel(priv, index, 0, DMA_START_ADDR); bcmgenet_rdma_ring_writel(priv, index, words_per_bd * size - 1, DMA_END_ADDR); bcmgenet_rdma_ring_writel(priv, index, (DMA_FC_THRESH_LO << DMA_XOFF_THRESHOLD_SHIFT) | DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH); bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_READ_PTR); return ret; } /* init multi xmit queues, only available for GENET2+ * the queue is partitioned as follows: * * queue 0 - 3 is priority based, each one has 32 descriptors, * with queue 0 being the highest priority queue. * * queue 16 is the default tx queue with GENET_DEFAULT_BD_CNT * descriptors: 256 - (number of tx queues * bds per queues) = 128 * descriptors. * * The transmit control block pool is then partitioned as following: * - tx_cbs[0...127] are for queue 16 * - tx_ring_cbs[0] points to tx_cbs[128..159] * - tx_ring_cbs[1] points to tx_cbs[160..191] * - tx_ring_cbs[2] points to tx_cbs[192..223] * - tx_ring_cbs[3] points to tx_cbs[224..255] */ static void bcmgenet_init_multiq(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); unsigned int i, dma_enable; u32 reg, dma_ctrl, ring_cfg = 0, dma_priority = 0; if (!netif_is_multiqueue(dev)) { netdev_warn(dev, "called with non multi queue aware HW\n"); return; } dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL); dma_enable = dma_ctrl & DMA_EN; dma_ctrl &= ~DMA_EN; bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); /* Enable strict priority arbiter mode */ bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL); for (i = 0; i < priv->hw_params->tx_queues; i++) { /* first 64 tx_cbs are reserved for default tx queue * (ring 16) */ bcmgenet_init_tx_ring(priv, i, priv->hw_params->bds_cnt, i * priv->hw_params->bds_cnt, (i + 1) * priv->hw_params->bds_cnt); /* Configure ring as decriptor ring and setup priority */ ring_cfg |= 1 << i; dma_priority |= ((GENET_Q0_PRIORITY + i) << (GENET_MAX_MQ_CNT + 1) * i); dma_ctrl |= 1 << (i + DMA_RING_BUF_EN_SHIFT); } /* Enable rings */ reg = bcmgenet_tdma_readl(priv, DMA_RING_CFG); reg |= ring_cfg; bcmgenet_tdma_writel(priv, reg, DMA_RING_CFG); /* Use configured rings priority and set ring #16 priority */ reg = bcmgenet_tdma_readl(priv, DMA_RING_PRIORITY); reg |= ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) << 20); reg |= dma_priority; bcmgenet_tdma_writel(priv, reg, DMA_PRIORITY); /* Configure ring as descriptor ring and re-enable DMA if enabled */ reg = bcmgenet_tdma_readl(priv, DMA_CTRL); reg |= dma_ctrl; if (dma_enable) reg |= DMA_EN; bcmgenet_tdma_writel(priv, reg, DMA_CTRL); } static void bcmgenet_fini_dma(struct bcmgenet_priv *priv) { int i; /* disable DMA */ bcmgenet_rdma_writel(priv, 0, DMA_CTRL); bcmgenet_tdma_writel(priv, 0, DMA_CTRL); for (i = 0; i < priv->num_tx_bds; i++) { if (priv->tx_cbs[i].skb != NULL) { dev_kfree_skb(priv->tx_cbs[i].skb); priv->tx_cbs[i].skb = NULL; } } bcmgenet_free_rx_buffers(priv); kfree(priv->rx_cbs); kfree(priv->tx_cbs); } /* init_edma: Initialize DMA control register */ static int bcmgenet_init_dma(struct bcmgenet_priv *priv) { int ret; netif_dbg(priv, hw, priv->dev, "bcmgenet: init_edma\n"); /* by default, enable ring 16 (descriptor based) */ ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, TOTAL_DESC); if (ret) { netdev_err(priv->dev, "failed to initialize RX ring\n"); return ret; } /* init rDma */ bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE); /* Init tDma */ bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE); /* Initialize commont TX ring structures */ priv->tx_bds = priv->base + priv->hw_params->tdma_offset; priv->num_tx_bds = TOTAL_DESC; priv->tx_cbs = kzalloc(priv->num_tx_bds * sizeof(struct enet_cb), GFP_KERNEL); if (!priv->tx_cbs) { bcmgenet_fini_dma(priv); return -ENOMEM; } /* initialize multi xmit queue */ bcmgenet_init_multiq(priv->dev); /* initialize special ring 16 */ bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_DEFAULT_BD_CNT, priv->hw_params->tx_queues * priv->hw_params->bds_cnt, TOTAL_DESC); return 0; } /* NAPI polling method*/ static int bcmgenet_poll(struct napi_struct *napi, int budget) { struct bcmgenet_priv *priv = container_of(napi, struct bcmgenet_priv, napi); unsigned int work_done; /* tx reclaim */ bcmgenet_tx_reclaim(priv->dev, &priv->tx_rings[DESC_INDEX]); work_done = bcmgenet_desc_rx(priv, budget); /* Advancing our consumer index*/ priv->rx_c_index += work_done; priv->rx_c_index &= DMA_C_INDEX_MASK; bcmgenet_rdma_ring_writel(priv, DESC_INDEX, priv->rx_c_index, RDMA_CONS_INDEX); if (work_done < budget) { napi_complete(napi); bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE, INTRL2_CPU_MASK_CLEAR); } return work_done; } /* Interrupt bottom half */ static void bcmgenet_irq_task(struct work_struct *work) { struct bcmgenet_priv *priv = container_of( work, struct bcmgenet_priv, bcmgenet_irq_work); netif_dbg(priv, intr, priv->dev, "%s\n", __func__); /* Link UP/DOWN event */ if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) && (priv->irq0_stat & (UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN))) { phy_mac_interrupt(priv->phydev, priv->irq0_stat & UMAC_IRQ_LINK_UP); priv->irq0_stat &= ~(UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN); } } /* bcmgenet_isr1: interrupt handler for ring buffer. */ static irqreturn_t bcmgenet_isr1(int irq, void *dev_id) { struct bcmgenet_priv *priv = dev_id; unsigned int index; /* Save irq status for bottom-half processing. */ priv->irq1_stat = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) & ~priv->int1_mask; /* clear inerrupts*/ bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR); netif_dbg(priv, intr, priv->dev, "%s: IRQ=0x%x\n", __func__, priv->irq1_stat); /* Check the MBDONE interrupts. * packet is done, reclaim descriptors */ if (priv->irq1_stat & 0x0000ffff) { index = 0; for (index = 0; index < 16; index++) { if (priv->irq1_stat & (1 << index)) bcmgenet_tx_reclaim(priv->dev, &priv->tx_rings[index]); } } return IRQ_HANDLED; } /* bcmgenet_isr0: Handle various interrupts. */ static irqreturn_t bcmgenet_isr0(int irq, void *dev_id) { struct bcmgenet_priv *priv = dev_id; /* Save irq status for bottom-half processing. */ priv->irq0_stat = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) & ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); /* clear inerrupts*/ bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR); netif_dbg(priv, intr, priv->dev, "IRQ=0x%x\n", priv->irq0_stat); if (priv->irq0_stat & (UMAC_IRQ_RXDMA_BDONE | UMAC_IRQ_RXDMA_PDONE)) { /* We use NAPI(software interrupt throttling, if * Rx Descriptor throttling is not used. * Disable interrupt, will be enabled in the poll method. */ if (likely(napi_schedule_prep(&priv->napi))) { bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE, INTRL2_CPU_MASK_SET); __napi_schedule(&priv->napi); } } if (priv->irq0_stat & (UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE)) { /* Tx reclaim */ bcmgenet_tx_reclaim(priv->dev, &priv->tx_rings[DESC_INDEX]); } if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R | UMAC_IRQ_PHY_DET_F | UMAC_IRQ_LINK_UP | UMAC_IRQ_LINK_DOWN | UMAC_IRQ_HFB_SM | UMAC_IRQ_HFB_MM | UMAC_IRQ_MPD_R)) { /* all other interested interrupts handled in bottom half */ schedule_work(&priv->bcmgenet_irq_work); } if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) && priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) { priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR); wake_up(&priv->wq); } return IRQ_HANDLED; } static void bcmgenet_umac_reset(struct bcmgenet_priv *priv) { u32 reg; reg = bcmgenet_rbuf_ctrl_get(priv); reg |= BIT(1); bcmgenet_rbuf_ctrl_set(priv, reg); udelay(10); reg &= ~BIT(1); bcmgenet_rbuf_ctrl_set(priv, reg); udelay(10); } static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv, unsigned char *addr) { bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3], UMAC_MAC0); bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1); } static int bcmgenet_wol_resume(struct bcmgenet_priv *priv) { int ret; /* From WOL-enabled suspend, switch to regular clock */ clk_disable(priv->clk_wol); /* init umac registers to synchronize s/w with h/w */ ret = init_umac(priv); if (ret) return ret; phy_init_hw(priv->phydev); /* Speed settings must be restored */ bcmgenet_mii_config(priv->dev); return 0; } /* Returns a reusable dma control register value */ static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv) { u32 reg; u32 dma_ctrl; /* disable DMA */ dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN; reg = bcmgenet_tdma_readl(priv, DMA_CTRL); reg &= ~dma_ctrl; bcmgenet_tdma_writel(priv, reg, DMA_CTRL); reg = bcmgenet_rdma_readl(priv, DMA_CTRL); reg &= ~dma_ctrl; bcmgenet_rdma_writel(priv, reg, DMA_CTRL); bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH); udelay(10); bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH); return dma_ctrl; } static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl) { u32 reg; reg = bcmgenet_rdma_readl(priv, DMA_CTRL); reg |= dma_ctrl; bcmgenet_rdma_writel(priv, reg, DMA_CTRL); reg = bcmgenet_tdma_readl(priv, DMA_CTRL); reg |= dma_ctrl; bcmgenet_tdma_writel(priv, reg, DMA_CTRL); } static int bcmgenet_open(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); unsigned long dma_ctrl; u32 reg; int ret; netif_dbg(priv, ifup, dev, "bcmgenet_open\n"); /* Turn on the clock */ if (!IS_ERR(priv->clk)) clk_prepare_enable(priv->clk); /* take MAC out of reset */ bcmgenet_umac_reset(priv); ret = init_umac(priv); if (ret) goto err_clk_disable; /* disable ethernet MAC while updating its registers */ reg = bcmgenet_umac_readl(priv, UMAC_CMD); reg &= ~(CMD_TX_EN | CMD_RX_EN); bcmgenet_umac_writel(priv, reg, UMAC_CMD); bcmgenet_set_hw_addr(priv, dev->dev_addr); if (priv->wol_enabled) { ret = bcmgenet_wol_resume(priv); if (ret) return ret; } if (phy_is_internal(priv->phydev)) { reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); reg |= EXT_ENERGY_DET_MASK; bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); } /* Disable RX/TX DMA and flush TX queues */ dma_ctrl = bcmgenet_dma_disable(priv); /* Reinitialize TDMA and RDMA and SW housekeeping */ ret = bcmgenet_init_dma(priv); if (ret) { netdev_err(dev, "failed to initialize DMA\n"); goto err_fini_dma; } /* Always enable ring 16 - descriptor ring */ bcmgenet_enable_dma(priv, dma_ctrl); ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED, dev->name, priv); if (ret < 0) { netdev_err(dev, "can't request IRQ %d\n", priv->irq0); goto err_fini_dma; } ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED, dev->name, priv); if (ret < 0) { netdev_err(dev, "can't request IRQ %d\n", priv->irq1); goto err_irq0; } /* Start the network engine */ napi_enable(&priv->napi); reg = bcmgenet_umac_readl(priv, UMAC_CMD); reg |= (CMD_TX_EN | CMD_RX_EN); bcmgenet_umac_writel(priv, reg, UMAC_CMD); /* Make sure we reflect the value of CRC_CMD_FWD */ priv->crc_fwd_en = !!(reg & CMD_CRC_FWD); device_set_wakeup_capable(&dev->dev, 1); if (phy_is_internal(priv->phydev)) bcmgenet_power_up(priv, GENET_POWER_PASSIVE); netif_tx_start_all_queues(dev); phy_start(priv->phydev); return 0; err_irq0: free_irq(priv->irq0, dev); err_fini_dma: bcmgenet_fini_dma(priv); err_clk_disable: if (!IS_ERR(priv->clk)) clk_disable_unprepare(priv->clk); return ret; } static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv) { int ret = 0; int timeout = 0; u32 reg; /* Disable TDMA to stop add more frames in TX DMA */ reg = bcmgenet_tdma_readl(priv, DMA_CTRL); reg &= ~DMA_EN; bcmgenet_tdma_writel(priv, reg, DMA_CTRL); /* Check TDMA status register to confirm TDMA is disabled */ while (timeout++ < DMA_TIMEOUT_VAL) { reg = bcmgenet_tdma_readl(priv, DMA_STATUS); if (reg & DMA_DISABLED) break; udelay(1); } if (timeout == DMA_TIMEOUT_VAL) { netdev_warn(priv->dev, "Timed