/* * Driver for Ensoniq ES1370/ES1371 AudioPCI soundcard * Copyright (c) by Jaroslav Kysela , * Thomas Sailer * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* Power-Management-Code ( CONFIG_PM ) * for ens1371 only ( FIXME ) * derived from cs4281.c, atiixp.c and via82xx.c * using http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/ * by Kurt J. Bosch */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CHIP1371 #include #else #include #endif #include #include #ifndef CHIP1371 #undef CHIP1370 #define CHIP1370 #endif #ifdef CHIP1370 #define DRIVER_NAME "ENS1370" #define CHIP_NAME "ES1370" /* it can be ENS but just to keep compatibility... */ #else #define DRIVER_NAME "ENS1371" #define CHIP_NAME "ES1371" #endif MODULE_AUTHOR("Jaroslav Kysela , Thomas Sailer "); MODULE_LICENSE("GPL"); #ifdef CHIP1370 MODULE_DESCRIPTION("Ensoniq AudioPCI ES1370"); MODULE_SUPPORTED_DEVICE("{{Ensoniq,AudioPCI-97 ES1370}," "{Creative Labs,SB PCI64/128 (ES1370)}}"); #endif #ifdef CHIP1371 MODULE_DESCRIPTION("Ensoniq/Creative AudioPCI ES1371+"); MODULE_SUPPORTED_DEVICE("{{Ensoniq,AudioPCI ES1371/73}," "{Ensoniq,AudioPCI ES1373}," "{Creative Labs,Ectiva EV1938}," "{Creative Labs,SB PCI64/128 (ES1371/73)}," "{Creative Labs,Vibra PCI128}," "{Ectiva,EV1938}}"); #endif #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE)) #define SUPPORT_JOYSTICK #endif static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */ #ifdef SUPPORT_JOYSTICK #ifdef CHIP1371 static int joystick_port[SNDRV_CARDS]; #else static bool joystick[SNDRV_CARDS]; #endif #endif #ifdef CHIP1371 static int spdif[SNDRV_CARDS]; static int lineio[SNDRV_CARDS]; #endif module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for Ensoniq AudioPCI soundcard."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for Ensoniq AudioPCI soundcard."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable Ensoniq AudioPCI soundcard."); #ifdef SUPPORT_JOYSTICK #ifdef CHIP1371 module_param_array(joystick_port, int, NULL, 0444); MODULE_PARM_DESC(joystick_port, "Joystick port address."); #else module_param_array(joystick, bool, NULL, 0444); MODULE_PARM_DESC(joystick, "Enable joystick."); #endif #endif /* SUPPORT_JOYSTICK */ #ifdef CHIP1371 module_param_array(spdif, int, NULL, 0444); MODULE_PARM_DESC(spdif, "S/PDIF output (-1 = none, 0 = auto, 1 = force)."); module_param_array(lineio, int, NULL, 0444); MODULE_PARM_DESC(lineio, "Line In to Rear Out (0 = auto, 1 = force)."); #endif /* ES1371 chip ID */ /* This is a little confusing because all ES1371 compatible chips have the same DEVICE_ID, the only thing differentiating them is the REV_ID field. This is only significant if you want to enable features on the later parts. Yes, I know it's stupid and why didn't we use the sub IDs? */ #define ES1371REV_ES1373_A 0x04 #define ES1371REV_ES1373_B 0x06 #define ES1371REV_CT5880_A 0x07 #define CT5880REV_CT5880_C 0x02 #define CT5880REV_CT5880_D 0x03 /* ??? -jk */ #define CT5880REV_CT5880_E 0x04 /* mw */ #define ES1371REV_ES1371_B 0x09 #define EV1938REV_EV1938_A 0x00 #define ES1371REV_ES1373_8 0x08 /* * Direct registers */ #define ES_REG(ensoniq, x) ((ensoniq)->port + ES_REG_##x) #define ES_REG_CONTROL 0x00 /* R/W: Interrupt/Chip select control register */ #define ES_1370_ADC_STOP (1<<31) /* disable capture buffer transfers */ #define ES_1370_XCTL1 (1<<30) /* general purpose output bit */ #define ES_1373_BYPASS_P1 (1<<31) /* bypass SRC for PB1 */ #define ES_1373_BYPASS_P2 (1<<30) /* bypass SRC for PB2 */ #define ES_1373_BYPASS_R (1<<29) /* bypass SRC for REC */ #define ES_1373_TEST_BIT (1<<28) /* should be set to 0 for normal operation */ #define ES_1373_RECEN_B (1<<27) /* mix record with playback for I2S/SPDIF out */ #define ES_1373_SPDIF_THRU (1<<26) /* 0 = SPDIF thru mode, 1 = SPDIF == dig out */ #define ES_1371_JOY_ASEL(o) (((o)&0x03)<<24)/* joystick port mapping */ #define ES_1371_JOY_ASELM (0x03<<24) /* mask for above */ #define ES_1371_JOY_ASELI(i) (((i)>>24)&0x03) #define ES_1371_GPIO_IN(i) (((i)>>20)&0x0f)/* GPIO in [3:0] pins - R/O */ #define ES_1370_PCLKDIVO(o) (((o)&0x1fff)<<16)/* clock divide ratio for DAC2 */ #define ES_1370_PCLKDIVM ((0x1fff)<<16) /* mask for above */ #define ES_1370_PCLKDIVI(i) (((i)>>16)&0x1fff)/* clock divide ratio for DAC2 */ #define ES_1371_GPIO_OUT(o) (((o)&0x0f)<<16)/* GPIO out [3:0] pins - W/R */ #define ES_1371_GPIO_OUTM (0x0f<<16) /* mask for above */ #define ES_MSFMTSEL (1<<15) /* MPEG serial data format; 0 = SONY, 1 = I2S */ #define ES_1370_M_SBB (1<<14) /* clock source for DAC - 0 = clock generator; 1 = MPEG clocks */ #define ES_1371_SYNC_RES (1<<14) /* Warm AC97 reset */ #define ES_1370_WTSRSEL(o) (((o)&0x03)<<12)/* fixed frequency clock for DAC1 */ #define ES_1370_WTSRSELM (0x03<<12) /* mask for above */ #define ES_1371_ADC_STOP (1<<13) /* disable CCB transfer capture information */ #define ES_1371_PWR_INTRM (1<<12) /* power level change interrupts enable */ #define ES_1370_DAC_SYNC (1<<11) /* DAC's are synchronous */ #define ES_1371_M_CB (1<<11) /* capture clock source; 0 = AC'97 ADC; 1 = I2S */ #define ES_CCB_INTRM (1<<10) /* CCB voice interrupts enable */ #define ES_1370_M_CB (1<<9) /* capture clock source; 0 = ADC; 1 = MPEG */ #define ES_1370_XCTL0 (1<<8) /* generap purpose output bit */ #define ES_1371_PDLEV(o) (((o)&0x03)<<8) /* current power down level */ #define ES_1371_PDLEVM (0x03<<8) /* mask for above */ #define ES_BREQ (1<<7) /* memory bus request enable */ #define ES_DAC1_EN (1<<6) /* DAC1 playback channel enable */ #define ES_DAC2_EN (1<<5) /* DAC2 playback channel enable */ #define ES_ADC_EN (1<<4) /* ADC capture channel enable */ #define ES_UART_EN (1<<3) /* UART enable */ #define ES_JYSTK_EN (1<<2) /* Joystick module enable */ #define ES_1370_CDC_EN (1<<1) /* Codec interface enable */ #define ES_1371_XTALCKDIS (1<<1) /* Xtal clock disable */ #define ES_1370_SERR_DISABLE (1<<0) /* PCI serr signal disable */ #define ES_1371_PCICLKDIS (1<<0) /* PCI clock disable */ #define ES_REG_STATUS 0x04 /* R/O: Interrupt/Chip select status register */ #define ES_INTR (1<<31) /* Interrupt is pending */ #define ES_1371_ST_AC97_RST (1<<29) /* CT5880 AC'97 Reset bit */ #define ES_1373_REAR_BIT27 (1<<27) /* rear bits: 000 - front, 010 - mirror, 101 - separate */ #define ES_1373_REAR_BIT26 (1<<26) #define ES_1373_REAR_BIT24 (1<<24) #define ES_1373_GPIO_INT_EN(o)(((o)&0x0f)<<20)/* GPIO [3:0] pins - interrupt enable */ #define ES_1373_SPDIF_EN (1<<18) /* SPDIF enable */ #define ES_1373_SPDIF_TEST (1<<17) /* SPDIF test */ #define ES_1371_TEST (1<<16) /* test ASIC */ #define ES_1373_GPIO_INT(i) (((i)&0x0f)>>12)/* GPIO [3:0] pins - interrupt pending */ #define ES_1370_CSTAT (1<<10) /* CODEC is busy or register write in progress */ #define ES_1370_CBUSY (1<<9) /* CODEC is busy */ #define ES_1370_CWRIP (1<<8) /* CODEC register write in progress */ #define ES_1371_SYNC_ERR (1<<8) /* CODEC synchronization error occurred */ #define ES_1371_VC(i) (((i)>>6)&0x03) /* voice code from CCB module */ #define ES_1370_VC(i) (((i)>>5)&0x03) /* voice code from CCB module */ #define ES_1371_MPWR (1<<5) /* power level interrupt pending */ #define ES_MCCB (1<<4) /* CCB interrupt pending */ #define ES_UART (1<<3) /* UART interrupt pending */ #define ES_DAC1 (1<<2) /* DAC1 channel interrupt pending */ #define ES_DAC2 (1<<1) /* DAC2 channel interrupt pending */ #define ES_ADC (1<<0) /* ADC channel interrupt pending */ #define ES_REG_UART_DATA 0x08 /* R/W: UART data register */ #define ES_REG_UART_STATUS 0x09 /* R/O: UART status register */ #define ES_RXINT (1<<7) /* RX interrupt occurred */ #define ES_TXINT (1<<2) /* TX interrupt occurred */ #define ES_TXRDY (1<<1) /* transmitter ready */ #define ES_RXRDY (1<<0) /* receiver ready */ #define ES_REG_UART_CONTROL 0x09 /* W/O: UART control register */ #define ES_RXINTEN (1<<7) /* RX interrupt enable */ #define ES_TXINTENO(o) (((o)&0x03)<<5) /* TX interrupt enable */ #define ES_TXINTENM (0x03<<5) /* mask for above */ #define ES_TXINTENI(i) (((i)>>5)&0x03) #define ES_CNTRL(o) (((o)&0x03)<<0) /* control */ #define ES_CNTRLM (0x03<<0) /* mask for above */ #define ES_REG_UART_RES 0x0a /* R/W: UART reserver register */ #define ES_TEST_MODE (1<<0) /* test mode enabled */ #define ES_REG_MEM_PAGE 0x0c /* R/W: Memory page register */ #define ES_MEM_PAGEO(o) (((o)&0x0f)<<0) /* memory page select - out */ #define ES_MEM_PAGEM (0x0f<<0) /* mask for above */ #define ES_MEM_PAGEI(i) (((i)>>0)&0x0f) /* memory page select - in */ #define ES_REG_1370_CODEC 0x10 /* W/O: Codec write register address */ #define ES_1370_CODEC_WRITE(a,d) ((((a)&0xff)<<8)|(((d)&0xff)<<0)) #define ES_REG_1371_CODEC 0x14 /* W/R: Codec Read/Write register address */ #define ES_1371_CODEC_RDY (1<<31) /* codec ready */ #define ES_1371_CODEC_WIP (1<<30) /* codec register access in progress */ #define EV_1938_CODEC_MAGIC (1<<26) #define ES_1371_CODEC_PIRD (1<<23) /* codec read/write select register */ #define ES_1371_CODEC_WRITE(a,d) ((((a)&0x7f)<<16)|(((d)&0xffff)<<0)) #define ES_1371_CODEC_READS(a) ((((a)&0x7f)<<16)|ES_1371_CODEC_PIRD) #define ES_1371_CODEC_READ(i) (((i)>>0)&0xffff) #define