/******************************************************************* * This file is part of the Emulex Linux Device Driver for * * Fibre Channel Host Bus Adapters. * * Copyright (C) 2017-2018 Broadcom. All Rights Reserved. The term * * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * * Copyright (C) 2004-2016 Emulex. All rights reserved. * * EMULEX and SLI are trademarks of Emulex. * * www.broadcom.com * * * * This program is free software; you can redistribute it and/or * * modify it under the terms of version 2 of the GNU General * * Public License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful. * * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * * TO BE LEGALLY INVALID. See the GNU General Public License for * * more details, a copy of which can be found in the file COPYING * * included with this package. * *******************************************************************/ /* * Fibre Channel SCSI LAN Device Driver CT support: FC Generic Services FC-GS */ #include #include #include #include #include #include #include #include #include #include #include "lpfc_hw4.h" #include "lpfc_hw.h" #include "lpfc_sli.h" #include "lpfc_sli4.h" #include "lpfc_nl.h" #include "lpfc_disc.h" #include "lpfc.h" #include "lpfc_scsi.h" #include "lpfc_nvme.h" #include "lpfc_logmsg.h" #include "lpfc_crtn.h" #include "lpfc_version.h" #include "lpfc_vport.h" #include "lpfc_debugfs.h" /* FDMI Port Speed definitions - FC-GS-7 */ #define HBA_PORTSPEED_1GFC 0x00000001 /* 1G FC */ #define HBA_PORTSPEED_2GFC 0x00000002 /* 2G FC */ #define HBA_PORTSPEED_4GFC 0x00000008 /* 4G FC */ #define HBA_PORTSPEED_10GFC 0x00000004 /* 10G FC */ #define HBA_PORTSPEED_8GFC 0x00000010 /* 8G FC */ #define HBA_PORTSPEED_16GFC 0x00000020 /* 16G FC */ #define HBA_PORTSPEED_32GFC 0x00000040 /* 32G FC */ #define HBA_PORTSPEED_20GFC 0x00000080 /* 20G FC */ #define HBA_PORTSPEED_40GFC 0x00000100 /* 40G FC */ #define HBA_PORTSPEED_128GFC 0x00000200 /* 128G FC */ #define HBA_PORTSPEED_64GFC 0x00000400 /* 64G FC */ #define HBA_PORTSPEED_256GFC 0x00000800 /* 256G FC */ #define HBA_PORTSPEED_UNKNOWN 0x00008000 /* Unknown */ #define HBA_PORTSPEED_10GE 0x00010000 /* 10G E */ #define HBA_PORTSPEED_40GE 0x00020000 /* 40G E */ #define HBA_PORTSPEED_100GE 0x00040000 /* 100G E */ #define HBA_PORTSPEED_25GE 0x00080000 /* 25G E */ #define HBA_PORTSPEED_50GE 0x00100000 /* 50G E */ #define HBA_PORTSPEED_400GE 0x00200000 /* 400G E */ #define FOURBYTES 4 static char *lpfc_release_version = LPFC_DRIVER_VERSION; static void lpfc_ct_ignore_hbq_buffer(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, struct lpfc_dmabuf *mp, uint32_t size) { if (!mp) { lpfc_printf_log(phba, KERN_INFO, LOG_ELS, "0146 Ignoring unsolicited CT No HBQ " "status = x%x\n", piocbq->iocb.ulpStatus); } lpfc_printf_log(phba, KERN_INFO, LOG_ELS, "0145 Ignoring unsolicted CT HBQ Size:%d " "status = x%x\n", size, piocbq->iocb.ulpStatus); } static void lpfc_ct_unsol_buffer(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, struct lpfc_dmabuf *mp, uint32_t size) { lpfc_ct_ignore_hbq_buffer(phba, piocbq, mp, size); } void lpfc_ct_unsol_event(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, struct lpfc_iocbq *piocbq) { struct lpfc_dmabuf *mp = NULL; IOCB_t *icmd = &piocbq->iocb; int i; struct lpfc_iocbq *iocbq; dma_addr_t paddr; uint32_t size; struct list_head head; struct lpfc_dmabuf *bdeBuf; if (lpfc_bsg_ct_unsol_event(phba, pring, piocbq) == 0) return; if (unlikely(icmd->ulpStatus == IOSTAT_NEED_BUFFER)) { lpfc_sli_hbqbuf_add_hbqs(phba, LPFC_ELS_HBQ); } else if ((icmd->ulpStatus == IOSTAT_LOCAL_REJECT) && ((icmd->un.ulpWord[4] & IOERR_PARAM_MASK) == IOERR_RCV_BUFFER_WAITING)) { /* Not enough posted buffers; Try posting more buffers */ phba->fc_stat.NoRcvBuf++; if (!(phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) lpfc_post_buffer(phba, pring, 2); return; } /* If there are no BDEs associated with this IOCB, * there is nothing to do. */ if (icmd->ulpBdeCount == 0) return; if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { INIT_LIST_HEAD(&head); list_add_tail(&head, &piocbq->list); list_for_each_entry(iocbq, &head, list) { icmd = &iocbq->iocb; if (icmd->ulpBdeCount == 0) continue; bdeBuf = iocbq->context2; iocbq->context2 = NULL; size = icmd->un.cont64[0].tus.f.bdeSize; lpfc_ct_unsol_buffer(phba, piocbq, bdeBuf, size); lpfc_in_buf_free(phba, bdeBuf); if (icmd->ulpBdeCount == 2) { bdeBuf = iocbq->context3; iocbq->context3 = NULL; size = icmd->unsli3.rcvsli3.bde2.tus.f.bdeSize; lpfc_ct_unsol_buffer(phba, piocbq, bdeBuf, size); lpfc_in_buf_free(phba, bdeBuf); } } list_del(&head); } else { INIT_LIST_HEAD(&head); list_add_tail(&head, &piocbq->list); list_for_each_entry(iocbq, &head, list) { icmd = &iocbq->iocb; if (icmd->ulpBdeCount == 0) lpfc_ct_unsol_buffer(phba, iocbq, NULL, 0); for (i = 0; i < icmd->ulpBdeCount; i++) { paddr = getPaddr(icmd->un.cont64[i].addrHigh, icmd->un.cont64[i].addrLow); mp = lpfc_sli_ringpostbuf_get(phba, pring, paddr); size = icmd->un.cont64[i].tus.f.bdeSize; lpfc_ct_unsol_buffer(phba, iocbq, mp, size); lpfc_in_buf_free(phba, mp); } lpfc_post_buffer(phba, pring, i); } list_del(&head); } } /** * lpfc_ct_handle_unsol_abort - ct upper level protocol abort handler * @phba: Pointer to HBA context object. * @dmabuf: pointer to a dmabuf that describes the FC sequence * * This function serves as the upper level protocol abort handler for CT * protocol. * * Return 1 if abort has been handled, 0 otherwise. **/ int lpfc_ct_handle_unsol_abort(struct lpfc_hba *phba, struct hbq_dmabuf *dmabuf) { int handled; /* CT upper level goes through BSG */ handled = lpfc_bsg_ct_unsol_abort(phba, dmabuf); return handled; } static void lpfc_free_ct_rsp(struct lpfc_hba *phba, struct lpfc_dmabuf *mlist) { struct lpfc_dmabuf *mlast, *next_mlast; list_for_each_entry_safe(mlast, next_mlast, &mlist->list, list) { lpfc_mbuf_free(phba, mlast->virt, mlast->phys); list_del(&mlast->list); kfree(mlast); } lpfc_mbuf_free(phba, mlist->virt, mlist->phys); kfree(mlist); return; } static struct lpfc_dmabuf * lpfc_alloc_ct_rsp(struct lpfc_hba *phba, int cmdcode, struct ulp_bde64 *bpl, uint32_t size, int *entries) { struct lpfc_dmabuf *mlist = NULL; struct lpfc_dmabuf *mp; int cnt, i = 0; /* We get chunks of FCELSSIZE */ cnt = size > FCELSSIZE ? FCELSSIZE: size; while (size) { /* Allocate buffer for rsp payload */ mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); if (!mp) { if (mlist) lpfc_free_ct_rsp(phba, mlist); return NULL; } INIT_LIST_HEAD(&mp->list); if (cmdcode == be16_to_cpu(SLI_CTNS_GID_FT) || cmdcode == be16_to_cpu(SLI_CTNS_GFF_ID)) mp->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &(mp->phys)); else mp->virt = lpfc_mbuf_alloc(phba, 0, &(mp->phys)); if (!mp->virt) { kfree(mp); if (mlist) lpfc_free_ct_rsp(phba, mlist); return NULL; } /* Queue it to a linked list */ if (!mlist) mlist = mp; else list_add_tail(&mp->list, &mlist->list); bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; /* build buffer ptr list for IOCB */ bpl->addrLow = le32_to_cpu(putPaddrLow(mp->phys) ); bpl->addrHigh = le32_to_cpu(putPaddrHigh(mp->phys) ); bpl->tus.f.bdeSize = (uint16_t) cnt; bpl->tus.w = le32_to_cpu(bpl->tus.w); bpl++; i++; size -= cnt; } *entries = i; return mlist; } int lpfc_ct_free_iocb(struct lpfc_hba *phba, struct lpfc_iocbq *ctiocb) { struct lpfc_dmabuf *buf_ptr; if (ctiocb->context_un.ndlp) { lpfc_nlp_put(ctiocb->context_un.ndlp); ctiocb->context_un.ndlp = NULL; } if (ctiocb->context1) { buf_ptr = (struct lpfc_dmabuf *) ctiocb->context1; lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); kfree(buf_ptr); ctiocb->context1 = NULL; } if (ctiocb->context2) { lpfc_free_ct_rsp(phba, (struct lpfc_dmabuf *) ctiocb->context2); ctiocb->context2 = NULL; } if (ctiocb->context3) { buf_ptr = (struct lpfc_dmabuf *) ctiocb->context3; lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); kfree(buf_ptr); ctiocb->context3 = NULL; } lpfc_sli_release_iocbq(phba, ctiocb); return 0; } /** * lpfc_gen_req - Build and issue a GEN_REQUEST command to the SLI Layer * @vport: pointer to a host virtual N_Port data structure. * @bmp: Pointer to BPL for SLI command * @inp: Pointer to data buffer for response data. * @outp: Pointer to data buffer that hold the CT command. * @cmpl: completion routine to call when command completes * @ndlp: Destination NPort nodelist entry * * This function as the final part for issuing a CT command. */ static int lpfc_gen_req(struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, struct lpfc_dmabuf *inp, struct lpfc_dmabuf *outp, void (*cmpl) (struct lpfc_hba *, struct lpfc_iocbq *, struct lpfc_iocbq *), struct lpfc_nodelist *ndlp, uint32_t usr_flg, uint32_t num_entry, uint32_t tmo, uint8_t retry) { struct lpfc_hba *phba = vport->phba; IOCB_t *icmd; struct lpfc_iocbq *geniocb; int rc; /* Allocate buffer for command iocb */ geniocb = lpfc_sli_get_iocbq(phba); if (geniocb == NULL) return 1; icmd = &geniocb->iocb; icmd->un.genreq64.bdl.ulpIoTag32 = 0; icmd->un.genreq64.bdl.addrHigh = putPaddrHigh(bmp->phys); icmd->un.genreq64.bdl.addrLow = putPaddrLow(bmp->phys); icmd->un.genreq64.bdl.bdeFlags = BUFF_TYPE_BLP_64; icmd->un.genreq64.bdl.bdeSize = (num_entry * sizeof(struct ulp_bde64)); if (usr_flg) geniocb->context3 = NULL; else geniocb->context3 = (uint8_t *) bmp; /* Save for completion so we can release these resources */ geniocb->context1 = (uint8_t *) inp; geniocb->context2 = (uint8_t *) outp; geniocb->context_un.ndlp = lpfc_nlp_get(ndlp); /* Fill in payload, bp points to frame payload */ icmd->ulpCommand = CMD_GEN_REQUEST64_CR; /* Fill in rest of iocb */ icmd->un.genreq64.w5.hcsw.Fctl = (SI | LA); icmd->un.genreq64.w5.hcsw.Dfctl = 0; icmd->un.genreq64.w5.hcsw.Rctl = FC_RCTL_DD_UNSOL_CTL; icmd->un.genreq64.w5.hcsw.Type = FC_TYPE_CT; if (!tmo) { /* FC spec states we need 3 * ratov for CT requests */ tmo = (3 * phba->fc_ratov); } icmd->ulpTimeout = tmo; icmd->ulpBdeCount = 1; icmd->ulpLe = 1; icmd->ulpClass = CLASS3; icmd->ulpContext = ndlp->nlp_rpi; if (phba->sli_rev == LPFC_SLI_REV4) icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) { /* For GEN_REQUEST64_CR, use the RPI */ icmd->ulpCt_h = 0; icmd->ulpCt_l = 0; } /* Issue GEN REQ IOCB for NPORT */ lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, "0119 