out while disabling TX DMA\n"); ret = -ETIMEDOUT; } /* Wait 10ms for packet drain in both tx and rx dma */ usleep_range(10000, 20000); /* Disable RDMA */ reg = bcmgenet_rdma_readl(priv, DMA_CTRL); reg &= ~DMA_EN; bcmgenet_rdma_writel(priv, reg, DMA_CTRL); timeout = 0; /* Check RDMA status register to confirm RDMA is disabled */ while (timeout++ < DMA_TIMEOUT_VAL) { reg = bcmgenet_rdma_readl(priv, DMA_STATUS); if (reg & DMA_DISABLED) break; udelay(1); } if (timeout == DMA_TIMEOUT_VAL) { netdev_warn(priv->dev, "Timed out while disabling RX DMA\n"); ret = -ETIMEDOUT; } return ret; } static int bcmgenet_close(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); int ret; u32 reg; netif_dbg(priv, ifdown, dev, "bcmgenet_close\n"); phy_stop(priv->phydev); /* Disable MAC receive */ reg = bcmgenet_umac_readl(priv, UMAC_CMD); reg &= ~CMD_RX_EN; bcmgenet_umac_writel(priv, reg, UMAC_CMD); netif_tx_stop_all_queues(dev); ret = bcmgenet_dma_teardown(priv); if (ret) return ret; /* Disable MAC transmit. TX DMA disabled have to done before this */ reg = bcmgenet_umac_readl(priv, UMAC_CMD); reg &= ~CMD_TX_EN; bcmgenet_umac_writel(priv, reg, UMAC_CMD); napi_disable(&priv->napi); /* tx reclaim */ bcmgenet_tx_reclaim_all(dev); bcmgenet_fini_dma(priv); free_irq(priv->irq0, priv); free_irq(priv->irq1, priv); /* Wait for pending work items to complete - we are stopping * the clock now. Since interrupts are disabled, no new work * will be scheduled. */ cancel_work_sync(&priv->bcmgenet_irq_work); if (phy_is_internal(priv->phydev)) bcmgenet_power_down(priv, GENET_POWER_PASSIVE); if (priv->wol_enabled) clk_enable(priv->clk_wol); if (!IS_ERR(priv->clk)) clk_disable_unprepare(priv->clk); return 0; } static void bcmgenet_timeout(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n"); dev->trans_start = jiffies; dev->stats.tx_errors++; netif_tx_wake_all_queues(dev); } #define MAX_MC_COUNT 16 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv, unsigned char *addr, int *i, int *mc) { u32 reg; bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1], UMAC_MDF_ADDR + (*i * 4)); bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 | addr[4] << 8 | addr[5], UMAC_MDF_ADDR + ((*i + 1) * 4)); reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL); reg |= (1 << (MAX_MC_COUNT - *mc)); bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL); *i += 2; (*mc)++; } static void bcmgenet_set_rx_mode(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); struct netdev_hw_addr *ha; int i, mc; u32 reg; netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags); /* Promiscous mode */ reg = bcmgenet_umac_readl(priv, UMAC_CMD); if (dev->flags & IFF_PROMISC) { reg |= CMD_PROMISC; bcmgenet_umac_writel(priv, reg, UMAC_CMD); bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL); return; } else { reg &= ~CMD_PROMISC; bcmgenet_umac_writel(priv, reg, UMAC_CMD); } /* UniMac doesn't support ALLMULTI */ if (dev->flags & IFF_ALLMULTI) { netdev_warn(dev, "ALLMULTI is not supported\n"); return; } /* update MDF filter */ i = 0; mc = 0; /* Broadcast */ bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc); /* my own address.*/ bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc); /* Unicast list*/ if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc)) return; if (!netdev_uc_empty(dev)) netdev_for_each_uc_addr(ha, dev) bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc); /* Multicast */ if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc)) return; netdev_for_each_mc_addr(ha, dev) bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc); } /* Set the hardware MAC address. */ static int bcmgenet_set_mac_addr(struct net_device *dev, void *p) { struct sockaddr *addr = p; /* Setting the MAC address at the hardware level is not possible * without disabling the UniMAC RX/TX enable bits. */ if (netif_running(dev)) return -EBUSY; ether_addr_copy(dev->dev_addr, addr->sa_data); return 