ES_REG_1371_SMPRATE 0x10 /* W/R: Codec rate converter interface register */ #define ES_1371_SRC_RAM_ADDRO(o) (((o)&0x7f)<<25)/* address of the sample rate converter */ #define ES_1371_SRC_RAM_ADDRM (0x7f<<25) /* mask for above */ #define ES_1371_SRC_RAM_ADDRI(i) (((i)>>25)&0x7f)/* address of the sample rate converter */ #define ES_1371_SRC_RAM_WE (1<<24) /* R/W: read/write control for sample rate converter */ #define ES_1371_SRC_RAM_BUSY (1<<23) /* R/O: sample rate memory is busy */ #define ES_1371_SRC_DISABLE (1<<22) /* sample rate converter disable */ #define ES_1371_DIS_P1 (1<<21) /* playback channel 1 accumulator update disable */ #define ES_1371_DIS_P2 (1<<20) /* playback channel 1 accumulator update disable */ #define ES_1371_DIS_R1 (1<<19) /* capture channel accumulator update disable */ #define ES_1371_SRC_RAM_DATAO(o) (((o)&0xffff)<<0)/* current value of the sample rate converter */ #define ES_1371_SRC_RAM_DATAM (0xffff<<0) /* mask for above */ #define ES_1371_SRC_RAM_DATAI(i) (((i)>>0)&0xffff)/* current value of the sample rate converter */ #define ES_REG_1371_LEGACY 0x18 /* W/R: Legacy control/status register */ #define ES_1371_JFAST (1<<31) /* fast joystick timing */ #define ES_1371_HIB (1<<30) /* host interrupt blocking enable */ #define ES_1371_VSB (1<<29) /* SB; 0 = addr 0x220xH, 1 = 0x22FxH */ #define ES_1371_VMPUO(o) (((o)&0x03)<<27)/* base register address; 0 = 0x320xH; 1 = 0x330xH; 2 = 0x340xH; 3 = 0x350xH */ #define ES_1371_VMPUM (0x03<<27) /* mask for above */ #define ES_1371_VMPUI(i) (((i)>>27)&0x03)/* base register address */ #define ES_1371_VCDCO(o) (((o)&0x03)<<25)/* CODEC; 0 = 0x530xH; 1 = undefined; 2 = 0xe80xH; 3 = 0xF40xH */ #define ES_1371_VCDCM (0x03<<25) /* mask for above */ #define ES_1371_VCDCI(i) (((i)>>25)&0x03)/* CODEC address */ #define ES_1371_FIRQ (1<<24) /* force an interrupt */ #define ES_1371_SDMACAP (1<<23) /* enable event capture for slave DMA controller */ #define ES_1371_SPICAP (1<<22) /* enable event capture for slave IRQ controller */ #define ES_1371_MDMACAP (1<<21) /* enable event capture for master DMA controller */ #define ES_1371_MPICAP (1<<20) /* enable event capture for master IRQ controller */ #define ES_1371_ADCAP (1<<19) /* enable event capture for ADLIB register; 0x388xH */ #define ES_1371_SVCAP (1<<18) /* enable event capture for SB registers */ #define ES_1371_CDCCAP (1<<17) /* enable event capture for CODEC registers */ #define ES_1371_BACAP (1<<16) /* enable event capture for SoundScape base address */ #define ES_1371_EXI(i) (((i)>>8)&0x07) /* event number */ #define ES_1371_AI(i) (((i)>>3)&0x1f) /* event significant I/O address */ #define ES_1371_WR (1<<2) /* event capture; 0 = read; 1 = write */ #define ES_1371_LEGINT (1<<0) /* interrupt for legacy events; 0 = interrupt did occur */ #define ES_REG_CHANNEL_STATUS 0x1c /* R/W: first 32-bits from S/PDIF channel status block, es1373 */ #define ES_REG_SERIAL 0x20 /* R/W: Serial interface control register */ #define ES_1371_DAC_TEST (1<<22) /* DAC test mode enable */ #define ES_P2_END_INCO(o) (((o)&0x07)<<19)/* binary offset value to increment / loop end */ #define ES_P2_END_INCM (0x07<<19) /* mask for above */ #define ES_P2_END_INCI(i) (((i)>>16)&0x07)/* binary offset value to increment / loop end */ #define ES_P2_ST_INCO(o) (((o)&0x07)<<16)/* binary offset value to increment / start */ #define ES_P2_ST_INCM (0x07<<16) /* mask for above */ #define ES_P2_ST_INCI(i) (((i)<<16)&0x07)/* binary offset value to increment / start */ #define ES_R1_LOOP_SEL (1<<15) /* ADC; 0 - loop mode; 1 = stop mode */ #define ES_P2_LOOP_SEL (1<<14) /* DAC2; 0 - loop mode; 1 = stop mode */ #define ES_P1_LOOP_SEL (1<<13) /* DAC1; 0 - loop mode; 1 = stop mode */ #define ES_P2_PAUSE (1<<12) /* DAC2; 0 - play mode; 1 = pause mode */ #define ES_P1_PAUSE (1<<11) /* DAC1; 0 - play mode; 1 = pause mode */ #define ES_R1_INT_EN (1<<10) /* ADC interrupt enable */ #define ES_P2_INT_EN (1<<9) /* DAC2 interrupt enable */ #define ES_P1_INT_EN (1<<8) /* DAC1 interrupt enable */ #define ES_P1_SCT_RLD (1<<7) /* force sample counter reload for DAC1 */ #define ES_P2_DAC_SEN (1<<6) /* when stop mode: 0 - DAC2 play back zeros; 1 = DAC2 play back last sample */ #define ES_R1_MODEO(o) (((o)&0x03)<<4) /* ADC mode; 0 = 8-bit mono; 1 = 8-bit stereo; 2 = 16-bit mono; 3 = 16-bit stereo */ #define ES_R1_MODEM (0x03<<4) /* mask for above */ #define ES_R1_MODEI(i) (((i)>>4)&0x03) #define ES_P2_MODEO(o) (((o)&0x03)<<2) /* DAC2 mode; -- '' -- */ #define ES_P2_MODEM (0x03<<2) /* mask for above */ #define ES_P2_MODEI(i) (((i)>>2)&0x03) #define ES_P1_MODEO(o) (((o)&0x03)<<0) /* DAC1 mode; -- '' -- */ #define ES_P1_MODEM (0x03<<0) /* mask for above */ #define ES_P1_MODEI(i) (((i)>>0)&0x03) #define ES_REG_DAC1_COUNT 0x24 /* R/W: DAC1 sample count register */ #define ES_REG_DAC2_COUNT 0x28 /* R/W: DAC2 sample count register */ #define ES_REG_ADC_COUNT 0x2c /* R/W: ADC sample count register */ #define ES_REG_CURR_COUNT(i) (((i)>>16)&0xffff) #define ES_REG_COUNTO(o) (((o)&0xffff)<<0) #define ES_REG_COUNTM (0xffff<<0) #define ES_REG_COUNTI(i) (((i)>>0)&0xffff) #define ES_REG_DAC1_FRAME 0x30 /* R/W: PAGE 0x0c; DAC1 frame address */ #define ES_REG_DAC1_SIZE 0x34 /* R/W: PAGE 0x0c; DAC1 frame size */ #define ES_REG_DAC2_FRAME 0x38 /* R/W: PAGE 0x0c; DAC2 frame address */ #define ES_REG_DAC2_SIZE 0x3c /* R/W: PAGE 0x0c; DAC2 frame size */ #define ES_REG_ADC_FRAME 0x30 /* R/W: PAGE 0x0d; ADC frame address */ #define ES_REG_ADC_SIZE 0x34 /* R/W: PAGE 0x0d; ADC frame size */ #define ES_REG_FCURR_COUNTO(o) (((o)&0xffff)<<16) #define ES_REG_FCURR_COUNTM (0xffff<<16) #define ES_REG_FCURR_COUNTI(i) (((i)>>14)&0x3fffc) #define ES_REG_FSIZEO(o) (((o)&0xffff)<<0) #define ES_REG_FSIZEM (0xffff<<0) #define ES_REG_FSIZEI(i) (((i)>>0)&0xffff) #define ES_REG_PHANTOM_FRAME 0x38 /* R/W: PAGE 0x0d: phantom frame address */ #define ES_REG_PHANTOM_COUNT 0x3c /* R/W: PAGE 0x0d: phantom frame count */ #define ES_REG_UART_FIFO 0x30 /* R/W: PAGE 0x0e; UART FIFO register */ #define ES_REG_UF_VALID (1<<8) #define ES_REG_UF_BYTEO(o) (((o)&0xff)<<0) #define ES_REG_UF_BYTEM (0xff<<0) #define ES_REG_UF_BYTEI(i) (((i)>>0)&0xff) /* * Pages */ #define ES_PAGE_DAC 0x0c #define ES_PAGE_ADC 0x0d #define ES_PAGE_UART 0x0e #define ES_PAGE_UART1 0x0f /* * Sample rate converter addresses */ #define ES_SMPREG_DAC1 0x70 #define ES_SMPREG_DAC2 0x74 #define ES_SMPREG_ADC 0x78 #define ES_SMPREG_VOL_ADC 0x6c #define ES_SMPREG_VOL_DAC1 0x7c #define ES_SMPREG_VOL_DAC2 0x7e #define ES_SMPREG_TRUNC_N 0x00 #define ES_SMPREG_INT_REGS 0x01 #define ES_SMPREG_ACCUM_FRAC 0x02 #define ES_SMPREG_VFREQ_FRAC 0x03 /* * Some contants */ #define ES_1370_SRCLOCK 1411200 #define ES_1370_SRTODIV(x) (ES_1370_SRCLOCK/(x)-2) /* * Open modes */ #define ES_MODE_PLAY1 0x0001 #define ES_MODE_PLAY2 0x0002 #define ES_MODE_CAPTURE 0x0004 #define ES_MODE_OUTPUT 0x0001 /* for MIDI */ #define ES_MODE_INPUT 0x0002 /* for MIDI */ /* */ struct ensoniq { spinlock_t reg_lock; struct mutex src_mutex; int irq; unsigned long playback1size; unsigned long playback2size; unsigned long capture3size; unsigned long port; unsigned int mode; unsigned int uartm; /* UART mode */ unsigned int ctrl; /* control register */ unsigned int sctrl; /* serial control register */ unsigned int cssr; /* control status register */ unsigned int uartc; /* uart control register */ unsigned int rev; /* chip revision */ union { #ifdef CHIP1371 struct { struct snd_ac97 *ac97; } es1371; #else struct { int pclkdiv_lock; struct snd_ak4531 *ak4531; } es1370; #endif } u; struct pci_dev *pci; struct snd_card *card; struct snd_pcm *pcm1; /* DAC1/ADC PCM */ struct snd_pcm *pcm2; /* DAC2 PCM */ struct snd_pcm_substream *playback1_substream; struct snd_pcm_substream *playback2_substream; struct snd_pcm_substream *capture_substream; unsigned int p1_dma_size; unsigned int p2_dma_size; unsigned int c_dma_size; unsigned int p1_period_size; unsigned int p2_period_size; unsigned int c_period_size; struct snd_rawmidi *rmidi; struct snd_rawmidi_substream *midi_input; struct snd_rawmidi_substream *midi_output; unsigned int spdif; unsigned int spdif_default; unsigned int spdif_stream; #ifdef CHIP1370 struct snd_dma_buffer dma_bug; #endif #ifdef SUPPORT_JOYSTICK struct gameport *gameport; #endif }; static irqreturn_t snd_audiopci_interrupt(int irq, void *dev_id); static DEFINE_PCI_DEVICE_TABLE(snd_audiopci_ids) = { #ifdef CHIP1370 { PCI_VDEVICE(ENSONIQ, 0x5000), 0, }, /* ES1370 */ #endif #ifdef CHIP1371 { PCI_VDEVICE(ENSONIQ, 0x1371), 0, }, /* ES1371 */ { PCI_VDEVICE(ENSONIQ, 0x5880), 0, }, /* ES1373 - CT5880 */ { PCI_VDEVICE(ECTIVA, 0x8938), 0, }, /* Ectiva EV1938 */ #endif { 0, } }; MODULE_DEVICE_TABLE(pci, snd_audiopci_ids); /* * constants */ #define POLL_COUNT 0xa000 #ifdef CHIP1370 static unsigned int snd_es1370_fixed_rates[] = {5512, 11025, 22050, 44100}; static struct snd_pcm_hw_constraint_list snd_es1370_hw_constraints_rates = { .count = 4, .list = snd_es1370_fixed_rates, .mask = 0, }; static struct snd_ratnum es1370_clock = { .num = ES_1370_SRCLOCK, .den_min = 29, .den_max = 353, .den_step = 