/* * Copyright 2012 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "nv50.h" #include "head.h" #include "ior.h" #include "rootnv50.h" #include #include #include #include #include static struct nvkm_output * exec_lookup(struct nv50_disp *disp, int head, int or, u32 ctrl, u32 *data, u8 *ver, u8 *hdr, u8 *cnt, u8 *len, struct nvbios_outp *info) { struct nvkm_subdev *subdev = &disp->base.engine.subdev; struct nvkm_bios *bios = subdev->device->bios; struct nvkm_output *outp; u16 mask, type; if (or < 4) { type = DCB_OUTPUT_ANALOG; mask = 0; } else { or -= 4; switch (ctrl & 0x00000f00) { case 0x00000000: type = DCB_OUTPUT_LVDS; mask = 1; break; case 0x00000100: type = DCB_OUTPUT_TMDS; mask = 1; break; case 0x00000200: type = DCB_OUTPUT_TMDS; mask = 2; break; case 0x00000500: type = DCB_OUTPUT_TMDS; mask = 3; break; case 0x00000800: type = DCB_OUTPUT_DP; mask = 1; break; case 0x00000900: type = DCB_OUTPUT_DP; mask = 2; break; default: nvkm_error(subdev, "unknown SOR mc %08x\n", ctrl); return NULL; } } mask = 0x00c0 & (mask << 6); mask |= 0x0001 << or; mask |= 0x0100 << head; list_for_each_entry(outp, &disp->base.outp, head) { if ((outp->info.hasht & 0xff) == type && (outp->info.hashm & mask) == mask) { *data = nvbios_outp_match(bios, outp->info.hasht, mask, ver, hdr, cnt, len, info); if (!*data) return NULL; return outp; } } return NULL; } static struct nvkm_output * exec_script(struct nv50_disp *disp, int head, int id) { struct nvkm_subdev *subdev = &disp->base.engine.subdev; struct nvkm_device *device = subdev->device; struct nvkm_bios *bios = device->bios; struct nvkm_output *outp; struct nvbios_outp info; u8 ver, hdr, cnt, len; u32 data, ctrl = 0; int or; for (or = 0; !(ctrl & (1 << head)) && or < 8; or++) { ctrl = nvkm_rd32(device, 0x640180 + (or * 0x20)); if (ctrl & (1 << head)) break; } if (or == 8) return NULL; outp = exec_lookup(disp, head, or, ctrl, &data, &ver, &hdr, &cnt, &len, &info); if (outp) { struct nvbios_init init = { .subdev = subdev, .bios = bios, .offset = info.script[id], .outp = &outp->info, .crtc = head, .execute = 1, }; nvbios_exec(&init); } return outp; } static struct nvkm_output * exec_clkcmp(struct nv50_disp *disp, int head, int id, u32 pclk, u32 *conf) { struct nvkm_subdev *subdev = &disp->base.engine.subdev; struct nvkm_device *device = subdev->device; struct nvkm_bios *bios = device->bios; struct nvkm_output *outp; struct nvbios_outp info1; struct nvbios_ocfg info2; u8 ver, hdr, cnt, len; u32 data, ctrl = 0; int or; for (or = 0; !(ctrl & (1 << head)) && or < 8; or++) { ctrl = nvkm_rd32(device, 0x660180 + (or * 0x20)); if (ctrl & (1 << head)) break; } if (or == 8) return NULL; outp = exec_lookup(disp, head, or, ctrl, &data, &ver, &hdr, &cnt, &len, &info1); if (!outp) return NULL; *conf = (ctrl & 0x00000f00) >> 8; switch (outp->info.type) { case DCB_OUTPUT_TMDS: if (*conf == 5) *conf |= 0x0100; break; case DCB_OUTPUT_LVDS: *conf |= disp->sor.lvdsconf; break; default: break; } data = nvbios_ocfg_match(bios, data, *conf & 0xff, *conf >> 8, &ver, &hdr, &cnt, &len, &info2); if (data && id < 0xff) { data = nvbios_oclk_match(bios, info2.clkcmp[id], pclk); if (data) { struct