/* * Copyright (c) 2008-2009 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "ath9k.h" static struct ieee80211_hw * ath_get_virt_hw(struct ath_softc *sc, struct ieee80211_hdr *hdr) { struct ieee80211_hw *hw = sc->pri_wiphy->hw; int i; spin_lock_bh(&sc->wiphy_lock); for (i = 0; i < sc->num_sec_wiphy; i++) { struct ath_wiphy *aphy = sc->sec_wiphy[i]; if (aphy == NULL) continue; if (compare_ether_addr(hdr->addr1, aphy->hw->wiphy->perm_addr) == 0) { hw = aphy->hw; break; } } spin_unlock_bh(&sc->wiphy_lock); return hw; } /* * Setup and link descriptors. * * 11N: we can no longer afford to self link the last descriptor. * MAC acknowledges BA status as long as it copies frames to host * buffer (or rx fifo). This can incorrectly acknowledge packets * to a sender if last desc is self-linked. */ static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf) { struct ath_hw *ah = sc->sc_ah; struct ath_desc *ds; struct sk_buff *skb; ATH_RXBUF_RESET(bf); ds = bf->bf_desc; ds->ds_link = 0; /* link to null */ ds->ds_data = bf->bf_buf_addr; /* virtual addr of the beginning of the buffer. */ skb = bf->bf_mpdu; ASSERT(skb != NULL); ds->ds_vdata = skb->data; /* setup rx descriptors. The rx.bufsize here tells the harware * how much data it can DMA to us and that we are prepared * to process */ ath9k_hw_setuprxdesc(ah, ds, sc->rx.bufsize, 0); if (sc->rx.rxlink == NULL) ath9k_hw_putrxbuf(ah, bf->bf_daddr); else *sc->rx.rxlink = bf->bf_daddr; sc->rx.rxlink = &ds->ds_link; ath9k_hw_rxena(ah); } static void ath_setdefantenna(struct ath_softc *sc, u32 antenna) { /* XXX block beacon interrupts */ ath9k_hw_setantenna(sc->sc_ah, antenna); sc->rx.defant = antenna; sc->rx.rxotherant = 0; } /* * Extend 15-bit time stamp from rx descriptor to * a full 64-bit TSF using the current h/w TSF. */ static u64 ath_extend_tsf(struct ath_softc *sc, u32 rstamp) { u64 tsf; tsf = ath9k_hw_gettsf64(sc->sc_ah); if ((tsf & 0x7fff) < rstamp) tsf -= 0x8000; return (tsf & ~0x7fff) | rstamp; } static struct sk_buff *ath_rxbuf_alloc(struct ath_softc *sc, u32 len, gfp_t gfp_mask) { struct sk_buff *skb; u32 off; /* * Cache-line-align. This is important (for the * 5210 at least) as not doing so causes bogus data * in rx'd frames. */ /* Note: the kernel can allocate a value greater than * what we ask it to give us. We really only need 4 KB as that * is this hardware supports and in fact we need at least 3849 * as that is the MAX AMSDU size this hardware supports. * Unfortunately this means we may get 8 KB here from the * kernel... and that is actually what is observed on some * systems :( */ skb = __dev_alloc_skb(len + sc->cachelsz - 1, gfp_mask); if (skb != NULL) { off = ((unsigned long) skb->data) % sc->cachelsz; if (off != 0) skb_reserve(skb, sc->cachelsz - off); } else { DPRINTF(sc, ATH_DBG_FATAL, "skbuff alloc of size %u failed\n", len); return NULL; } return skb; } /* * For Decrypt or Demic errors, we only mark packet status here and always push * up the frame up to let mac80211 handle the actual error case, be it no * decryption key or real decryption error. This let us keep statistics there. */ static int ath_rx_prepare(struct sk_buff *skb, struct ath_desc *ds, struct ieee80211_rx_status *rx_status, bool *decrypt_error, struct ath_softc *sc) { struct ieee80211_hdr *hdr; u8 ratecode; __le16 fc; struct ieee80211_hw *hw; hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; memset(rx_status, 0, sizeof(struct ieee80211_rx_status)); hw = ath_get_virt_hw(sc, hdr); if (ds->ds_rxstat.rs_more) { /* * Frame spans multiple descriptors; this cannot happen yet * as we don't support jumbograms. If not in monitor mode, * discard the frame. Enable this if you want to see * error frames in Monitor mode. */ if (sc->sc_ah->opmode != NL80211_IFTYPE_MONITOR) goto rx_next; } else if (ds->ds_rxstat.rs_status != 0) { if (ds->ds_rxstat.rs_status & ATH9K_RXERR_CRC) rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; if (ds->ds_rxstat.rs_status & ATH9K_RXERR_PHY) goto rx_next; if (ds->ds_rxstat.rs_status & ATH9K_RXERR_DECRYPT) { *decrypt_error = true; } else if (ds->ds_rxstat.rs_status & ATH9K_RXERR_MIC) { if (ieee80211_is_ctl(fc)) /* * Sometimes, we get invalid * MIC failures on valid control frames. * Remove these mic errors. */ ds->ds_rxstat.rs_status &= ~ATH9K_RXERR_MIC; else rx_status->flag |= RX_FLAG_MMIC_ERROR; } /* * Reject error frames with the exception of * decryption and MIC failures. For monitor mode, * we also ignore the CRC error. */ if (sc->sc_ah->opmode == NL80211_IFTYPE_MONITOR) { if (ds->ds_rxstat.rs_status & ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC | ATH9K_RXERR_CRC)) goto rx_next; } else { if (ds->ds_rxstat.rs_status & ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) { goto rx_next; } } } ratecode = ds->ds_rxstat.rs_rate; if (ratecode & 0x80) { /* HT rate */ rx_status->flag |= RX_FLAG_HT; if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040) rx_status->flag |= RX_FLAG_40MHZ; if (ds->ds_rxstat.rs_flags & ATH9K_RX_GI) rx_status->flag |= RX_FLAG_SHORT_GI; rx_status->rate_idx = ratecode & 0x7f; } else { int i = 0, cur_band, n_rates; cur_band = hw->conf.channel->band; n_rates = sc->sbands[cur_band].n_bitrates; for (i = 0; i < n_rates; i++) { if (sc->sbands[cur_band].bitrates[i].hw_value == ratecode) { rx_status->rate_idx = i; break; } if (sc->sbands[cur_band].bitrates[i].hw_value_short == ratecode) { rx_status->rate_idx = i; rx_status->flag |= RX_FLAG_SHORTPRE; break; } } } rx_status->mactime = ath_extend_tsf(sc, ds->ds_rxstat.rs_tstamp); rx_status->band = hw->conf.channel->band; rx_status->freq = hw->conf.channel->center_freq; rx_status->noise = sc->ani.noise_floor; rx_status->signal = rx_status->noise + ds->ds_rxstat.rs_rssi; rx_status->antenna = ds->ds_rxstat.rs_antenna; /* * Theory for reporting quality: * * At a hardware RSSI of 45 you will be able to use MCS 7 reliably. * At a hardware RSSI of 45 you will be able to use MCS 15 reliably. * At a hardware RSSI of 35 you should be able use 54 Mbps reliably. * * MCS 7 is the highets MCS index usable by a 1-stream device. * MCS 15 is the highest MCS index usable by a 2-stream device. * * All ath9k devices are either 1-stream or 2-stream. * * How many bars you see is derived from the qual reporting. * * A more elaborate scheme can be used here but it requires tables * of SNR/throughput for each possible mode used. For the MCS table * you can refer to the wireless wiki: * * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n * */ if (conf_is_ht(&hw->conf)) rx_status->qual = ds->ds_rxstat.rs_rssi * 100 / 45; else rx_status->qual = ds->ds_rxstat.rs_rssi * 100 / 35; /* rssi can be more than 45 though, anything above that * should be considered at 100% */ if (rx_status->qual > 100) rx_status->qual = 100; rx_status->flag |= RX_FLAG_TSFT; return 1; rx_next: return 0; } static void ath_opmode_init(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; u32 rfilt, mfilt[2]; /* configure rx filter */ rfilt = ath_calcrxfilter(sc); ath9k_hw_setrxfilter(ah, rfilt); /* configure bssid mask */ if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) ath9k_hw_setbssidmask(sc); /* configure operational