Issue GEN REQ IOCB to NPORT x%x " "Data: x%x x%x\n", ndlp->nlp_DID, icmd->ulpIoTag, vport->port_state); geniocb->iocb_cmpl = cmpl; geniocb->drvrTimeout = icmd->ulpTimeout + LPFC_DRVR_TIMEOUT; geniocb->vport = vport; geniocb->retry = retry; rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, geniocb, 0); if (rc == IOCB_ERROR) { lpfc_sli_release_iocbq(phba, geniocb); return 1; } return 0; } /** * lpfc_ct_cmd - Build and issue a CT command * @vport: pointer to a host virtual N_Port data structure. * @inmp: Pointer to data buffer for response data. * @bmp: Pointer to BPL for SLI command * @ndlp: Destination NPort nodelist entry * @cmpl: completion routine to call when command completes * * This function is called for issuing a CT command. */ static int lpfc_ct_cmd(struct lpfc_vport *vport, struct lpfc_dmabuf *inmp, struct lpfc_dmabuf *bmp, struct lpfc_nodelist *ndlp, void (*cmpl) (struct lpfc_hba *, struct lpfc_iocbq *, struct lpfc_iocbq *), uint32_t rsp_size, uint8_t retry) { struct lpfc_hba *phba = vport->phba; struct ulp_bde64 *bpl = (struct ulp_bde64 *) bmp->virt; struct lpfc_dmabuf *outmp; int cnt = 0, status; int cmdcode = ((struct lpfc_sli_ct_request *) inmp->virt)-> CommandResponse.bits.CmdRsp; bpl++; /* Skip past ct request */ /* Put buffer(s) for ct rsp in bpl */ outmp = lpfc_alloc_ct_rsp(phba, cmdcode, bpl, rsp_size, &cnt); if (!outmp) return -ENOMEM; /* * Form the CT IOCB. The total number of BDEs in this IOCB * is the single command plus response count from * lpfc_alloc_ct_rsp. */ cnt += 1; status = lpfc_gen_req(vport, bmp, inmp, outmp, cmpl, ndlp, 0, cnt, 0, retry); if (status) { lpfc_free_ct_rsp(phba, outmp); return -ENOMEM; } return 0; } struct lpfc_vport * lpfc_find_vport_by_did(struct lpfc_hba *phba, uint32_t did) { struct lpfc_vport *vport_curr; unsigned long flags; spin_lock_irqsave(&phba->hbalock, flags); list_for_each_entry(vport_curr, &phba->port_list, listentry) { if ((vport_curr->fc_myDID) && (vport_curr->fc_myDID == did)) { spin_unlock_irqrestore(&phba->hbalock, flags); return vport_curr; } } spin_unlock_irqrestore(&phba->hbalock, flags); return NULL; } static void lpfc_prep_node_fc4type(struct lpfc_vport *vport, uint32_t Did, uint8_t fc4_type) { struct lpfc_nodelist *ndlp; if ((vport->port_type != LPFC_NPIV_PORT) || !(vport->ct_flags & FC_CT_RFF_ID) || !vport->cfg_restrict_login) { ndlp = lpfc_setup_disc_node(vport, Did); if (ndlp && NLP_CHK_NODE_ACT(ndlp)) { lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_CT, "Parse GID_FTrsp: did:x%x flg:x%x x%x", Did, ndlp->nlp_flag, vport->fc_flag); /* Don't assume the rport is always the previous * FC4 type. */ ndlp->nlp_fc4_type &= ~(NLP_FC4_FCP | NLP_FC4_NVME); /* By default, the driver expects to support FCP FC4 */ if (fc4_type == FC_TYPE_FCP) ndlp->nlp_fc4_type |= NLP_FC4_FCP; if (fc4_type == FC_TYPE_NVME) ndlp->nlp_fc4_type |= NLP_FC4_NVME; lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0238 Process x%06x NameServer Rsp " "Data: x%x x%x x%x x%x\n", Did, ndlp->nlp_flag, ndlp->nlp_fc4_type, vport->fc_flag, vport->fc_rscn_id_cnt); } else { lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_CT, "Skip1 GID_FTrsp: did:x%x flg:x%x cnt:%d", Did, vport->fc_flag, vport->fc_rscn_id_cnt); lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0239 Skip x%06x NameServer Rsp " "Data: x%x x%x\n", Did, vport->fc_flag, vport->fc_rscn_id_cnt); } } else { if (!