nvbios_init init = { .subdev = subdev, .bios = bios, .offset = data, .outp = &outp->info, .crtc = head, .execute = 1, }; nvbios_exec(&init); } } return outp; } static void gf119_disp_intr_unk1_0(struct nv50_disp *disp, int head) { exec_script(disp, head, 1); } static void gf119_disp_intr_unk2_0(struct nv50_disp *disp, int head) { struct nvkm_subdev *subdev = &disp->base.engine.subdev; struct nvkm_output *outp = exec_script(disp, head, 2); /* see note in nv50_disp_intr_unk20_0() */ if (outp && outp->info.type == DCB_OUTPUT_DP) { struct nvkm_output_dp *outpdp = nvkm_output_dp(outp); if (!outpdp->lt.mst) { struct nvbios_init init = { .subdev = subdev, .bios = subdev->device->bios, .outp = &outp->info, .crtc = head, .offset = outpdp->info.script[4], .execute = 1, }; atomic_set(&outpdp->lt.done, 0); nvbios_exec(&init); } } } static void gf119_disp_intr_unk2_1(struct nv50_disp *disp, int head) { struct nvkm_device *device = disp->base.engine.subdev.device; struct nvkm_devinit *devinit = device->devinit; u32 pclk = nvkm_rd32(device, 0x660450 + (head * 0x300)) / 1000; if (pclk) nvkm_devinit_pll_set(devinit, PLL_VPLL0 + head, pclk); nvkm_wr32(device, 0x612200 + (head * 0x800), 0x00000000); } static void gf119_disp_intr_unk2_2_tu(struct nv50_disp *disp, int head, struct dcb_output *outp) { struct nvkm_device *device = disp->base.engine.subdev.device; const int or = ffs(outp->or) - 1; const u32 ctrl = nvkm_rd32(device, 0x660200 + (or * 0x020)); const u32 conf = nvkm_rd32(device, 0x660404 + (head * 0x300)); const s32 vactive = nvkm_rd32(device, 0x660414 + (head * 0x300)) & 0xffff; const s32 vblanke = nvkm_rd32(device, 0x66041c + (head * 0x300)) & 0xffff; const s32 vblanks = nvkm_rd32(device, 0x660420 + (head * 0x300)) & 0xffff; const u32 pclk = nvkm_rd32(device, 0x660450 + (head * 0x300)) / 1000; const u32 link = ((ctrl & 0xf00) == 0x800) ? 0 : 1; const u32 hoff = (head * 0x800); const u32 soff = ( or * 0x800); const u32 loff = (link * 0x080) + soff; const u32 symbol = 100000; const u32 TU = 64; u32 dpctrl = nvkm_rd32(device, 0x61c10c + loff); u32 clksor = nvkm_rd32(device, 0x612300 + soff); u32 datarate, link_nr, link_bw, bits; u64 ratio, value; link_nr = hweight32(dpctrl & 0x000f0000); link_bw = (clksor & 0x007c0000) >> 18; link_bw *= 27000; /* symbols/hblank - algorithm taken from comments in tegra driver */ value = vblanke + vactive - vblanks - 7; value = value * link_bw; do_div(value, pclk); value = value - (3 * !!(dpctrl & 0x00004000)) - (12 / link_nr); nvkm_mask(device, 0x616620 + hoff, 0x0000ffff, value); /* symbols/vblank - algorithm taken from comments in tegra driver */ value = vblanks - vblanke - 25; value = value * link_bw; do_div(value, pclk); value = value - ((36 / link_nr) + 3) - 1; nvkm_mask(device, 0x616624 + hoff, 0x00ffffff, value); /* watermark */ if ((conf & 0x3c0) == 0x180) bits = 30; else if ((conf & 0x3c0) == 0x140) bits = 24; else bits = 18; datarate = (pclk * bits) / 8; ratio = datarate; ratio *= symbol; do_div(ratio, link_nr * link_bw); value = (symbol - ratio) * TU; value *= ratio; do_div(value, symbol); do_div(value, symbol); value += 5; value |= 0x08000000; nvkm_wr32(device, 