mode */ ath9k_hw_setopmode(ah); /* Handle any link-level address change. */ ath9k_hw_setmac(ah, sc->sc_ah->macaddr); /* calculate and install multicast filter */ mfilt[0] = mfilt[1] = ~0; ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]); } int ath_rx_init(struct ath_softc *sc, int nbufs) { struct sk_buff *skb; struct ath_buf *bf; int error = 0; spin_lock_init(&sc->rx.rxflushlock); sc->sc_flags &= ~SC_OP_RXFLUSH; spin_lock_init(&sc->rx.rxbuflock); sc->rx.bufsize = roundup(IEEE80211_MAX_MPDU_LEN, min(sc->cachelsz, (u16)64)); DPRINTF(sc, ATH_DBG_CONFIG, "cachelsz %u rxbufsize %u\n", sc->cachelsz, sc->rx.bufsize); /* Initialize rx descriptors */ error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf, "rx", nbufs, 1); if (error != 0) { DPRINTF(sc, ATH_DBG_FATAL, "failed to allocate rx descriptors: %d\n", error); goto err; } list_for_each_entry(bf, &sc->rx.rxbuf, list) { skb = ath_rxbuf_alloc(sc, sc->rx.bufsize, GFP_KERNEL); if (skb == NULL) { error = -ENOMEM; goto err; } bf->bf_mpdu = skb; bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, sc->rx.bufsize, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { dev_kfree_skb_any(skb); bf->bf_mpdu = NULL; DPRINTF(sc, ATH_DBG_FATAL, "dma_mapping_error() on RX init\n"); error = -ENOMEM; goto err; } bf->bf_dmacontext = bf->bf_buf_addr; } sc->rx.rxlink = NULL; err: if (error) ath_rx_cleanup(sc); return error; } void ath_rx_cleanup(struct ath_softc *sc) { struct sk_buff *skb; struct ath_buf *bf; list_for_each_entry(bf, &sc->rx.rxbuf, list) { skb = bf->bf_mpdu; if (skb) { dma_unmap_single(sc->dev, bf->bf_buf_addr, sc->rx.bufsize, DMA_FROM_DEVICE); dev_kfree_skb(skb); } } if (sc->rx.rxdma.dd_desc_len != 0) ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf); } /* * Calculate the receive filter according to the * operating mode and state: * * o always accept unicast, broadcast, and multicast traffic * o maintain current state of phy error reception (the hal * may enable phy error frames for noise immunity work) * o probe request frames are accepted only when operating in * hostap, adhoc, or monitor modes * o enable promiscuous mode according to the interface state * o accept beacons: * - when operating in adhoc mode so the 802.11 layer creates * node table entries for peers, * - when operating in station mode for collecting rssi data when * the station is otherwise quiet, or * - when operating as a repeater so we see repeater-sta beacons * - when scanning */ u32 ath_calcrxfilter(struct ath_softc *sc) { #define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR) u32 rfilt; rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE) | ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST | ATH9K_RX_FILTER_MCAST; /* If not a STA, enable processing of Probe Requests */ if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION) rfilt |= ATH9K_RX_FILTER_PROBEREQ; /* * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station * mode interface or when in monitor mode. AP mode does not need this * since it receives all in-BSS frames anyway. */ if (((sc->sc_ah->opmode != NL80211_IFTYPE_AP) && (sc->rx.rxfilter & FIF_PROMISC_IN_BSS)) || (sc->sc_ah->opmode == NL80211_IFTYPE_MONITOR)) rfilt |= ATH9K_RX_FILTER_PROM; if (sc->rx.rxfilter & FIF_CONTROL) rfilt |= ATH9K_RX_FILTER_CONTROL; if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) && !