1, }; static struct snd_pcm_hw_constraint_ratnums snd_es1370_hw_constraints_clock = { .nrats = 1, .rats = &es1370_clock, }; #else static struct snd_ratden es1371_dac_clock = { .num_min = 3000 * (1 << 15), .num_max = 48000 * (1 << 15), .num_step = 3000, .den = 1 << 15, }; static struct snd_pcm_hw_constraint_ratdens snd_es1371_hw_constraints_dac_clock = { .nrats = 1, .rats = &es1371_dac_clock, }; static struct snd_ratnum es1371_adc_clock = { .num = 48000 << 15, .den_min = 32768, .den_max = 393216, .den_step = 1, }; static struct snd_pcm_hw_constraint_ratnums snd_es1371_hw_constraints_adc_clock = { .nrats = 1, .rats = &es1371_adc_clock, }; #endif static const unsigned int snd_ensoniq_sample_shift[] = {0, 1, 1, 2}; /* * common I/O routines */ #ifdef CHIP1371 static unsigned int snd_es1371_wait_src_ready(struct ensoniq * ensoniq) { unsigned int t, r = 0; for (t = 0; t < POLL_COUNT; t++) { r = inl(ES_REG(ensoniq, 1371_SMPRATE)); if ((r & ES_1371_SRC_RAM_BUSY) == 0) return r; cond_resched(); } snd_printk(KERN_ERR "wait src ready timeout 0x%lx [0x%x]\n", ES_REG(ensoniq, 1371_SMPRATE), r); return 0; } static unsigned int snd_es1371_src_read(struct ensoniq * ensoniq, unsigned short reg) { unsigned int temp, i, orig, r; /* wait for ready */ temp = orig = snd_es1371_wait_src_ready(ensoniq); /* expose the SRC state bits */ r = temp & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | ES_1371_DIS_P2 | ES_1371_DIS_R1); r |= ES_1371_SRC_RAM_ADDRO(reg) | 0x10000; outl(r, ES_REG(ensoniq, 1371_SMPRATE)); /* now, wait for busy and the correct time to read */ temp = snd_es1371_wait_src_ready(ensoniq); if ((temp & 0x00870000) != 0x00010000) { /* wait for the right state */ for (i = 0; i < POLL_COUNT; i++) { temp = inl(ES_REG(ensoniq, 1371_SMPRATE)); if ((temp & 0x00870000) == 0x00010000) break; } } /* hide the state bits */ r = orig & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | ES_1371_DIS_P2 | ES_1371_DIS_R1); r |= ES_1371_SRC_RAM_ADDRO(reg); outl(r, ES_REG(ensoniq, 1371_SMPRATE)); return temp; } static void snd_es1371_src_write(struct ensoniq * ensoniq, unsigned short reg, unsigned short data) { unsigned int r; r = snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | ES_1371_DIS_P2 | ES_1371_DIS_R1); r |= ES_1371_SRC_RAM_ADDRO(reg) | ES_1371_SRC_RAM_DATAO(data); outl(r | ES_1371_SRC_RAM_WE, ES_REG(ensoniq, 1371_SMPRATE)); } #endif /* CHIP1371 */ #ifdef CHIP1370 static void snd_es1370_codec_write(struct snd_ak4531 *ak4531, unsigned short reg, unsigned short val) { struct ensoniq *ensoniq = ak4531->private_data; unsigned long end_time = jiffies + HZ / 10; #if 0 printk(KERN_DEBUG "CODEC WRITE: reg = 0x%x, val = 0x%x (0x%x), creg = 0x%x\n", reg, val, ES_1370_CODEC_WRITE(reg, val), ES_REG(ensoniq, 1370_CODEC)); #endif do { if (!(inl(ES_REG(ensoniq, STATUS)) & ES_1370_CSTAT)) { outw(ES_1370_CODEC_WRITE(reg, val), ES_REG(ensoniq, 1370_CODEC)); return; } schedule_timeout_uninterruptible(1); } while (time_after(end_time, jiffies)); snd_printk(KERN_ERR "codec write timeout, status = 0x%x\n", inl(ES_REG(ensoniq, STATUS))); } #endif /* CHIP1370 */ #ifdef CHIP1371 static inline bool is_ev1938(struct ensoniq *ensoniq) { return ensoniq->pci->device == 0x8938; } static void snd_es1371_codec_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct ensoniq *ensoniq = ac97->private_data; unsigned int t, x, flag; flag = is_ev1938(ensoniq) ? EV_1938_CODEC_MAGIC : 0; mutex_lock(&ensoniq->src_mutex); for (t = 0; t < POLL_COUNT; t++) { if (!(inl(ES_REG(ensoniq, 1371_CODEC)) & ES_1371_CODEC_WIP)) { /* save the current state for latter */ x = snd_es1371_wait_src_ready(ensoniq); outl((x & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | ES_1371_DIS_P2 | ES_1371_DIS_R1)) | 0x00010000, ES_REG(ensoniq, 1371_SMPRATE)); /* wait for not busy (state 0) first to avoid transition states */ for (t = 0; t < POLL_COUNT; t++) { if ((inl(ES_REG(ensoniq, 1371_SMPRATE)) & 0x00870000) == 0x00000000) break; } /* wait for a SAFE time to write addr/data and then do it, dammit */ for (t = 0; t < POLL_COUNT; t++) { if ((inl(ES_REG(ensoniq, 1371_SMPRATE)) & 0x00870000) == 0x00010000) break; } outl(ES_1371_CODEC_WRITE(reg, val) | flag, ES_REG(ensoniq, 1371_CODEC)); /* restore SRC reg */ snd_es1371_wait_src_ready(ensoniq); outl(x, ES_REG(ensoniq, 1371_SMPRATE)); mutex_unlock(&ensoniq->src_mutex); return; } } mutex_unlock(&ensoniq->src_mutex); snd_printk(KERN_ERR "codec write timeout at 0x%lx [0x%x]\n", ES_REG(ensoniq, 1371_CODEC), inl(ES_REG(ensoniq, 1371_CODEC))); } static unsigned short snd_es1371_codec_read(struct snd_ac97 *ac97, unsigned short reg) { struct ensoniq *ensoniq = ac97->private_data; unsigned int t, x, flag, fail = 0; flag = is_ev1938(ensoniq) ? EV_1938_CODEC_MAGIC : 0; __again: mutex_lock(&ensoniq->src_mutex); for (t = 0; t < POLL_COUNT; t++) { if (!(inl(ES_REG(ensoniq, 1371_CODEC)) & ES_1371_CODEC_WIP)) { /* save the current state for latter */ x = snd_es1371_wait_src_ready(ensoniq); outl((x & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | ES_1371_DIS_P2 | ES_1371_DIS_R1)) | 0x00010000, ES_REG(ensoniq, 1371_SMPRATE)); /* wait for not busy (state 0) first to avoid transition states */ for (t = 0; t < POLL_COUNT; t++) { if ((inl(ES_REG(ensoniq, 1371_SMPRATE)) & 0x00870000) == 0x00000000) break; } /* wait for a SAFE time to write addr/data and then do it, dammit */ for (t = 0; t < POLL_COUNT; t++) { if ((inl(ES_REG(ensoniq, 1371_SMPRATE)) & 0x00870000) == 0x00010000) break; } outl(ES_1371_CODEC_READS(reg) | flag, ES_REG(ensoniq, 1371_CODEC)); /* restore SRC reg */ snd_es1371_wait_src_ready(ensoniq); outl(x, ES_REG(ensoniq, 1371_SMPRATE)); /* wait for WIP again */ for (t = 0; t < POLL_COUNT; t++) { if (!(inl(ES_REG(ensoniq, 1371_CODEC)) & ES_1371_CODEC_WIP)) break; } /* now wait for the stinkin' data (RDY) */ for (t = 0; t < POLL_COUNT; t++) { if ((x = inl(ES_REG(ensoniq, 1371_CODEC))) & ES_1371_CODEC_RDY) { if (is_ev1938(ensoniq)) { for (t = 0; t < 100; t++) inl(ES_REG(ensoniq, CONTROL)); x = inl(ES_REG(ensoniq, 1371_CODEC)); } mutex_unlock(&ensoniq->src_mutex); return ES_1371_CODEC_READ(x); } } mutex_unlock(&ensoniq->src_mutex); if (++fail > 10) { snd_printk(KERN_ERR "codec read timeout (final) " "at 0x%lx, reg = 0x%x [0x%x]\n", ES_REG(ensoniq, 1371_CODEC), reg, inl(ES_REG(ensoniq, 1371_CODEC))); return 0; } goto __again; } } mutex_unlock(&ensoniq->src_mutex); snd_printk(KERN_ERR "es1371: codec read timeout at 0x%lx [0x%x]\n", ES_REG(ensoniq, 1371_CODEC), inl(ES_REG(ensoniq, 1371_CODEC))); return 0; } static void snd_es1371_codec_wait(struct snd_ac97 *ac97) { msleep(750); snd_es1371_codec_read(ac97, AC97_RESET); snd_es1371_codec_read(ac97, AC97_VENDOR_ID1); snd_es1371_codec_read(ac97, AC97_VENDOR_ID2); msleep(50); } static void snd_es1371_adc_rate(struct ensoniq * ensoniq, unsigned int rate) { unsigned int n, truncm, freq, result; mutex_lock(&ensoniq->src_mutex); n = rate / 3000; if ((1 << n) & ((1 << 15) | (1 << 13) | (1 << 11) | (1 << 9))) n--; truncm = (21 * n - 1) | 1; freq = ((48000UL << 15) / rate) * n; result = (48000UL << 15) / (freq / n); if (rate >= 24000) { if (truncm > 239) truncm = 239; snd_es1371_src_write(ensoniq, ES_SMPREG_ADC + ES_SMPREG_TRUNC_N, (((239 - truncm) >> 1) << 9) | (n << 4)); } else { if (truncm > 119) truncm = 119; snd_es1371_src_write(ensoniq, ES_SMPREG_ADC + ES_SMPREG_TRUNC_N, 0x8000 | (((119 - truncm) >> 1) << 9) | (n << 4)); } snd_es1371_src_write(ensoniq, ES_SMPREG_ADC + ES_SMPREG_INT_REGS, (snd_es1371_src_read(ensoniq, ES_SMPREG_ADC + ES_SMPREG_INT_REGS) & 0x00ff) | ((freq >> 5) & 0xfc00)); snd_es1371_src_write(ensoniq, ES_SMPREG_ADC + ES_SMPREG_VFREQ_FRAC, freq & 0x7fff); snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_ADC, n << 8); snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_ADC + 1, n << 8); mutex_unlock(&ensoniq->src_mutex); } static void snd_es1371_dac1_rate(struct ensoniq * ensoniq, unsigned int rate) { unsigned int freq, r; mutex_lock(&ensoniq->src_mutex); freq = ((rate << 15) + 1500) / 3000; r = (snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE | ES_1371_DIS_P2 | ES_1371_DIS_R1)) | ES_1371_DIS_P1; outl(r, ES_REG(ensoniq, 1371_SMPRATE)); snd_es1371_src_write(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_INT_REGS, (snd_es1371_src_read(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_INT_REGS) & 0x00ff) | ((freq >> 5) & 0xfc00)); snd_es1371_src_write(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_VFREQ_FRAC, freq & 0x7fff); r = (snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE | ES_1371_DIS_P2 | ES_1371_DIS_R1)); outl(r, ES_REG(ensoniq, 1371_SMPRATE)); mutex_unlock(&ensoniq->src_mutex); } static void snd_es1371_dac2_rate(struct ensoniq * ensoniq, unsigned int rate) { unsigned int freq, r; mutex_lock(&ensoniq->src_mutex); freq = ((rate << 15) + 1500) / 3000; r = (snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | ES_1371_DIS_R1)) | ES_1371_DIS_P2; outl(r, ES_REG(ensoniq, 1371_SMPRATE)); snd_es1371_src_write(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_INT_REGS, (snd_es1371_src_read(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_INT_REGS) & 