0; } static const struct net_device_ops bcmgenet_netdev_ops = { .ndo_open = bcmgenet_open, .ndo_stop = bcmgenet_close, .ndo_start_xmit = bcmgenet_xmit, .ndo_tx_timeout = bcmgenet_timeout, .ndo_set_rx_mode = bcmgenet_set_rx_mode, .ndo_set_mac_address = bcmgenet_set_mac_addr, .ndo_do_ioctl = bcmgenet_ioctl, .ndo_set_features = bcmgenet_set_features, }; /* Array of GENET hardware parameters/characteristics */ static struct bcmgenet_hw_params bcmgenet_hw_params[] = { [GENET_V1] = { .tx_queues = 0, .rx_queues = 0, .bds_cnt = 0, .bp_in_en_shift = 16, .bp_in_mask = 0xffff, .hfb_filter_cnt = 16, .qtag_mask = 0x1F, .hfb_offset = 0x1000, .rdma_offset = 0x2000, .tdma_offset = 0x3000, .words_per_bd = 2, }, [GENET_V2] = { .tx_queues = 4, .rx_queues = 4, .bds_cnt = 32, .bp_in_en_shift = 16, .bp_in_mask = 0xffff, .hfb_filter_cnt = 16, .qtag_mask = 0x1F, .tbuf_offset = 0x0600, .hfb_offset = 0x1000, .hfb_reg_offset = 0x2000, .rdma_offset = 0x3000, .tdma_offset = 0x4000, .words_per_bd = 2, .flags = GENET_HAS_EXT, }, [GENET_V3] = { .tx_queues = 4, .rx_queues = 4, .bds_cnt = 32, .bp_in_en_shift = 17, .bp_in_mask = 0x1ffff, .hfb_filter_cnt = 48, .qtag_mask = 0x3F, .tbuf_offset = 0x0600, .hfb_offset = 0x8000, .hfb_reg_offset = 0xfc00, .rdma_offset = 0x10000, .tdma_offset = 0x11000, .words_per_bd = 2, .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR, }, [GENET_V4] = { .tx_queues = 4, .rx_queues = 4, .bds_cnt = 32, .bp_in_en_shift = 17, .bp_in_mask = 0x1ffff, .hfb_filter_cnt = 48, .qtag_mask = 0x3F, .tbuf_offset = 0x0600, .hfb_offset = 0x8000, .hfb_reg_offset = 0xfc00, .rdma_offset = 0x2000, .tdma_offset = 0x4000, .words_per_bd = 3, .flags = GENET_HAS_40BITS | GENET_HAS_EXT | GENET_HAS_MDIO_INTR, }, }; /* Infer hardware parameters from the detected GENET version */ static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv) { struct bcmgenet_hw_params *params; u32 reg; u8 major; if (GENET_IS_V4(priv)) { bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; genet_dma_ring_regs = genet_dma_ring_regs_v4; priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS; priv->version = GENET_V4; } else if (GENET_IS_V3(priv)) { bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; genet_dma_ring_regs = genet_dma_ring_regs_v123; priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS; priv->version = GENET_V3; } else if (GENET_IS_V2(priv)) { bcmgenet_dma_regs = bcmgenet_dma_regs_v2; genet_dma_ring_regs = genet_dma_ring_regs_v123; priv->dma_rx_chk_bit = DMA_RX_CHK_V12; priv->version = GENET_V2; } else if (GENET_IS_V1(priv)) { bcmgenet_dma_regs = bcmgenet_dma_regs_v1; genet_dma_ring_regs = genet_dma_ring_regs_v123; priv->dma_rx_chk_bit = DMA_RX_CHK_V12; priv->version = GENET_V1; } /* enum genet_version starts at 1 */ priv->hw_params = &bcmgenet_hw_params[priv->version]; params = priv->hw_params; /* Read GENET HW version */ reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL); major = (reg >> 24 & 0x0f); if (major == 5) major = 4; else if (major == 0) major = 1; if (major != priv->version) { dev_err(&priv->pdev->dev, "GENET version mismatch, got: %d, configured for: %d\n", major, priv->version); } /* Print the GENET core version */ dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT, major, (reg >> 16) & 0x0f, reg & 0xffff); #ifdef CONFIG_PHYS_ADDR_T_64BIT if (!(params->flags & GENET_HAS_40BITS)) pr_warn("GENET does not support 40-bits PA\n"); #endif pr_debug("Configuration for version: %d\n" "TXq: %1d, RXq: %1d, BDs: %1d\n" "BP << en: %2d, BP msk: 0x%05x\n" "HFB count: %2d, QTAQ msk: 0x%05x\n" "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n" "RDMA: 0x%05x, TDMA: 0x%05x\n" "Words/BD: %d\n", priv->version, params->tx_queues, params->rx_queues, params->bds_cnt, params->bp_in_en_shift, params->bp_in_mask, params->hfb_filter_cnt, params->qtag_mask, params->tbuf_offset, params->hfb_offset, params->hfb_reg_offset, params->rdma_offset, params->tdma_offset, params->words_per_bd); } static