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)) rfilt |= ATH9K_RX_FILTER_MYBEACON; else rfilt |= ATH9K_RX_FILTER_BEACON; /* If in HOSTAP mode, want to enable reception of PSPOLL frames */ if (sc->sc_ah->opmode == NL80211_IFTYPE_AP) rfilt |= ATH9K_RX_FILTER_PSPOLL; if (sc->sec_wiphy) { /* TODO: only needed if more than one BSSID is in use in * station/adhoc mode */ /* TODO: for older chips, may need to add ATH9K_RX_FILTER_PROM */ rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL; } return rfilt; #undef RX_FILTER_PRESERVE } int ath_startrecv(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; struct ath_buf *bf, *tbf; spin_lock_bh(&sc->rx.rxbuflock); if (list_empty(&sc->rx.rxbuf)) goto start_recv; sc->rx.rxlink = NULL; list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) { ath_rx_buf_link(sc, bf); } /* We could have deleted elements so the list may be empty now */ if (list_empty(&sc->rx.rxbuf)) goto start_recv; bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); ath9k_hw_putrxbuf(ah, bf->bf_daddr); ath9k_hw_rxena(ah); start_recv: spin_unlock_bh(&sc->rx.rxbuflock); ath_opmode_init(sc); ath9k_hw_startpcureceive(ah); return 0; } bool ath_stoprecv(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; bool stopped; ath9k_hw_stoppcurecv(ah); ath9k_hw_setrxfilter(ah, 0); stopped = ath9k_hw_stopdmarecv(ah); sc->rx.rxlink = NULL; return stopped; } void ath_flushrecv(struct ath_softc *sc) { spin_lock_bh(&sc->rx.rxflushlock); sc->sc_flags |= SC_OP_RXFLUSH; ath_rx_tasklet(sc, 1); sc->sc_flags &= ~SC_OP_RXFLUSH; spin_unlock_bh(&sc->rx.rxflushlock); } static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb) { /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */ struct ieee80211_mgmt *mgmt; u8 *pos, *end, id, elen; struct ieee80211_tim_ie *tim; mgmt = (struct ieee80211_mgmt *)skb->data; pos = mgmt->u.beacon.variable; end = skb->data + skb->len; while (pos + 2 < end) { id = *pos++; elen = *pos++; if (pos + elen > end) break; if (id == WLAN_EID_TIM) { if (elen < sizeof(*tim)) break; tim = (struct ieee80211_tim_ie *) pos; if (tim->dtim_count != 0) break; return tim->bitmap_ctrl & 0x01; } pos += elen; } return false; } static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb) { struct ieee80211_mgmt *mgmt; if (skb->len < 24 + 8 + 2 + 2) return; mgmt = (struct ieee80211_mgmt *)skb->data; if (memcmp(sc->curbssid, mgmt->bssid, ETH_ALEN) != 0) return; /* not from our current AP */ sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON; if (sc->sc_flags & SC_OP_BEACON_SYNC) { sc->sc_flags &= ~SC_OP_BEACON_SYNC; DPRINTF(sc, ATH_DBG_PS, "Reconfigure Beacon timers based on " "timestamp from the AP\n"); ath_beacon_config(sc, NULL); } if (ath_beacon_dtim_pending_cab(skb)) { /* * Remain awake waiting for buffered broadcast/multicast * frames. If the last broadcast/multicast frame is not * received properly, the next beacon frame will work as * a backup trigger for returning into NETWORK SLEEP state, * so we are waiting for it as well. */ DPRINTF(sc, ATH_DBG_PS, "Received DTIM beacon indicating " "buffered broadcast/multicast frame(s)\n"); sc->sc_flags |= SC_OP_WAIT_FOR_CAB | SC_OP_WAIT_FOR_BEACON; return; } if (sc->sc_flags & SC_OP_WAIT_FOR_CAB) { /* * This can happen if a broadcast frame is dropped or the AP * fails to send a frame indicating that all CAB frames have * been delivered. */ sc->sc_flags &= ~SC_OP_WAIT_FOR_CAB; DPRINTF(sc, ATH_DBG_PS, "PS wait for CAB frames timed out\n"); } } static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb) { struct ieee80211_hdr *hdr; hdr = (struct ieee80211_hdr *)skb->data; /* Process Beacon and CAB receive in PS state */ if ((sc->sc_flags & SC_OP_WAIT_FOR_BEACON) && ieee80211_is_beacon(hdr->frame_control)) ath_rx_ps_beacon(sc, skb); else if ((sc->sc_flags & SC_OP_WAIT_FOR_CAB) && (ieee80211_is_data(hdr->frame_control) || ieee80211_is_action(hdr->frame_control)) && is_multicast_ether_addr(hdr->addr1) && !ieee80211_has_moredata(hdr->frame_control)) { /* * No more broadcast/multicast frames to be received at this * point. */ sc->sc_flags &= ~SC_OP_WAIT_FOR_CAB; DPRINTF(sc, ATH_DBG_PS, "All PS CAB frames received, back to " "sleep\n"); } else if ((sc->sc_flags & SC_OP_WAIT_FOR_PSPOLL_DATA) && !is_multicast_ether_addr(hdr->addr1) && !ieee80211_has_morefrags(hdr->frame_control)) { sc->sc_flags &= ~SC_OP_WAIT_FOR_PSPOLL_DATA; DPRINTF(sc, ATH_DBG_PS, "Going back to sleep after having " "received PS-Poll data (0x%x)\n", sc->sc_flags & (SC_OP_WAIT_FOR_BEACON | SC_OP_WAIT_FOR_CAB | SC_OP_WAIT_FOR_PSPOLL_DATA | SC_OP_WAIT_FOR_TX_ACK)); } } static void ath_rx_send_to_mac80211(struct ath_softc *sc, struct sk_buff *skb, struct ieee80211_rx_status *rx_status) { struct ieee80211_hdr *hdr; hdr = (struct ieee80211_hdr *)skb->data; /* Send the frame to mac80211 */ if (is_multicast_ether_addr(hdr->addr1)) { int i; /* * Deliver broadcast/multicast frames to all suitable * virtual wiphys. */ /* TODO: filter based on channel configuration */ for (i = 0; i < sc->num_sec_wiphy; i++) { struct ath_wiphy *aphy = sc->sec_wiphy[i]; struct sk_buff *nskb; if (aphy == NULL) continue; nskb = skb_copy(skb, GFP_ATOMIC); if (nskb) { memcpy(IEEE80211_SKB_RXCB(nskb), rx_status, sizeof(*rx_status)); ieee80211_rx(aphy->hw, nskb); } } memcpy(IEEE80211_SKB_RXCB(skb), rx_status, sizeof(*rx_status)); ieee80211_rx(sc->hw, skb); } else { /* Deliver unicast frames based on receiver address */ memcpy(IEEE80211_SKB_RXCB(skb), rx_status, sizeof(*rx_status)); ieee80211_rx(ath_get_virt_hw(sc, hdr), skb); } } int ath_rx_tasklet(struct ath_softc *sc, int flush) { #define PA2DESC(_sc, _pa) \ ((struct ath_desc *)((caddr_t)(_sc)->rx.rxdma.dd_desc + \ ((_pa) - (_sc)->rx.rxdma.dd_desc_paddr))) struct ath_buf *bf; struct ath_desc *ds; struct sk_buff *skb = NULL, *requeue_skb; struct ieee80211_rx_status rx_status; struct ath_hw *ah = sc->sc_ah; struct ieee80211_hdr *hdr; int hdrlen, padsize, retval; bool decrypt_error = false; u8 keyix; __le16 fc; spin_lock_bh(&sc->rx.rxbuflock); do { /* If handling rx interrupt and flush is in progress => exit */ if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0)) break; if (list_empty(&sc->rx.rxbuf)) { sc->rx.rxlink = NULL; break; } bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); ds = bf->bf_desc; /* * Must provide the virtual address of the current * descriptor, the physical address, and the virtual * address of the next descriptor in the h/w chain. * This allows the HAL to look ahead to see if the * hardware is done with a descriptor by checking the * done bit in the following descriptor and the address * of the current descriptor the DMA engine is working * on. All this is necessary because of our use of * a self-linked list to avoid rx overruns. */ retval = ath9k_hw_rxprocdesc(ah, ds, bf->bf_daddr, PA2DESC(sc, ds->ds_link), 0); if (retval == -EINPROGRESS) { struct ath_buf *tbf; struct ath_desc *tds; if (list_is_last(&bf->list, &sc->rx.rxbuf)) { sc->rx.rxlink = NULL; break; } tbf = list_entry(bf->list.next, struct ath_buf, list); /* * On some hardware the descriptor status words could * get corrupted, including the done bit. Because of * this, check if the next descriptor's done bit is * set or not. * * If the next descriptor's done bit is set, the current * descriptor has been corrupted. Force s/w to discard * this descriptor and continue... */ tds = tbf->bf_desc; retval = ath9k_hw_rxprocdesc(ah, tds, tbf->bf_daddr, PA2DESC(sc, tds->ds_link), 0); if (retval == -EINPROGRESS) { break; } } skb = bf->bf_mpdu; if (!skb) continue; /* * Synchronize the DMA transfer with CPU before * 1. accessing the frame * 2. requeueing the same buffer to h/w */ dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, sc->rx.bufsize, DMA_FROM_DEVICE); /* * If we're asked to flush receive queue, directly * chain it back at the queue without processing it. */ if (flush) goto requeue; if (!ds->ds_rxstat.rs_datalen) goto requeue; /* The status portion of the descriptor could get corrupted. */ if (sc->rx.bufsize < ds->ds_rxstat.rs_datalen) goto requeue; if (!ath_rx_prepare(skb, ds, &rx_status, &decrypt_error, sc)) goto requeue; /* Ensure we always have an skb to requeue once we are done * processing the current buffer's skb */ requeue_skb = ath_rxbuf_alloc(sc, sc->rx.bufsize, GFP_ATOMIC); /* If there is no memory we ignore the current RX'd frame, * tell hardware it can give us a new frame using the old * skb and put it at the tail of the sc->rx.rxbuf list for * processing. */ if (!requeue_skb) goto requeue; /* Unmap the frame */ dma_unmap_single(sc->dev, bf->bf_buf_addr, sc->rx.bufsize, DMA_FROM_DEVICE); skb_put(skb, ds->ds_rxstat.rs_datalen); skb->protocol = cpu_to_be16(ETH_P_CONTROL); /* see if any padding is done by the hw and remove it */ hdr = (struct ieee80211_hdr *)skb->data; hdrlen = ieee80211_get_hdrlen_from_skb(skb); fc = hdr->frame_control; /* The MAC header is padded to have 32-bit boundary if the * packet payload is non-zero. The general calculation for * padsize would take into account odd header lengths: * padsize = (4 - hdrlen % 4) % 4; However, since only * even-length headers are used, padding can only be 0 or 2 * bytes and we can optimize this a bit. In addition, we must * not try to remove padding from short control frames that do * not have payload. */ padsize = hdrlen & 3; if (padsize && hdrlen >= 24) { memmove(skb->data + padsize, skb->data, hdrlen); skb_pull(skb, padsize); } keyix = ds->ds_rxstat.rs_keyix; if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error) { rx_status.flag |= RX_FLAG_DECRYPTED; } else if (ieee80211_has_protected(fc) && !decrypt_error && skb->len >= hdrlen + 4) { keyix = skb->data[hdrlen + 3] >> 6; if (test_bit(keyix, sc->keymap)) rx_status.flag |= RX_FLAG_DECRYPTED; } if (ah->sw_mgmt_crypto && (rx_status.flag & RX_FLAG_DECRYPTED) && ieee80211_is_mgmt(fc)) { /* Use software decrypt for management frames. */ rx_status.flag &= ~RX_FLAG_DECRYPTED; } /* We will now give hardware our shiny new allocated skb */ bf->bf_mpdu = requeue_skb; bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data, sc->rx.bufsize, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { dev_kfree_skb_any(requeue_skb); bf->bf_mpdu = NULL; DPRINTF(sc, ATH_DBG_FATAL, "dma_mapping_error() on RX\n"); ath_rx_send_to_mac80211(sc, skb, &rx_status); break; } bf->bf_dmacontext = bf->bf_buf_addr; /* * change the default rx antenna if rx diversity chooses the * other antenna 3 times in a row. */ if (sc->rx.defant != ds->ds_rxstat.rs_antenna) { if (++sc->rx.rxotherant >= 3) ath_setdefantenna(sc, ds->ds_rxstat.rs_antenna); } else { sc->rx.rxotherant = 0; } if (unlikely(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON | SC_OP_WAIT_FOR_CAB | SC_OP_WAIT_FOR_PSPOLL_DATA))) ath_rx_ps(sc, skb); ath_rx_send_to_mac80211(sc, skb, &rx_status); requeue: list_move_tail(&bf->list, &sc->rx.rxbuf); ath_rx_buf_link(sc, bf); } while (1); spin_unlock_bh(&sc->rx.rxbuflock); return 0; #undef PA2DESC }