0x00ff) | ((freq >> 5) & 0xfc00)); snd_es1371_src_write(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_VFREQ_FRAC, freq & 0x7fff); r = (snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | ES_1371_DIS_R1)); outl(r, ES_REG(ensoniq, 1371_SMPRATE)); mutex_unlock(&ensoniq->src_mutex); } #endif /* CHIP1371 */ static int snd_ensoniq_trigger(struct snd_pcm_substream *substream, int cmd) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); switch (cmd) { case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: { unsigned int what = 0; struct snd_pcm_substream *s; snd_pcm_group_for_each_entry(s, substream) { if (s == ensoniq->playback1_substream) { what |= ES_P1_PAUSE; snd_pcm_trigger_done(s, substream); } else if (s == ensoniq->playback2_substream) { what |= ES_P2_PAUSE; snd_pcm_trigger_done(s, substream); } else if (s == ensoniq->capture_substream) return -EINVAL; } spin_lock(&ensoniq->reg_lock); if (cmd == SNDRV_PCM_TRIGGER_PAUSE_PUSH) ensoniq->sctrl |= what; else ensoniq->sctrl &= ~what; outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); spin_unlock(&ensoniq->reg_lock); break; } case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_STOP: { unsigned int what = 0; struct snd_pcm_substream *s; snd_pcm_group_for_each_entry(s, substream) { if (s == ensoniq->playback1_substream) { what |= ES_DAC1_EN; snd_pcm_trigger_done(s, substream); } else if (s == ensoniq->playback2_substream) { what |= ES_DAC2_EN; snd_pcm_trigger_done(s, substream); } else if (s == ensoniq->capture_substream) { what |= ES_ADC_EN; snd_pcm_trigger_done(s, substream); } } spin_lock(&ensoniq->reg_lock); if (cmd == SNDRV_PCM_TRIGGER_START) ensoniq->ctrl |= what; else ensoniq->ctrl &= ~what; outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); spin_unlock(&ensoniq->reg_lock); break; } default: return -EINVAL; } return 0; } /* * PCM part */ static int snd_ensoniq_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } static int snd_ensoniq_hw_free(struct snd_pcm_substream *substream) { return snd_pcm_lib_free_pages(substream); } static int snd_ensoniq_playback1_prepare(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; unsigned int mode = 0; ensoniq->p1_dma_size = snd_pcm_lib_buffer_bytes(substream); ensoniq->p1_period_size = snd_pcm_lib_period_bytes(substream); if (snd_pcm_format_width(runtime->format) == 16) mode |= 0x02; if (runtime->channels > 1) mode |= 0x01; spin_lock_irq(&ensoniq->reg_lock); ensoniq->ctrl &= ~ES_DAC1_EN; #ifdef CHIP1371 /* 48k doesn't need SRC (it breaks AC3-passthru) */ if (runtime->rate == 48000) ensoniq->ctrl |= ES_1373_BYPASS_P1; else ensoniq->ctrl &= ~ES_1373_BYPASS_P1; #endif outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); outl(ES_MEM_PAGEO(ES_PAGE_DAC), ES_REG(ensoniq, MEM_PAGE)); outl(runtime->dma_addr, ES_REG(ensoniq, DAC1_FRAME)); outl((ensoniq->p1_dma_size >> 2) - 1, ES_REG(ensoniq, DAC1_SIZE)); ensoniq->sctrl &= ~(ES_P1_LOOP_SEL | ES_P1_PAUSE | ES_P1_SCT_RLD | ES_P1_MODEM); ensoniq->sctrl |= ES_P1_INT_EN | ES_P1_MODEO(mode); outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); outl((ensoniq->p1_period_size >> snd_ensoniq_sample_shift[mode]) - 1, ES_REG(ensoniq, DAC1_COUNT)); #ifdef CHIP1370 ensoniq->ctrl &= ~ES_1370_WTSRSELM; switch (runtime->rate) { case 5512: ensoniq->ctrl |= ES_1370_WTSRSEL(0); break; case 11025: ensoniq->ctrl |= ES_1370_WTSRSEL(1); break; case 22050: ensoniq->ctrl |= ES_1370_WTSRSEL(2); break; case 44100: ensoniq->ctrl |= ES_1370_WTSRSEL(3); break; default: snd_BUG(); } #endif outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); spin_unlock_irq(&ensoniq->reg_lock); #ifndef CHIP1370 snd_es1371_dac1_rate(ensoniq, runtime->rate); #endif return 0; } static int snd_ensoniq_playback2_prepare(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; unsigned int mode = 0; ensoniq->p2_dma_size = snd_pcm_lib_buffer_bytes(substream); ensoniq->p2_period_size = snd_pcm_lib_period_bytes(substream); if (snd_pcm_format_width(runtime->format) == 16) mode |= 0x02; if (runtime->channels > 1) mode |= 0x01; spin_lock_irq(&ensoniq->reg_lock); ensoniq->ctrl &= ~ES_DAC2_EN; outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); outl(ES_MEM_PAGEO(ES_PAGE_DAC), ES_REG(ensoniq, MEM_PAGE)); outl(runtime->dma_addr, ES_REG(ensoniq, DAC2_FRAME)); outl((ensoniq->p2_dma_size >> 2) - 1, ES_REG(ensoniq, DAC2_SIZE)); ensoniq->sctrl &= ~(ES_P2_LOOP_SEL | ES_P2_PAUSE | ES_P2_DAC_SEN | ES_P2_END_INCM | ES_P2_ST_INCM | ES_P2_MODEM); ensoniq->sctrl |= ES_P2_INT_EN | ES_P2_MODEO(mode) | ES_P2_END_INCO(mode & 2 ? 2 : 1) | ES_P2_ST_INCO(0); outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); outl((ensoniq->p2_period_size >> snd_ensoniq_sample_shift[mode]) - 1, ES_REG(ensoniq, DAC2_COUNT)); #ifdef CHIP1370 if (!(ensoniq->u.es1370.pclkdiv_lock & ES_MODE_CAPTURE)) { ensoniq->ctrl &= ~ES_1370_PCLKDIVM; ensoniq->ctrl |= ES_1370_PCLKDIVO(ES_1370_SRTODIV(runtime->rate)); ensoniq->u.es1370.pclkdiv_lock |= ES_MODE_PLAY2; } #endif outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); spin_unlock_irq(&ensoniq->reg_lock); #ifndef CHIP1370 snd_es1371_dac2_rate(ensoniq, runtime->rate); #endif return 0; } static int snd_ensoniq_capture_prepare(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; unsigned int mode = 0; ensoniq->c_dma_size = snd_pcm_lib_buffer_bytes(substream); ensoniq->c_period_size = snd_pcm_lib_period_bytes(substream); if (snd_pcm_format_width(runtime->format) == 16) mode |= 0x02; if (runtime->channels > 1) mode |= 0x01; spin_lock_irq(&ensoniq->reg_lock); ensoniq->ctrl &= ~ES_ADC_EN; outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); outl(ES_MEM_PAGEO(ES_PAGE_ADC), ES_REG(ensoniq, MEM_PAGE)); outl(runtime->dma_addr, ES_REG(ensoniq, ADC_FRAME)); outl((ensoniq->c_dma_size >> 2) - 1, ES_REG(ensoniq, ADC_SIZE)); ensoniq->sctrl &= ~(ES_R1_LOOP_SEL | ES_R1_MODEM); ensoniq->sctrl |= ES_R1_INT_EN | ES_R1_MODEO(mode); outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); outl((ensoniq->c_period_size >> snd_ensoniq_sample_shift[mode]) - 1, ES_REG(ensoniq, ADC_COUNT)); #ifdef CHIP1370 if (!(ensoniq->u.es1370.pclkdiv_lock & ES_MODE_PLAY2)) { ensoniq->ctrl &= ~ES_1370_PCLKDIVM; ensoniq->ctrl |= ES_1370_PCLKDIVO(ES_1370_SRTODIV(runtime->rate)); ensoniq->u.es1370.pclkdiv_lock |= ES_MODE_CAPTURE; } #endif outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); spin_unlock_irq(&ensoniq->reg_lock); #ifndef CHIP1370 snd_es1371_adc_rate(ensoniq, runtime->rate); #endif return 0; } static snd_pcm_uframes_t snd_ensoniq_playback1_pointer(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); size_t ptr; spin_lock(&ensoniq->reg_lock); if (inl(ES_REG(ensoniq, CONTROL)) & ES_DAC1_EN) { outl(ES_MEM_PAGEO(ES_PAGE_DAC), ES_REG(ensoniq, MEM_PAGE)); ptr = ES_REG_FCURR_COUNTI(inl(ES_REG(ensoniq, DAC1_SIZE))); ptr = bytes_to_frames(substream->runtime, ptr); } else { ptr = 0; } spin_unlock(&ensoniq->reg_lock); return ptr; } static snd_pcm_uframes_t snd_ensoniq_playback2_pointer(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); size_t ptr; spin_lock(&ensoniq->reg_lock); if (inl(ES_REG(ensoniq, CONTROL)) & ES_DAC2_EN) { outl(ES_MEM_PAGEO(ES_PAGE_DAC), ES_REG(ensoniq, MEM_PAGE)); ptr = ES_REG_FCURR_COUNTI(inl(ES_REG(ensoniq, DAC2_SIZE))); ptr = bytes_to_frames(substream->runtime, ptr); } else { ptr = 0; } spin_unlock(&ensoniq->reg_lock); return ptr; } static snd_pcm_uframes_t snd_ensoniq_capture_pointer(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); size_t ptr; spin_lock(&ensoniq->reg_lock); if (inl(ES_REG(ensoniq, CONTROL)) & ES_ADC_EN) { outl(ES_MEM_PAGEO(ES_PAGE_ADC), ES_REG(ensoniq, MEM_PAGE)); ptr = ES_REG_FCURR_COUNTI(inl(ES_REG(ensoniq, ADC_SIZE))); ptr = bytes_to_frames(substream->runtime, ptr); } else { ptr = 0; } spin_unlock(&ensoniq->reg_lock); return ptr; } static struct snd_pcm_hardware snd_ensoniq_playback1 = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_SYNC_START), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = #ifndef CHIP1370 SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, #else (SNDRV_PCM_RATE_KNOT | /* 5512Hz rate */ SNDRV_PCM_RATE_11025 | SNDRV_PCM_RATE_22050 | SNDRV_PCM_RATE_44100), #endif .rate_min = 4000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 1, .periods_max = 1024, .fifo_size = 0, }; static struct snd_pcm_hardware snd_ensoniq_playback2 = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_SYNC_START), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, .rate_min = 4000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 1, .periods_max = 1024, .fifo_size = 0, }; static struct snd_pcm_hardware snd_ensoniq_capture = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, .rate_min = 4000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 1, .periods_max = 1024, .fifo_size = 0, }; static int snd_ensoniq_playback1_open(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; ensoniq->mode |= ES_MODE_PLAY1; ensoniq->playback1_substream = substream; runtime->hw = snd_ensoniq_playback1; snd_pcm_set_sync(substream); spin_lock_irq(&ensoniq->reg_lock); if (ensoniq->spdif && ensoniq->playback2_substream == NULL) ensoniq->spdif_stream = ensoniq->spdif_default; spin_unlock_irq(&ensoniq->reg_lock); #ifdef CHIP1370 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &snd_es1370_hw_constraints_rates); #else snd_pcm_hw_constraint_ratdens(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &snd_es1371_hw_constraints_dac_clock); #endif return 0; } static int snd_ensoniq_playback2_open(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; ensoniq->mode |= ES_MODE_PLAY2; ensoniq->playback2_substream = substream; runtime->hw = snd_ensoniq_playback2; snd_pcm_set_sync(substream); spin_lock_irq(&ensoniq->reg_lock); if (ensoniq->spdif && ensoniq->playback1_substream == NULL) ensoniq->spdif_stream = ensoniq->spdif_default; spin_unlock_irq(&ensoniq->reg_lock); #ifdef CHIP1370 snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &snd_es1370_hw_constraints_clock); #else snd_pcm_hw_constraint_ratdens(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &snd_es1371_hw_constraints_dac_clock); #endif return 0; } static int snd_ensoniq_capture_open(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; ensoniq->mode |= ES_MODE_CAPTURE; ensoniq->capture_substream = substream; runtime->hw = snd_ensoniq_capture; snd_pcm_set_sync(substream); #ifdef CHIP1370 snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &snd_es1370_hw_constraints_clock); #else snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &snd_es1371_hw_constraints_adc_clock); #endif return 0; } static int snd_ensoniq_playback1_close(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); ensoniq->playback1_substream = NULL; ensoniq->mode &= ~ES_MODE_PLAY1; return 0; } static int snd_ensoniq_playback2_close(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); ensoniq->playback2_substream = NULL; spin_lock_irq(&ensoniq->reg_lock); #ifdef CHIP1370 ensoniq->u.es1370.pclkdiv_lock &= ~ES_MODE_PLAY2; #endif ensoniq->mode &= ~ES_MODE_PLAY2; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_ensoniq_capture_close(struct snd_pcm_substream *substream) { struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); ensoniq->capture_substream = NULL; spin_lock_irq(&ensoniq->reg_lock); #ifdef CHIP1370 ensoniq->u.es1370.pclkdiv_lock &= ~ES_MODE_CAPTURE; #endif ensoniq->mode &= ~ES_MODE_CAPTURE; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static struct snd_pcm_ops snd_ensoniq_playback1_ops = { .open = snd_ensoniq_playback1_open, .close = snd_ensoniq_playback1_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_ensoniq_hw_params, .hw_free = snd_ensoniq_hw_free, .prepare = snd_ensoniq_playback1_prepare, .trigger = snd_ensoniq_trigger, .pointer = snd_ensoniq_playback1_pointer, }; static struct snd_pcm_ops snd_ensoniq_playback2_ops = { .open = snd_ensoniq_playback2_open, .close = snd_ensoniq_playback2_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_ensoniq_hw_params, .hw_free = snd_ensoniq_hw_free, .prepare = snd_ensoniq_playback2_prepare, .trigger = snd_ensoniq_trigger, .pointer = snd_ensoniq_playback2_pointer, }; static struct snd_pcm_ops snd_ensoniq_capture_ops = { .open = snd_ensoniq_capture_open, .close = snd_ensoniq_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_ensoniq_hw_params, .hw_free = snd_ensoniq_hw_free, .prepare = snd_ensoniq_capture_prepare, .trigger = snd_ensoniq_trigger, .pointer = snd_ensoniq_capture_pointer, }; static const struct snd_pcm_chmap_elem surround_map[] = { { .channels = 1, .map = { SNDRV_CHMAP_UNKNOWN } }, { .channels = 2, .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, { } }; static int __devinit snd_ensoniq_pcm(struct ensoniq * ensoniq, int device, struct snd_pcm ** rpcm) { struct snd_pcm *pcm; int err; if (rpcm) *rpcm = NULL; err = snd_pcm_new(ensoniq->card, CHIP_NAME "/1", device, 1, 1, &pcm); if (err < 0) return err; #ifdef CHIP1370 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ensoniq_playback2_ops); #else snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ensoniq_playback1_ops); #endif snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ensoniq_capture_ops); pcm->private_data = ensoniq; pcm->info_flags = 0; strcpy(pcm->name, CHIP_NAME " DAC2/ADC"); ensoniq->pcm1 = pcm; snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(ensoniq->pci), 64*1024, 128*1024); #ifdef CHIP1370 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, surround_map, 2, 0, NULL); #else err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, snd_pcm_std_chmaps, 2, 0, NULL); #endif if (err < 0) return err; if (rpcm) *rpcm = pcm; return 0; } static int __devinit snd_ensoniq_pcm2(struct ensoniq * ensoniq, int device, struct snd_pcm ** rpcm) { struct snd_pcm *pcm; int err; if (rpcm) *rpcm = NULL; err = snd_pcm_new(ensoniq->card, CHIP_NAME "/2", device, 1, 0, &pcm); if (err < 0) return err; #ifdef CHIP1370 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ensoniq_playback1_ops); #else snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ensoniq_playback2_ops); #endif pcm->private_data = ensoniq; pcm->info_flags = 0; strcpy(pcm->name, CHIP_NAME " DAC1"); ensoniq->pcm2 = pcm; snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(ensoniq->pci), 64*1024, 128*1024); #ifdef CHIP1370 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, snd_pcm_std_chmaps, 2, 0, NULL); #else err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, surround_map, 2, 0, NULL); #endif if (err < 0) return err; if (rpcm) *rpcm = pcm; return 0; } /* * Mixer section */ /* * ENS1371 mixer (including SPDIF interface) */ #ifdef CHIP1371 static int snd_ens1373_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_ens1373_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); spin_lock_irq(&ensoniq->reg_lock); ucontrol->value.iec958.status[0] = (ensoniq->spdif_default >> 0) & 0xff; ucontrol->value.iec958.status[1] = (ensoniq->spdif_default >> 8) & 0xff; ucontrol->value.iec958.status[2] = (ensoniq->spdif_default >> 16) & 0xff; ucontrol->value.iec958.status[3] = (ensoniq->spdif_default >> 24) & 0xff; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_ens1373_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); unsigned int val; int change; val = ((u32)ucontrol->value.iec958.status[0] << 0) | ((u32)ucontrol->value.iec958.status[1] << 8) | ((u32)ucontrol->value.iec958.status[2] << 16) | ((u32)ucontrol->value.iec958.status[3] << 24); spin_lock_irq(&ensoniq->reg_lock); change = ensoniq->spdif_default != val; ensoniq->spdif_default = val; if (change && ensoniq->playback1_substream == NULL && ensoniq->playback2_substream == NULL) outl(val, ES_REG(ensoniq, CHANNEL_STATUS)); spin_unlock_irq(&ensoniq->reg_lock); return change; } static int snd_ens1373_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.iec958.status[0] = 0xff; ucontrol->value.iec958.status[1] = 0xff; ucontrol->value.iec958.status[2] = 0xff; ucontrol->value.iec958.status[3] = 0xff; return 0; } static int snd_ens1373_spdif_stream_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); spin_lock_irq(&ensoniq->reg_lock); ucontrol->value.iec958.status[0] = (ensoniq->spdif_stream >> 0) & 0xff; ucontrol->value.iec958.status[1] = (ensoniq->spdif_stream >> 8) & 0xff; ucontrol->value.iec958.status[2] = (ensoniq->spdif_stream >> 16) & 0xff; ucontrol->value.iec958.status[3] = (ensoniq->spdif_stream >> 24) & 0xff; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_ens1373_spdif_stream_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); unsigned int val; int change; val = ((u32)ucontrol->value.iec958.status[0] << 0) | ((u32)ucontrol->value.iec958.status[1] << 8) | ((u32)ucontrol->value.iec958.status[2] << 16) | ((u32)ucontrol->value.iec958.status[3] << 24); spin_lock_irq(&ensoniq->reg_lock); change = ensoniq->spdif_stream != val; ensoniq->spdif_stream = val; if (change && (ensoniq->playback1_substream != NULL || ensoniq->playback2_substream != NULL)) outl(val, ES_REG(ensoniq, CHANNEL_STATUS)); spin_unlock_irq(&ensoniq->reg_lock); return change; } #define ES1371_SPDIF(xname) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_es1371_spdif_info, \ .get = snd_es1371_spdif_get, .put = snd_es1371_spdif_put } #define snd_es1371_spdif_info snd_ctl_boolean_mono_info static int snd_es1371_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); spin_lock_irq(&ensoniq->reg_lock); ucontrol->value.integer.value[0] = ensoniq->ctrl & ES_1373_SPDIF_THRU ? 