(vport->fc_flag & FC_RSCN_MODE) || lpfc_rscn_payload_check(vport, Did)) { lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_CT, "Query GID_FTrsp: did:x%x flg:x%x cnt:%d", Did, vport->fc_flag, vport->fc_rscn_id_cnt); /* * This NPortID was previously a FCP/NVMe target, * Don't even bother to send GFF_ID. */ ndlp = lpfc_findnode_did(vport, Did); if (ndlp && NLP_CHK_NODE_ACT(ndlp) && (ndlp->nlp_type & (NLP_FCP_TARGET | NLP_NVME_TARGET))) { if (fc4_type == FC_TYPE_FCP) ndlp->nlp_fc4_type |= NLP_FC4_FCP; if (fc4_type == FC_TYPE_NVME) ndlp->nlp_fc4_type |= NLP_FC4_NVME; lpfc_setup_disc_node(vport, Did); } else if (lpfc_ns_cmd(vport, SLI_CTNS_GFF_ID, 0, Did) == 0) vport->num_disc_nodes++; else lpfc_setup_disc_node(vport, Did); } else { lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_CT, "Skip2 GID_FTrsp: did:x%x flg:x%x cnt:%d", Did, vport->fc_flag, vport->fc_rscn_id_cnt); lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0245 Skip x%06x NameServer Rsp " "Data: x%x x%x\n", Did, vport->fc_flag, vport->fc_rscn_id_cnt); } } } static void lpfc_ns_rsp_audit_did(struct lpfc_vport *vport, uint32_t Did, uint8_t fc4_type) { struct lpfc_hba *phba = vport->phba; struct lpfc_nodelist *ndlp = NULL; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); /* * To conserve rpi's, filter out addresses for other * vports on the same physical HBAs. */ if (Did != vport->fc_myDID && (!lpfc_find_vport_by_did(phba, Did) || vport->cfg_peer_port_login)) { if (!phba->nvmet_support) { /* FCPI/NVMEI path. Process Did */ lpfc_prep_node_fc4type(vport, Did, fc4_type); return; } /* NVMET path. NVMET only cares about NVMEI nodes. */ list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { if (ndlp->nlp_type != NLP_NVME_INITIATOR || ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) continue; spin_lock_irq(shost->host_lock); if (ndlp->nlp_DID == Did) ndlp->nlp_flag &= ~NLP_NVMET_RECOV; else ndlp->nlp_flag |= NLP_NVMET_RECOV; spin_unlock_irq(shost->host_lock); } } } static int lpfc_ns_rsp(struct lpfc_vport *vport, struct lpfc_dmabuf *mp, uint8_t fc4_type, uint32_t Size) { struct lpfc_sli_ct_request *Response = (struct lpfc_sli_ct_request *) mp->virt; struct lpfc_dmabuf *mlast, *next_mp; uint32_t *ctptr = (uint32_t *) & Response->un.gid.PortType; uint32_t Did, CTentry; int Cnt; struct list_head head; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_nodelist *ndlp = NULL; lpfc_set_disctmo(vport); vport->num_disc_nodes = 0; vport->fc_ns_retry = 0; list_add_tail(&head, &mp->list); list_for_each_entry_safe(mp, next_mp, &head, list) { mlast = mp; Cnt = Size > FCELSSIZE ? FCELSSIZE : Size; Size -= Cnt; if (!ctptr) { ctptr = (uint32_t *) mlast->virt; } else Cnt -= 16; /* subtract length of CT header */ /* Loop through entire NameServer list of DIDs */ while (Cnt >= sizeof(uint32_t)) { /* Get next DID from NameServer List */ CTentry = *ctptr++; Did = ((be32_to_cpu(CTentry)) & Mask_DID); lpfc_ns_rsp_audit_did(vport, Did, fc4_type); if (CTentry & (cpu_to_be32(SLI_CT_LAST_ENTRY))) goto nsout1; Cnt -= sizeof(uint32_t); } ctptr = NULL; } /* All GID_FT entries processed. If the driver is running in * in target mode, put impacted nodes into recovery and drop * the RPI to flush outstanding IO. */ if (vport->phba->nvmet_support) { list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { if (!