0x616610 + hoff, value); } static void gf119_disp_intr_unk2_2(struct nv50_disp *disp, int head) { struct nvkm_device *device = disp->base.engine.subdev.device; struct nvkm_output *outp; u32 pclk = nvkm_rd32(device, 0x660450 + (head * 0x300)) / 1000; u32 conf, addr, data; outp = exec_clkcmp(disp, head, 0xff, pclk, &conf); if (!outp) return; /* see note in nv50_disp_intr_unk20_2() */ if (outp->info.type == DCB_OUTPUT_DP) { u32 sync = nvkm_rd32(device, 0x660404 + (head * 0x300)); switch ((sync & 0x000003c0) >> 6) { case 6: pclk = pclk * 30; break; case 5: pclk = pclk * 24; break; case 2: default: pclk = pclk * 18; break; } if (nvkm_output_dp_train(outp, pclk)) OUTP_ERR(outp, "link not trained before attach"); } else { if (disp->func->sor.magic) disp->func->sor.magic(outp); } exec_clkcmp(disp, head, 0, pclk, &conf); if (outp->info.type == DCB_OUTPUT_ANALOG) { addr = 0x612280 + (ffs(outp->info.or) - 1) * 0x800; data = 0x00000000; } else { addr = 0x612300 + (ffs(outp->info.or) - 1) * 0x800; data = (conf & 0x0100) ? 0x00000101 : 0x00000000; switch (outp->info.type) { case DCB_OUTPUT_TMDS: nvkm_mask(device, addr, 0x007c0000, 0x00280000); break; case DCB_OUTPUT_DP: gf119_disp_intr_unk2_2_tu(disp, head, &outp->info); break; default: break; } } nvkm_mask(device, addr, 0x00000707, data); } static void gf119_disp_intr_unk4_0(struct nv50_disp *disp, int head) { struct nvkm_device *device = disp->base.engine.subdev.device; u32 pclk = nvkm_rd32(device, 0x660450 + (head * 0x300)) / 1000; u32 conf; exec_clkcmp(disp, head, 1, pclk, &conf); } void gf119_disp_super(struct work_struct *work) { struct nv50_disp *disp = container_of(work, struct nv50_disp, supervisor); struct nvkm_subdev *subdev = &disp->base.engine.subdev; struct nvkm_device *device = subdev->device; struct nvkm_head *head; u32 mask[4]; nvkm_debug(subdev, "supervisor %d\n", ffs(disp->super)); list_for_each_entry(head, &disp->base.head, head) { mask[head->id] = nvkm_rd32(device, 0x6101d4 + (head->id * 0x800)); HEAD_DBG(head, "%08x", mask[head->id]); } if (disp->super & 0x00000001) { nv50_disp_chan_mthd(disp->chan[0], NV_DBG_DEBUG); list_for_each_entry(head, &disp->base.head, head) { if (!(mask[head->id] & 0x00001000)) continue; nvkm_debug(subdev, "supervisor 1.0 - head %d\n", head->id); gf119_disp_intr_unk1_0(disp, head->id); } } else if (disp->super & 0x00000002) { list_for_each_entry(head, &disp->base.head, head) { if (!(mask[head->id] & 0x00001000)) continue; nvkm_debug(subdev, "supervisor 2.0 - head %d\n", head->id); gf119_disp_intr_unk2_0(disp, head->id); } list_for_each_entry(head, &disp->base.head, head) { if (!(mask[head->id] & 0x00010000)) continue; nvkm_debug(subdev, "supervisor 2.1 - head %d\n", head->id); gf119_disp_intr_unk2_1(disp, head->id); } list_for_each_entry(head, &disp->base.head, head) { if (!(mask[head->id] & 0x00001000)) continue; nvkm_debug(subdev, "supervisor 2.2 - head %d\n", head->id); gf119_disp_intr_unk2_2(disp, head->id); } } else if (disp->super & 0x00000004) { list_for_each_entry(head, &disp->base.head, head) { if (!