1 : 0; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_es1371_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); unsigned int nval1, nval2; int change; nval1 = ucontrol->value.integer.value[0] ? ES_1373_SPDIF_THRU : 0; nval2 = ucontrol->value.integer.value[0] ? ES_1373_SPDIF_EN : 0; spin_lock_irq(&ensoniq->reg_lock); change = (ensoniq->ctrl & ES_1373_SPDIF_THRU) != nval1; ensoniq->ctrl &= ~ES_1373_SPDIF_THRU; ensoniq->ctrl |= nval1; ensoniq->cssr &= ~ES_1373_SPDIF_EN; ensoniq->cssr |= nval2; outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); outl(ensoniq->cssr, ES_REG(ensoniq, STATUS)); spin_unlock_irq(&ensoniq->reg_lock); return change; } /* spdif controls */ static struct snd_kcontrol_new snd_es1371_mixer_spdif[] __devinitdata = { ES1371_SPDIF(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH)), { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), .info = snd_ens1373_spdif_info, .get = snd_ens1373_spdif_default_get, .put = snd_ens1373_spdif_default_put, }, { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK), .info = snd_ens1373_spdif_info, .get = snd_ens1373_spdif_mask_get }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), .info = snd_ens1373_spdif_info, .get = snd_ens1373_spdif_stream_get, .put = snd_ens1373_spdif_stream_put }, }; #define snd_es1373_rear_info snd_ctl_boolean_mono_info static int snd_es1373_rear_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); int val = 0; spin_lock_irq(&ensoniq->reg_lock); if ((ensoniq->cssr & (ES_1373_REAR_BIT27|ES_1373_REAR_BIT26| ES_1373_REAR_BIT24)) == ES_1373_REAR_BIT26) val = 1; ucontrol->value.integer.value[0] = val; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_es1373_rear_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); unsigned int nval1; int change; nval1 = ucontrol->value.integer.value[0] ? ES_1373_REAR_BIT26 : (ES_1373_REAR_BIT27|ES_1373_REAR_BIT24); spin_lock_irq(&ensoniq->reg_lock); change = (ensoniq->cssr & (ES_1373_REAR_BIT27| ES_1373_REAR_BIT26|ES_1373_REAR_BIT24)) != nval1; ensoniq->cssr &= ~(ES_1373_REAR_BIT27|ES_1373_REAR_BIT26|ES_1373_REAR_BIT24); ensoniq->cssr |= nval1; outl(ensoniq->cssr, ES_REG(ensoniq, STATUS)); spin_unlock_irq(&ensoniq->reg_lock); return change; } static struct snd_kcontrol_new snd_ens1373_rear __devinitdata = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "AC97 2ch->4ch Copy Switch", .info = snd_es1373_rear_info, .get = snd_es1373_rear_get, .put = snd_es1373_rear_put, }; #define snd_es1373_line_info snd_ctl_boolean_mono_info static int snd_es1373_line_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); int val = 0; spin_lock_irq(&ensoniq->reg_lock); if ((ensoniq->ctrl & ES_1371_GPIO_OUTM) >= 4) val = 1; ucontrol->value.integer.value[0] = val; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_es1373_line_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); int changed; unsigned int ctrl; spin_lock_irq(&ensoniq->reg_lock); ctrl = ensoniq->ctrl; if (ucontrol->value.integer.value[0]) ensoniq->ctrl |= ES_1371_GPIO_OUT(4); /* switch line-in -> rear out */ else ensoniq->ctrl &= ~ES_1371_GPIO_OUT(4); changed = (ctrl != ensoniq->ctrl); if (changed) outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); spin_unlock_irq(&ensoniq->reg_lock); return changed; } static struct snd_kcontrol_new snd_ens1373_line __devinitdata = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Line In->Rear Out Switch", .info = snd_es1373_line_info, .get = snd_es1373_line_get, .put = snd_es1373_line_put, }; static void snd_ensoniq_mixer_free_ac97(struct snd_ac97 *ac97) { struct ensoniq *ensoniq = ac97->private_data; ensoniq->u.es1371.ac97 = NULL; } struct es1371_quirk { unsigned short vid; /* vendor ID */ unsigned short did; /* device ID */ unsigned char rev; /* revision */ }; static int es1371_quirk_lookup(struct ensoniq *ensoniq, struct es1371_quirk *list) { while (list->vid != (unsigned short)PCI_ANY_ID) { if (ensoniq->pci->vendor == list->vid && ensoniq->pci->device == list->did && ensoniq->rev == list->rev) return 1; list++; } return 0; } static struct es1371_quirk es1371_spdif_present[] __devinitdata = { { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_C }, { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_D }, { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_E }, { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_ES1371, .rev = ES1371REV_CT5880_A }, { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_ES1371, .rev = ES1371REV_ES1373_8 }, { .vid = PCI_ANY_ID, .did = PCI_ANY_ID } }; static struct snd_pci_quirk ens1373_line_quirk[] __devinitdata = { SND_PCI_QUIRK_ID(0x1274, 0x2000), /* GA-7DXR */ SND_PCI_QUIRK_ID(0x1458, 0xa000), /* GA-8IEXP */ { } /* end */ }; static int __devinit snd_ensoniq_1371_mixer(struct ensoniq *ensoniq, int has_spdif, int has_line) { struct snd_card *card = ensoniq->card; struct snd_ac97_bus *pbus; struct snd_ac97_template ac97; int err; static struct snd_ac97_bus_ops ops = { .write = snd_es1371_codec_write, .read = snd_es1371_codec_read, .wait = snd_es1371_codec_wait, }; if ((err = snd_ac97_bus(card, 0, &ops, NULL, &pbus)) < 0) return err; memset(&ac97, 0, sizeof(ac97)); ac97.private_data = ensoniq; ac97.private_free = snd_ensoniq_mixer_free_ac97; ac97.pci = ensoniq->pci; ac97.scaps = AC97_SCAP_AUDIO; if ((err = snd_ac97_mixer(pbus, &ac97, &ensoniq->u.es1371.ac97)) < 0) return err; if (has_spdif > 0 || (!has_spdif && es1371_quirk_lookup(ensoniq, es1371_spdif_present))) { struct snd_kcontrol *kctl; int i, is_spdif = 0; ensoniq->spdif_default = ensoniq->spdif_stream = SNDRV_PCM_DEFAULT_CON_SPDIF; outl(ensoniq->spdif_default, ES_REG(ensoniq, CHANNEL_STATUS)); if (ensoniq->u.es1371.ac97->ext_id & AC97_EI_SPDIF) is_spdif++; for (i = 0; i < ARRAY_SIZE(snd_es1371_mixer_spdif); i++) { kctl = snd_ctl_new1(&snd_es1371_mixer_spdif[i], ensoniq); if (!kctl) return -ENOMEM; kctl->id.index = is_spdif; err = snd_ctl_add(card, kctl); if (err < 0) return err; } } if (ensoniq->u.es1371.ac97->ext_id & AC97_EI_SDAC) { /* mirror rear to front speakers */ ensoniq->cssr &= ~(ES_1373_REAR_BIT27|ES_1373_REAR_BIT24); ensoniq->cssr |= ES_1373_REAR_BIT26; err = snd_ctl_add(card, snd_ctl_new1(&snd_ens1373_rear, ensoniq)); if (err < 0) return err; } if (has_line > 0 || snd_pci_quirk_lookup(ensoniq->pci, ens1373_line_quirk)) { err = snd_ctl_add(card, snd_ctl_new1(&snd_ens1373_line, ensoniq)); if (err < 0) return err; } return 0; } #endif /* CHIP1371 */ /* generic control callbacks for ens1370 */ #ifdef CHIP1370 #define ENSONIQ_CONTROL(xname, mask) \ { .iface = SNDRV_CTL_ELEM_IFACE_CARD, .name = xname, .info = snd_ensoniq_control_info, \ .get = snd_ensoniq_control_get, .put = snd_ensoniq_control_put, \ .private_value = mask } #define snd_ensoniq_control_info snd_ctl_boolean_mono_info static int snd_ensoniq_control_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); int mask = kcontrol->private_value; spin_lock_irq(&ensoniq->reg_lock); ucontrol->value.integer.value[0] = ensoniq->ctrl & mask ? 1 : 0; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_ensoniq_control_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); int mask = kcontrol->private_value; unsigned int nval; int change; nval = ucontrol->value.integer.value[0] ? mask : 0; spin_lock_irq(&ensoniq->reg_lock); change = (ensoniq->ctrl & mask) != nval; ensoniq->ctrl &= ~mask; ensoniq->ctrl |= nval; outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); spin_unlock_irq(&ensoniq->reg_lock); return change; } /* * ENS1370 mixer */ static struct snd_kcontrol_new snd_es1370_controls[2] __devinitdata = { ENSONIQ_CONTROL("PCM 0 Output also on Line-In Jack", ES_1370_XCTL0), ENSONIQ_CONTROL("Mic +5V bias", ES_1370_XCTL1) }; #define ES1370_CONTROLS ARRAY_SIZE(snd_es1370_controls) static void snd_ensoniq_mixer_free_ak4531(struct snd_ak4531 *ak4531) { struct ensoniq *ensoniq = ak4531->private_data; ensoniq->u.es1370.ak4531 = NULL; } static int __devinit snd_ensoniq_1370_mixer(struct ensoniq * ensoniq) { struct snd_card *card = ensoniq->card; struct snd_ak4531 ak4531; unsigned int idx; int err; /* try reset AK4531 */ outw(ES_1370_CODEC_WRITE(AK4531_RESET, 0x02), ES_REG(ensoniq, 1370_CODEC)); inw(ES_REG(ensoniq, 1370_CODEC)); udelay(100); outw(ES_1370_CODEC_WRITE(AK4531_RESET, 0x03), ES_REG(ensoniq, 1370_CODEC)); inw(ES_REG(ensoniq, 1370_CODEC)); udelay(100); memset(&ak4531, 0, sizeof(ak4531)); ak4531.write = snd_es1370_codec_write; ak4531.private_data = ensoniq; ak4531.private_free = snd_ensoniq_mixer_free_ak4531; if ((err = snd_ak4531_mixer(card, &ak4531, &ensoniq->u.es1370.ak4531)) < 0) return err; for (idx = 0; idx < ES1370_CONTROLS; idx++) { err = snd_ctl_add(card, snd_ctl_new1(&snd_es1370_controls[idx], ensoniq)); if (err < 0) return err; } return 0; } #endif /* CHIP1370 */ #ifdef SUPPORT_JOYSTICK #ifdef CHIP1371 static int __devinit snd_ensoniq_get_joystick_port(int dev) { switch (joystick_port[dev]) { case 0: /* disabled */ case 1: /* auto-detect */ case 0x200: case 0x208: case 0x210: case 0x218: return joystick_port[dev]; default: printk(KERN_ERR "ens1371: invalid joystick port %#x", joystick_port[dev]); return 0; } } #else static inline int snd_ensoniq_get_joystick_port(int dev) { return joystick[dev] ? 