(ndlp->nlp_flag & NLP_NVMET_RECOV)) continue; lpfc_disc_state_machine(vport, ndlp, NULL, NLP_EVT_DEVICE_RECOVERY); spin_lock_irq(shost->host_lock); ndlp->nlp_flag &= ~NLP_NVMET_RECOV; spin_unlock_irq(shost->host_lock); } } nsout1: list_del(&head); return 0; } static void lpfc_cmpl_ct_cmd_gid_ft(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_iocbq *rspiocb) { struct lpfc_vport *vport = cmdiocb->vport; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); IOCB_t *irsp; struct lpfc_dmabuf *outp; struct lpfc_dmabuf *inp; struct lpfc_sli_ct_request *CTrsp; struct lpfc_sli_ct_request *CTreq; struct lpfc_nodelist *ndlp; int rc, type; /* First save ndlp, before we overwrite it */ ndlp = cmdiocb->context_un.ndlp; /* we pass cmdiocb to state machine which needs rspiocb as well */ cmdiocb->context_un.rsp_iocb = rspiocb; inp = (struct lpfc_dmabuf *) cmdiocb->context1; outp = (struct lpfc_dmabuf *) cmdiocb->context2; irsp = &rspiocb->iocb; lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_CT, "GID_FT cmpl: status:x%x/x%x rtry:%d", irsp->ulpStatus, irsp->un.ulpWord[4], vport->fc_ns_retry); /* Don't bother processing response if vport is being torn down. */ if (vport->load_flag & FC_UNLOADING) { if (vport->fc_flag & FC_RSCN_MODE) lpfc_els_flush_rscn(vport); goto out; } if (lpfc_els_chk_latt(vport)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0216 Link event during NS query\n"); if (vport->fc_flag & FC_RSCN_MODE) lpfc_els_flush_rscn(vport); lpfc_vport_set_state(vport, FC_VPORT_FAILED); goto out; } if (lpfc_error_lost_link(irsp)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0226 NS query failed due to link event\n"); if (vport->fc_flag & FC_RSCN_MODE) lpfc_els_flush_rscn(vport); goto out; } spin_lock_irq(shost->host_lock); if (vport->fc_flag & FC_RSCN_DEFERRED) { vport->fc_flag &= ~FC_RSCN_DEFERRED; spin_unlock_irq(shost->host_lock); /* This is a GID_FT completing so the gidft_inp counter was * incremented before the GID_FT was issued to the wire. */ vport->gidft_inp--; /* * Skip processing the NS response * Re-issue the NS cmd */ lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, "0151 Process Deferred RSCN Data: x%x x%x\n", vport->fc_flag, vport->fc_rscn_id_cnt); lpfc_els_handle_rscn(vport); goto out; } spin_unlock_irq(shost->host_lock); if (irsp->ulpStatus) { /* Check for retry */ if (vport->fc_ns_retry < LPFC_MAX_NS_RETRY) { if (irsp->ulpStatus != IOSTAT_LOCAL_REJECT || (irsp->un.ulpWord[4] & IOERR_PARAM_MASK) != IOERR_NO_RESOURCES) vport->fc_ns_retry++; type = lpfc_get_gidft_type(vport, cmdiocb); if (type == 0) goto out; /* CT command is being retried */ vport->gidft_inp--; rc = lpfc_ns_cmd(vport, SLI_CTNS_GID_FT, vport->fc_ns_retry, type); if (rc == 0) goto out; } if (vport->fc_flag & FC_RSCN_MODE) lpfc_els_flush_rscn(vport); lpfc_vport_set_state(vport, FC_VPORT_FAILED); lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, "0257 GID_FT Query error: 0x%x 0x%x\n", irsp->ulpStatus, vport->fc_ns_retry); } else { /* Good status, continue checking */ CTreq = (struct lpfc_sli_ct_request *) inp->virt; CTrsp = (struct lpfc_sli_ct_request *) outp->virt; if (CTrsp->CommandResponse.bits.CmdRsp == cpu_to_be16(SLI_CT_RESPONSE_FS_ACC)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0208 NameServer Rsp Data: x%x x%x\n", vport->fc_flag, CTreq->un.gid.Fc4Type); lpfc_ns_rsp(vport, outp, CTreq->un.gid.Fc4Type, (uint32_t) (irsp->un.genreq64.bdl.bdeSize)); } else if (CTrsp->CommandResponse.bits.CmdRsp == be16_to_cpu(SLI_CT_RESPONSE_FS_RJT)) { /* NameServer Rsp Error */ if ((CTrsp->ReasonCode == SLI_CT_UNABLE_TO_PERFORM_REQ) && (CTrsp->Explanation == SLI_CT_NO_FC4_TYPES)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0269 No NameServer Entries " "Data: x%x x%x x%x x%x\n", CTrsp->CommandResponse.bits.CmdRsp, (uint32_t) CTrsp->ReasonCode, (uint32_t) CTrsp->Explanation, vport->fc_flag); lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_CT, "GID_FT no entry cmd:x%x rsn:x%x exp:x%x", (uint32_t)CTrsp->CommandResponse.bits.CmdRsp, (uint32_t) CTrsp->ReasonCode, (uint32_t) CTrsp->Explanation); } else { lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0240 NameServer Rsp Error " "Data: x%x x%x x%x x%x\n", CTrsp->CommandResponse.bits.CmdRsp, (uint32_t) CTrsp->ReasonCode, (uint32_t) CTrsp->Explanation, vport->fc_flag); lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_CT, "GID_FT rsp err1 cmd:x%x rsn:x%x exp:x%x", (uint32_t)CTrsp->CommandResponse.bits.CmdRsp, (uint32_t) CTrsp->ReasonCode, (uint32_t) CTrsp->Explanation); } } else { /* NameServer Rsp Error */ lpfc_printf_vlog(vport, KERN_ERR, LOG_DISCOVERY, "0241 NameServer Rsp Error " "Data: x%x x%x x%x x%x\n", CTrsp->CommandResponse.bits.CmdRsp, (uint32_t) CTrsp->ReasonCode, (uint32_t) CTrsp->Explanation, vport->fc_flag); lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_CT, "GID_FT rsp err2 cmd:x%x rsn:x%x exp:x%x", (uint32_t)CTrsp->CommandResponse.bits.CmdRsp, (uint32_t) CTrsp->ReasonCode, (uint32_t) CTrsp->Explanation); } vport->gidft_inp--; } /* Link up / RSCN discovery */ if ((vport->num_disc_nodes == 0) && (vport->gidft_inp == 0)) { /* * The driver has cycled through all Nports in the RSCN payload. * Complete the handling by cleaning up and marking the * current driver state. */ if (vport->port_state >= LPFC_DISC_AUTH) { if (vport->fc_flag & FC_RSCN_MODE) { lpfc_els_flush_rscn(vport); spin_lock_irq(shost->host_lock); vport->fc_flag |= FC_RSCN_MODE; /* RSCN still */ spin_unlock_irq(shost->host_lock); } else lpfc_els_flush_rscn(vport); } lpfc_disc_start(vport); } out: cmdiocb->context_un.ndlp = ndlp; /* Now restore ndlp for free */ lpfc_ct_free_iocb(phba, cmdiocb); return; } static void lpfc_cmpl_ct_cmd_gff_id(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_iocbq *rspiocb) { struct lpfc_vport *vport = cmdiocb->vport; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); IOCB_t *irsp = &rspiocb->iocb; struct lpfc_dmabuf *inp = (struct lpfc_dmabuf *) cmdiocb->context1; struct lpfc_dmabuf *outp = (struct lpfc_dmabuf *) cmdiocb->context2; struct lpfc_sli_ct_request *CTrsp; int did, rc, retry; uint8_t fbits; struct lpfc_nodelist *ndlp; did = ((struct lpfc_sli_ct_request *) inp->virt)->un.gff.PortId; did = be32_to_cpu(did); lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_CT, "GFF_ID cmpl: status:x%x/x%x did:x%x", irsp->ulpStatus, irsp->un.ulpWord[4], did); if (irsp->ulpStatus == IOSTAT_SUCCESS) { /* Good status, continue checking */ CTrsp = (struct lpfc_sli_ct_request *) outp->virt; fbits = CTrsp->un.gff_acc.fbits[FCP_TYPE_FEATURE_OFFSET]; if (CTrsp->CommandResponse.bits.CmdRsp == be16_to_cpu(SLI_CT_RESPONSE_FS_ACC)) { if ((fbits & FC4_FEATURE_INIT) && !