(mask[head->id] & 0x00001000)) continue; nvkm_debug(subdev, "supervisor 3.0 - head %d\n", head->id); gf119_disp_intr_unk4_0(disp, head->id); } } list_for_each_entry(head, &disp->base.head, head) nvkm_wr32(device, 0x6101d4 + (head->id * 0x800), 0x00000000); nvkm_wr32(device, 0x6101d0, 0x80000000); } void gf119_disp_intr_error(struct nv50_disp *disp, int chid) { struct nvkm_subdev *subdev = &disp->base.engine.subdev; struct nvkm_device *device = subdev->device; u32 mthd = nvkm_rd32(device, 0x6101f0 + (chid * 12)); u32 data = nvkm_rd32(device, 0x6101f4 + (chid * 12)); u32 unkn = nvkm_rd32(device, 0x6101f8 + (chid * 12)); nvkm_error(subdev, "chid %d mthd %04x data %08x %08x %08x\n", chid, (mthd & 0x0000ffc), data, mthd, unkn); if (chid < ARRAY_SIZE(disp->chan)) { switch (mthd & 0xffc) { case 0x0080: nv50_disp_chan_mthd(disp->chan[chid], NV_DBG_ERROR); break; default: break; } } nvkm_wr32(device, 0x61009c, (1 << chid)); nvkm_wr32(device, 0x6101f0 + (chid * 12), 0x90000000); } void gf119_disp_intr(struct nv50_disp *disp) { struct nvkm_subdev *subdev = &disp->base.engine.subdev; struct nvkm_device *device = subdev->device; struct nvkm_head *head; u32 intr = nvkm_rd32(device, 0x610088); if (intr & 0x00000001) { u32 stat = nvkm_rd32(device, 0x61008c); while (stat) { int chid = __ffs(stat); stat &= ~(1 << chid); nv50_disp_chan_uevent_send(disp, chid); nvkm_wr32(device, 0x61008c, 1 << chid); } intr &= ~0x00000001; } if (intr & 0x00000002) { u32 stat = nvkm_rd32(device, 0x61009c); int chid = ffs(stat) - 1; if (chid >= 0) disp->func->intr_error(disp, chid); intr &= ~0x00000002; } if (intr & 0x00100000) { u32 stat = nvkm_rd32(device, 0x6100ac); if (stat & 0x00000007) { disp->super = (stat & 0x00000007); schedule_work(&disp->supervisor); nvkm_wr32(device, 0x6100ac, disp->super); stat &= ~0x00000007; } if (stat) { nvkm_warn(subdev, "intr24 %08x\n", stat); nvkm_wr32(device, 0x6100ac, stat); } intr &= ~0x00100000; } list_for_each_entry(head, &disp->base.head, head) { const u32 hoff = head->id * 0x800; u32 mask = 0x01000000 << head->id; if (mask & intr) { u32 stat = nvkm_rd32(device, 0x6100bc + hoff); if (stat & 0x00000001) nvkm_disp_vblank(&disp->base, head->id); nvkm_mask(device, 0x6100bc + hoff, 0, 0); nvkm_rd32(device, 0x6100c0 + hoff); } } } int gf119_disp_new_(const struct nv50_disp_func *func, struct nvkm_device *device, int index, struct nvkm_disp **pdisp) { u32 heads = nvkm_rd32(device, 0x022448); return nv50_disp_new_(func, device, index, heads, pdisp); } static const struct nv50_disp_func gf119_disp = { .intr = gf119_disp_intr, .intr_error = gf119_disp_intr_error, .uevent = &gf119_disp_chan_uevent, .super = gf119_disp_super, .root = &gf119_disp_root_oclass, .head.new = gf119_head_new, .outp.internal.crt = nv50_dac_output_new, .outp.internal.tmds = nv50_sor_output_new, .outp.internal.lvds = nv50_sor_output_new, .outp.internal.dp = gf119_sor_dp_new, .dac.nr = 3, .dac.new = gf119_dac_new, .dac.power = nv50_dac_power, .dac.sense = nv50_dac_sense, .sor.nr = 4, .sor.new = gf119_sor_new, .sor.power = nv50_sor_power, .sor.hda_eld = gf119_hda_eld, .sor.hdmi = gf119_hdmi_ctrl, }; int gf119_disp_new(struct nvkm_device *device, int index, struct nvkm_disp **pdisp) { return gf119_disp_new_(&gf119_disp, device, index, pdisp); }