0x200 : 0; } #endif static int __devinit snd_ensoniq_create_gameport(struct ensoniq *ensoniq, int dev) { struct gameport *gp; int io_port; io_port = snd_ensoniq_get_joystick_port(dev); switch (io_port) { case 0: return -ENOSYS; case 1: /* auto_detect */ for (io_port = 0x200; io_port <= 0x218; io_port += 8) if (request_region(io_port, 8, "ens137x: gameport")) break; if (io_port > 0x218) { printk(KERN_WARNING "ens137x: no gameport ports available\n"); return -EBUSY; } break; default: if (!request_region(io_port, 8, "ens137x: gameport")) { printk(KERN_WARNING "ens137x: gameport io port 0x%#x in use\n", io_port); return -EBUSY; } break; } ensoniq->gameport = gp = gameport_allocate_port(); if (!gp) { printk(KERN_ERR "ens137x: cannot allocate memory for gameport\n"); release_region(io_port, 8); return -ENOMEM; } gameport_set_name(gp, "ES137x"); gameport_set_phys(gp, "pci%s/gameport0", pci_name(ensoniq->pci)); gameport_set_dev_parent(gp, &ensoniq->pci->dev); gp->io = io_port; ensoniq->ctrl |= ES_JYSTK_EN; #ifdef CHIP1371 ensoniq->ctrl &= ~ES_1371_JOY_ASELM; ensoniq->ctrl |= ES_1371_JOY_ASEL((io_port - 0x200) / 8); #endif outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); gameport_register_port(ensoniq->gameport); return 0; } static void snd_ensoniq_free_gameport(struct ensoniq *ensoniq) { if (ensoniq->gameport) { int port = ensoniq->gameport->io; gameport_unregister_port(ensoniq->gameport); ensoniq->gameport = NULL; ensoniq->ctrl &= ~ES_JYSTK_EN; outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); release_region(port, 8); } } #else static inline int snd_ensoniq_create_gameport(struct ensoniq *ensoniq, long port) { return -ENOSYS; } static inline void snd_ensoniq_free_gameport(struct ensoniq *ensoniq) { } #endif /* SUPPORT_JOYSTICK */ /* */ static void snd_ensoniq_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct ensoniq *ensoniq = entry->private_data; snd_iprintf(buffer, "Ensoniq AudioPCI " CHIP_NAME "\n\n"); snd_iprintf(buffer, "Joystick enable : %s\n", ensoniq->ctrl & ES_JYSTK_EN ? "on" : "off"); #ifdef CHIP1370 snd_iprintf(buffer, "MIC +5V bias : %s\n", ensoniq->ctrl & ES_1370_XCTL1 ? "on" : "off"); snd_iprintf(buffer, "Line In to AOUT : %s\n", ensoniq->ctrl & ES_1370_XCTL0 ? "on" : "off"); #else snd_iprintf(buffer, "Joystick port : 0x%x\n", (ES_1371_JOY_ASELI(ensoniq->ctrl) * 8) + 0x200); #endif } static void __devinit snd_ensoniq_proc_init(struct ensoniq * ensoniq) { struct snd_info_entry *entry; if (! snd_card_proc_new(ensoniq->card, "audiopci", &entry)) snd_info_set_text_ops(entry, ensoniq, snd_ensoniq_proc_read); } /* */ static int snd_ensoniq_free(struct ensoniq *ensoniq) { snd_ensoniq_free_gameport(ensoniq); if (ensoniq->irq < 0) goto __hw_end; #ifdef CHIP1370 outl(ES_1370_SERR_DISABLE, ES_REG(ensoniq, CONTROL)); /* switch everything off */ outl(0, ES_REG(ensoniq, SERIAL)); /* clear serial interface */ #else outl(0, ES_REG(ensoniq, CONTROL)); /* switch everything off */ outl(0, ES_REG(ensoniq, SERIAL)); /* clear serial interface */ #endif if (ensoniq->irq >= 0) synchronize_irq(ensoniq->irq); pci_set_power_state(ensoniq->pci, 3); __hw_end: #ifdef CHIP1370 if (ensoniq->dma_bug.area) snd_dma_free_pages(&ensoniq->dma_bug); #endif if (ensoniq->irq >= 0) free_irq(ensoniq->irq, ensoniq); pci_release_regions(ensoniq->pci); pci_disable_device(ensoniq->pci); kfree(ensoniq); return 0; } static int snd_ensoniq_dev_free(struct snd_device *device) { struct ensoniq *ensoniq = device->device_data; return snd_ensoniq_free(ensoniq); } #ifdef CHIP1371 static struct snd_pci_quirk es1371_amplifier_hack[] __devinitdata = { SND_PCI_QUIRK_ID(0x107b, 0x2150), /* Gateway Solo 2150 */ SND_PCI_QUIRK_ID(0x13bd, 0x100c), /* EV1938 on Mebius PC-MJ100V */ SND_PCI_QUIRK_ID(0x1102, 0x5938), /* Targa Xtender300 */ SND_PCI_QUIRK_ID(0x1102, 0x8938), /* IPC Topnote G notebook */ { } /* end */ }; static struct es1371_quirk es1371_ac97_reset_hack[] = { { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_C }, { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_D }, { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_E }, { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_ES1371, .rev = ES1371REV_CT5880_A }, { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_ES1371, .rev = ES1371REV_ES1373_8 }, { .vid = PCI_ANY_ID, .did = PCI_ANY_ID } }; #endif static void snd_ensoniq_chip_init(struct ensoniq *ensoniq) { #ifdef CHIP1371 int idx; #endif /* this code was part of snd_ensoniq_create before intruduction * of suspend/resume */ #ifdef CHIP1370 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); outl(ES_MEM_PAGEO(ES_PAGE_ADC), ES_REG(ensoniq, MEM_PAGE)); outl(ensoniq->dma_bug.addr, ES_REG(ensoniq, PHANTOM_FRAME)); outl(0, ES_REG(ensoniq, PHANTOM_COUNT)); #else outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); outl(0, ES_REG(ensoniq, 1371_LEGACY)); if (es1371_quirk_lookup(ensoniq, es1371_ac97_reset_hack)) { outl(ensoniq->cssr, ES_REG(ensoniq, STATUS)); /* need to delay around 20ms(bleech) to give some CODECs enough time to wakeup */ msleep(20); } /* AC'97 warm reset to start the bitclk */ outl(ensoniq->ctrl | ES_1371_SYNC_RES, ES_REG(ensoniq, CONTROL)); inl(ES_REG(ensoniq, CONTROL)); udelay(20); outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); /* Init the sample rate converter */ snd_es1371_wait_src_ready(ensoniq); outl(ES_1371_SRC_DISABLE, ES_REG(ensoniq, 1371_SMPRATE)); for (idx = 0; idx < 0x80; idx++) snd_es1371_src_write(ensoniq, idx, 0); snd_es1371_src_write(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_TRUNC_N, 16 << 4); snd_es1371_src_write(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_INT_REGS, 16 << 10); snd_es1371_src_write(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_TRUNC_N, 16 << 4); snd_es1371_src_write(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_INT_REGS, 16 << 10); snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_ADC, 1 << 12); snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_ADC + 1, 1 << 12); snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_DAC1, 1 << 12); snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_DAC1 + 1, 1 << 12); snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_DAC2, 1 << 12); snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_DAC2 + 1, 1 << 12); snd_es1371_adc_rate(ensoniq, 22050); snd_es1371_dac1_rate(ensoniq, 22050); snd_es1371_dac2_rate(ensoniq, 22050); /* WARNING: * enabling the sample rate converter without properly programming * its parameters causes the chip to lock up (the SRC busy bit will * be stuck high, and I've found no way to rectify this other than * power cycle) - Thomas Sailer */ snd_es1371_wait_src_ready(ensoniq); outl(0, ES_REG(ensoniq, 1371_SMPRATE)); /* try reset codec directly */ outl(ES_1371_CODEC_WRITE(0, 0), ES_REG(ensoniq, 1371_CODEC)); #endif outb(ensoniq->uartc = 0x00, ES_REG(ensoniq, UART_CONTROL)); outb(0x00, ES_REG(ensoniq, UART_RES)); outl(ensoniq->cssr, ES_REG(ensoniq, STATUS)); synchronize_irq(ensoniq->irq); } #ifdef CONFIG_PM_SLEEP static int snd_ensoniq_suspend(struct device *dev) { struct pci_dev *pci = to_pci_dev(dev); struct snd_card *card = dev_get_drvdata(dev); struct ensoniq *ensoniq = card->private_data; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); snd_pcm_suspend_all(ensoniq->pcm1); snd_pcm_suspend_all(ensoniq->pcm2); #ifdef CHIP1371 snd_ac97_suspend(ensoniq->u.es1371.ac97); #else /* try to reset AK4531 */ outw(ES_1370_CODEC_WRITE(AK4531_RESET, 0x02), ES_REG(ensoniq, 1370_CODEC)); inw(ES_REG(ensoniq, 1370_CODEC)); udelay(100); outw(ES_1370_CODEC_WRITE(AK4531_RESET, 0x03), ES_REG(ensoniq, 1370_CODEC)); inw(ES_REG(ensoniq, 1370_CODEC)); udelay(100); snd_ak4531_suspend(ensoniq->u.es1370.ak4531); #endif pci_disable_device(pci); pci_save_state(pci); pci_set_power_state(pci, PCI_D3hot); return 0; } static int snd_ensoniq_resume(struct device *dev) { struct pci_dev *pci = to_pci_dev(dev); struct snd_card *card = dev_get_drvdata(dev); struct ensoniq *ensoniq = card->private_data; pci_set_power_state(pci, PCI_D0); pci_restore_state(pci); if (pci_enable_device(pci) < 0) { printk(KERN_ERR DRIVER_NAME ": pci_enable_device failed, " "disabling device\n"); snd_card_disconnect(card); return -EIO; } pci_set_master(pci); snd_ensoniq_chip_init(ensoniq); #ifdef CHIP1371 snd_ac97_resume(ensoniq->u.es1371.ac97); #else snd_ak4531_resume(ensoniq->u.es1370.ak4531); #endif snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } static SIMPLE_DEV_PM_OPS(snd_ensoniq_pm, snd_ensoniq_suspend, snd_ensoniq_resume); #define SND_ENSONIQ_PM_OPS &snd_ensoniq_pm #else #define SND_ENSONIQ_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ static int __devinit snd_ensoniq_create(struct snd_card *card, struct pci_dev *pci, struct ensoniq ** rensoniq) { struct ensoniq *ensoniq; int err; static struct snd_device_ops ops = { .dev_free = snd_ensoniq_dev_free, }; *rensoniq = NULL; if ((err = pci_enable_device(pci)) < 0) return err; ensoniq = kzalloc(sizeof(*ensoniq), GFP_KERNEL); if (ensoniq == NULL) { pci_disable_device(pci); return -ENOMEM; } spin_lock_init(&ensoniq->reg_lock); mutex_init(&ensoniq->src_mutex); ensoniq->card = card; ensoniq->pci = pci; ensoniq->irq = -1; if ((err = pci_request_regions(pci, "Ensoniq AudioPCI")) < 0) { kfree(ensoniq); pci_disable_device(pci); return err; } ensoniq->port = pci_resource_start(pci, 0); if (request_irq(pci->irq, snd_audiopci_interrupt, IRQF_SHARED, KBUILD_MODNAME, ensoniq)) { snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq); snd_ensoniq_free(ensoniq); return -EBUSY; } ensoniq->irq = pci->irq; #ifdef CHIP1370 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci), 16, &ensoniq->dma_bug) < 0) { snd_printk(KERN_ERR "unable to allocate space for phantom area - dma_bug\n"); snd_ensoniq_free(ensoniq); return -EBUSY; } #endif pci_set_master(pci); ensoniq->rev = pci->revision; #ifdef CHIP1370 #if 0 ensoniq->ctrl = ES_1370_CDC_EN | ES_1370_SERR_DISABLE | ES_1370_PCLKDIVO(ES_1370_SRTODIV(8000)); #else /* get microphone working */ ensoniq->ctrl = ES_1370_CDC_EN | ES_1370_PCLKDIVO(ES_1370_SRTODIV(8000)); #endif ensoniq->sctrl = 0; #else ensoniq->ctrl = 0; ensoniq->sctrl = 0; ensoniq->cssr = 0; if (snd_pci_quirk_lookup(pci, es1371_amplifier_hack)) ensoniq->ctrl |= ES_1371_GPIO_OUT(1); /* turn amplifier on */ if (es1371_quirk_lookup(ensoniq, es1371_ac97_reset_hack)) ensoniq->cssr |= ES_1371_ST_AC97_RST; #endif snd_ensoniq_chip_init(ensoniq); if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, ensoniq, &ops)) < 0) { snd_ensoniq_free(ensoniq); return err; } snd_ensoniq_proc_init(ensoniq); snd_card_set_dev(card, &pci->dev); *rensoniq = ensoniq; return 0; } /* * MIDI section */ static void snd_ensoniq_midi_interrupt(struct ensoniq * ensoniq) { struct snd_rawmidi *rmidi = ensoniq->rmidi; unsigned char status, mask, byte; if (rmidi == NULL) return; /* do Rx at first */ spin_lock(&ensoniq->reg_lock); mask = ensoniq->uartm & ES_MODE_INPUT ? ES_RXRDY : 0; while (mask) { status = inb(ES_REG(ensoniq, UART_STATUS)); if ((status & mask) == 0) break; byte = inb(ES_REG(ensoniq, UART_DATA)); snd_rawmidi_receive(ensoniq->midi_input, &byte, 1); } spin_unlock(&ensoniq->reg_lock); /* do Tx at second */ spin_lock(&ensoniq->reg_lock); mask = ensoniq->uartm & ES_MODE_OUTPUT ? ES_TXRDY : 0; while (mask) { status = inb(ES_REG(ensoniq, UART_STATUS)); if ((status & mask) == 0) break; if (snd_rawmidi_transmit(ensoniq->midi_output, &byte, 1) != 1) { ensoniq->uartc &= ~ES_TXINTENM; outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL)); mask &= ~ES_TXRDY; } else { outb(byte, ES_REG(ensoniq, UART_DATA)); } } spin_unlock(&ensoniq->reg_lock); } static int snd_ensoniq_midi_input_open(struct snd_rawmidi_substream *substream) { struct ensoniq *ensoniq = substream->rmidi->private_data; spin_lock_irq(&ensoniq->reg_lock); ensoniq->uartm |= ES_MODE_INPUT; ensoniq->midi_input = substream; if (!(ensoniq->uartm & ES_MODE_OUTPUT)) { outb(ES_CNTRL(3), ES_REG(ensoniq, UART_CONTROL)); outb(ensoniq->uartc = 0, ES_REG(ensoniq, UART_CONTROL)); outl(ensoniq->ctrl |= ES_UART_EN, ES_REG(ensoniq, CONTROL)); } spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_ensoniq_midi_input_close(struct snd_rawmidi_substream *substream) { struct ensoniq *ensoniq = substream->rmidi->private_data; spin_lock_irq(&ensoniq->reg_lock); if (!(ensoniq->uartm & ES_MODE_OUTPUT)) { outb(ensoniq->uartc = 0, ES_REG(ensoniq, UART_CONTROL)); outl(ensoniq->ctrl &= ~ES_UART_EN, ES_REG(ensoniq, CONTROL)); } else { outb(ensoniq->uartc &= ~ES_RXINTEN, ES_REG(ensoniq, UART_CONTROL)); } ensoniq->midi_input = NULL; ensoniq->uartm &= ~ES_MODE_INPUT; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_ensoniq_midi_output_open(struct snd_rawmidi_substream *substream) { struct ensoniq *ensoniq = substream->rmidi->private_data; spin_lock_irq(&ensoniq->reg_lock); ensoniq->uartm |= ES_MODE_OUTPUT; ensoniq->midi_output = substream; if (!(ensoniq->uartm & ES_MODE_INPUT)) { outb(ES_CNTRL(3), ES_REG(ensoniq, UART_CONTROL)); outb(ensoniq->uartc = 0, ES_REG(ensoniq, UART_CONTROL)); outl(ensoniq->ctrl |= ES_UART_EN, ES_REG(ensoniq, CONTROL)); } spin_unlock_irq(&ensoniq->reg_lock); return 0; } static int snd_ensoniq_midi_output_close(struct snd_rawmidi_substream *substream) { struct ensoniq *ensoniq = substream->rmidi->private_data; spin_lock_irq(&ensoniq->reg_lock); if (!(ensoniq->uartm & ES_MODE_INPUT)) { outb(ensoniq->uartc = 0, ES_REG(ensoniq, UART_CONTROL)); outl(ensoniq->ctrl &= ~ES_UART_EN, ES_REG(ensoniq, CONTROL)); } else { outb(ensoniq->uartc &= ~ES_TXINTENM, ES_REG(ensoniq, UART_CONTROL)); } ensoniq->midi_output = NULL; ensoniq->uartm &= ~ES_MODE_OUTPUT; spin_unlock_irq(&ensoniq->reg_lock); return 0; } static void snd_ensoniq_midi_input_trigger(struct snd_rawmidi_substream *substream, int up) { unsigned long flags; struct ensoniq *ensoniq = substream->rmidi->private_data; int idx; spin_lock_irqsave(&ensoniq->reg_lock, flags); if (up) { if ((ensoniq->uartc & ES_RXINTEN) == 0) { /* empty input FIFO */ for (idx = 0; idx < 32; idx++) inb(ES_REG(ensoniq, UART_DATA)); ensoniq->uartc |= ES_RXINTEN; outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL)); } } else { if (ensoniq->uartc & ES_RXINTEN) { ensoniq->uartc &= ~ES_RXINTEN; outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL)); } } spin_unlock_irqrestore(&ensoniq->reg_lock, flags); } static void snd_ensoniq_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) { unsigned long flags; struct ensoniq *ensoniq = substream->rmidi->private_data; unsigned char byte; spin_lock_irqsave(&ensoniq->reg_lock, flags); if (up) { if (ES_TXINTENI(ensoniq->uartc) == 0) { ensoniq->uartc |= ES_TXINTENO(1); /* fill UART FIFO buffer at first, and turn Tx interrupts only if necessary */ while (ES_TXINTENI(ensoniq->uartc) == 1 && (inb(ES_REG(ensoniq, UART_STATUS)) & ES_TXRDY)) { if (snd_rawmidi_transmit(substream, &byte, 1) != 1) { ensoniq->uartc &= ~ES_TXINTENM; } else { outb(byte, ES_REG(ensoniq, UART_DATA)); } } outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL)); } } else { if (ES_TXINTENI(ensoniq->uartc) == 1) { ensoniq->uartc &= ~ES_TXINTENM; outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL)); } } spin_unlock_irqrestore(&ensoniq->reg_lock, flags); } static struct snd_rawmidi_ops snd_ensoniq_midi_output = { .open = snd_ensoniq_midi_output_open, .close = snd_ensoniq_midi_output_close, .trigger = snd_ensoniq_midi_output_trigger, }; static struct snd_rawmidi_ops snd_ensoniq_midi_input = { .open = snd_ensoniq_midi_input_open, .close = snd_ensoniq_midi_input_close, .trigger = snd_ensoniq_midi_input_trigger, }; static int __devinit snd_ensoniq_midi(struct ensoniq * ensoniq, int device, struct snd_rawmidi **rrawmidi) { struct snd_rawmidi *rmidi; int err; if (rrawmidi) *rrawmidi = NULL; if ((err = snd_rawmidi_new(ensoniq->card, "ES1370/1", device, 1, 1, &rmidi)) < 0) return err; strcpy(rmidi->name, CHIP_NAME); snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_ensoniq_midi_output); snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_ensoniq_midi_input); rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX; rmidi->private_data = ensoniq; ensoniq->rmidi = rmidi; if (rrawmidi) *rrawmidi = rmidi; return 0; } /* * Interrupt handler */ static irqreturn_t snd_audiopci_interrupt(int irq, void *dev_id) { struct ensoniq *ensoniq = dev_id; unsigned int status, sctrl; if (ensoniq == NULL) return IRQ_NONE; status = inl(ES_REG(ensoniq, STATUS)); if (!(status & ES_INTR)) return IRQ_NONE; spin_lock(&ensoniq->reg_lock); sctrl = ensoniq->sctrl; if (status & ES_DAC1) sctrl &= ~ES_P1_INT_EN; if (status & ES_DAC2) sctrl &= ~ES_P2_INT_EN; if (status & ES_ADC) sctrl &= ~ES_R1_INT_EN; outl(sctrl, ES_REG(ensoniq, SERIAL)); outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); spin_unlock(&ensoniq->reg_lock); if (status & ES_UART) snd_ensoniq_midi_interrupt(ensoniq); if ((status & ES_DAC2) && ensoniq->playback2_substream) snd_pcm_period_elapsed(ensoniq->playback2_substream); if ((status & ES_ADC) && ensoniq->capture_substream) snd_pcm_period_elapsed(ensoniq->capture_substream); if ((status & ES_DAC1) && ensoniq->playback1_substream) snd_pcm_period_elapsed(ensoniq->playback1_substream); return IRQ_HANDLED; } static int __devinit snd_audiopci_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct snd_card *card; struct ensoniq *ensoniq; int err, pcm_devs[2]; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { dev++; return -ENOENT; } err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card); if (err < 0) return err; if ((err = snd_ensoniq_create(card, pci, &ensoniq)) < 0) { snd_card_free(card); return err; } card->private_data = ensoniq; pcm_devs[0] = 0; pcm_devs[1] = 1; #ifdef CHIP1370 if ((err = snd_ensoniq_1370_mixer(ensoniq)) < 0) { snd_card_free(card); return err; } #endif #ifdef CHIP1371 if ((err = snd_ensoniq_1371_mixer(ensoniq, spdif[dev], lineio[dev])) < 0) { snd_card_free(card); return err; } #endif if ((err = snd_ensoniq_pcm(ensoniq, 0, NULL)) < 0) { snd_card_free(card); return err; } if ((err = snd_ensoniq_pcm2(ensoniq, 1, NULL)) < 0) { snd_card_free(card); return err; } if ((err = snd_ensoniq_midi(ensoniq, 0, NULL)) < 0) { snd_card_free(card); return err; } snd_ensoniq_create_gameport(ensoniq, dev); strcpy(card->driver, DRIVER_NAME); strcpy(card->shortname, "Ensoniq AudioPCI"); sprintf(card->longname, "%s %s at 0x%lx, irq %i", card->shortname, card->driver, ensoniq->port, ensoniq->irq); if ((err = snd_card_register(card)) < 0) { snd_card_free(card); return err; } pci_set_drvdata(pci, card); dev++; return 0; } static void __devexit snd_audiopci_remove(struct pci_dev *pci) { snd_card_free(pci_get_drvdata(pci)); pci_set_drvdata(pci, NULL); } static struct pci_driver ens137x_driver = { .name = KBUILD_MODNAME, .id_table = snd_audiopci_ids, .probe = snd_audiopci_probe, .remove = __devexit_p(snd_audiopci_remove), .driver = { .pm = SND_ENSONIQ_PM_OPS, }, }; module_pci_driver(ens137x_driver);