const struct of_device_id bcmgenet_match[] = { { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 }, { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 }, { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 }, { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 }, { }, }; static int bcmgenet_probe(struct platform_device *pdev) { struct device_node *dn = pdev->dev.of_node; const struct of_device_id *of_id; struct bcmgenet_priv *priv; struct net_device *dev; const void *macaddr; struct resource *r; int err = -EIO; /* Up to GENET_MAX_MQ_CNT + 1 TX queues and a single RX queue */ dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 1); if (!dev) { dev_err(&pdev->dev, "can't allocate net device\n"); return -ENOMEM; } of_id = of_match_node(bcmgenet_match, dn); if (!of_id) return -EINVAL; priv = netdev_priv(dev); priv->irq0 = platform_get_irq(pdev, 0); priv->irq1 = platform_get_irq(pdev, 1); if (!priv->irq0 || !priv->irq1) { dev_err(&pdev->dev, "can't find IRQs\n"); err = -EINVAL; goto err; } macaddr = of_get_mac_address(dn); if (!macaddr) { dev_err(&pdev->dev, "can't find MAC address\n"); err = -EINVAL; goto err; } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); priv->base = devm_ioremap_resource(&pdev->dev, r); if (IS_ERR(priv->base)) { err = PTR_ERR(priv->base); goto err; } SET_NETDEV_DEV(dev, &pdev->dev); dev_set_drvdata(&pdev->dev, dev); ether_addr_copy(dev->dev_addr, macaddr); dev->watchdog_timeo = 2 * HZ; SET_ETHTOOL_OPS(dev, &bcmgenet_ethtool_ops); dev->netdev_ops = &bcmgenet_netdev_ops; netif_napi_add(dev, &priv->napi, bcmgenet_poll, 64); priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT); /* Set hardware features */ dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; /* Set the needed headroom to account for any possible * features enabling/disabling at runtime */ dev->needed_headroom += 64; netdev_boot_setup_check(dev); priv->dev = dev; priv->pdev = pdev; priv->version = (enum bcmgenet_version)of_id->data; bcmgenet_set_hw_params(priv); spin_lock_init(&priv->lock); /* Mii wait queue */ init_waitqueue_head(&priv->wq); /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */ priv->rx_buf_len = RX_BUF_LENGTH; INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task); priv->clk = devm_clk_get(&priv->pdev->dev, "enet"); if (IS_ERR(priv->clk)) dev_warn(&priv->pdev->dev, "failed to get enet clock\n"); priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol"); if (IS_ERR(priv->clk_wol)) dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n"); if (!IS_ERR(priv->clk)) clk_prepare_enable(priv->clk); err = reset_umac(priv); if (err) goto err_clk_disable; err = bcmgenet_mii_init(dev); if (err) goto err_clk_disable; /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues * just the ring 16 descriptor based TX */ netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1); netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1); err = register_netdev(dev); if (err) goto err_clk_disable; /* Turn off the main clock, WOL clock is handled separately */ if (!IS_ERR(priv->clk)) clk_disable_unprepare(priv->clk); return err; err_clk_disable: if (!IS_ERR(priv->clk)) clk_disable_unprepare(priv->clk); err: free_netdev(dev); return err; } static int bcmgenet_remove(struct platform_device *pdev) { struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev); dev_set_drvdata(&pdev->dev, NULL); unregister_netdev(priv->dev); bcmgenet_mii_exit(priv->dev); free_netdev(priv->dev); return 0; } static struct platform_driver bcmgenet_driver = { .probe = bcmgenet_probe, .remove = bcmgenet_remove, .driver = { .name = "bcmgenet", .owner = THIS_MODULE, .of_match_table = bcmgenet_match, }, }; module_platform_driver(bcmgenet_driver); MODULE_AUTHOR("Broadcom Corporation"); MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver"); MODULE_ALIAS("platform:bcmgenet"); MODULE_LICENSE("GPL");