(fbits & FC4_FEATURE_TARGET)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0270 Skip x%x GFF " "NameServer Rsp Data: (init) " "x%x x%x\n", did, fbits, vport->fc_rscn_id_cnt); goto out; } } } else { /* Check for retry */ if (cmdiocb->retry < LPFC_MAX_NS_RETRY) { retry = 1; if (irsp->ulpStatus == IOSTAT_LOCAL_REJECT) { switch ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK)) { case IOERR_NO_RESOURCES: /* We don't increment the retry * count for this case. */ break; case IOERR_LINK_DOWN: case IOERR_SLI_ABORTED: case IOERR_SLI_DOWN: retry = 0; break; default: cmdiocb->retry++; } } else cmdiocb->retry++; if (retry) { /* CT command is being retried */ rc = lpfc_ns_cmd(vport, SLI_CTNS_GFF_ID, cmdiocb->retry, did); if (rc == 0) { /* success */ lpfc_ct_free_iocb(phba, cmdiocb); return; } } } lpfc_printf_vlog(vport, KERN_ERR, LOG_DISCOVERY, "0267 NameServer GFF Rsp " "x%x Error (%d %d) Data: x%x x%x\n", did, irsp->ulpStatus, irsp->un.ulpWord[4], vport->fc_flag, vport->fc_rscn_id_cnt); } /* This is a target port, unregistered port, or the GFF_ID failed */ ndlp = lpfc_setup_disc_node(vport, did); if (ndlp && NLP_CHK_NODE_ACT(ndlp)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0242 Process x%x GFF " "NameServer Rsp Data: x%x x%x x%x\n", did, ndlp->nlp_flag, vport->fc_flag, vport->fc_rscn_id_cnt); } else { lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0243 Skip x%x GFF " "NameServer Rsp Data: x%x x%x\n", did, vport->fc_flag, vport->fc_rscn_id_cnt); } out: /* Link up / RSCN discovery */ if (vport->num_disc_nodes) vport->num_disc_nodes--; if (vport->num_disc_nodes == 0) { /* * The driver has cycled through all Nports in the RSCN payload. * Complete the handling by cleaning up and marking the * current driver state. */ if (vport->port_state >= LPFC_DISC_AUTH) { if (vport->fc_flag & FC_RSCN_MODE) { lpfc_els_flush_rscn(vport); spin_lock_irq(shost->host_lock); vport->fc_flag |= FC_RSCN_MODE; /* RSCN still */ spin_unlock_irq(shost->host_lock); } else lpfc_els_flush_rscn(vport); } lpfc_disc_start(vport); } lpfc_ct_free_iocb(phba, cmdiocb); return; } static void lpfc_cmpl_ct_cmd_gft_id(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_iocbq *rspiocb) { struct lpfc_vport *vport = cmdiocb->vport; IOCB_t *irsp = &rspiocb->iocb; struct lpfc_dmabuf *inp = (struct lpfc_dmabuf *)cmdiocb->context1; struct lpfc_dmabuf *outp = (struct lpfc_dmabuf *)cmdiocb->context2; struct lpfc_sli_ct_request *CTrsp; int did; struct lpfc_nodelist *ndlp; uint32_t fc4_data_0, fc4_data_1; did = ((struct lpfc_sli_ct_request *)inp->virt)->un.gft.PortId; did = be32_to_cpu(did); lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_CT, "GFT_ID cmpl: status:x%x/x%x did:x%x", irsp->ulpStatus, irsp->un.ulpWord[4], did); if (irsp->ulpStatus == IOSTAT_SUCCESS) { /* Good status, continue checking */ CTrsp = (struct lpfc_sli_ct_request *)outp->virt; fc4_data_0 = be32_to_cpu(CTrsp->un.gft_acc.fc4_types[0]); fc4_data_1 = be32_to_cpu(CTrsp->un.gft_acc.fc4_types[1]); lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "3062 DID x%06x GFT Wd0 x%08x Wd1 x%08x\n", did, fc4_data_0, fc4_data_1); ndlp = lpfc_findnode_did(vport, did); if (ndlp) { /* The bitmask value for FCP and NVME FCP types is * the same because they are 32 bits distant from * each other in word0 and word0. */ if (fc4_data_0 & LPFC_FC4_TYPE_BITMASK) ndlp->nlp_fc4_type |= NLP_FC4_FCP; if (fc4_data_1 & LPFC_FC4_TYPE_BITMASK) ndlp->nlp_fc4_type |= NLP_FC4_NVME; lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "3064 Setting ndlp %p, DID x%06x with " "FC4 x%08x, Data: x%08x x%08x\n", ndlp, did, ndlp->nlp_fc4_type, FC_TYPE_FCP, FC_TYPE_NVME); ndlp->nlp_prev_state = NLP_STE_REG_LOGIN_ISSUE; lpfc_nlp_set_state(vport, ndlp, NLP_STE_PRLI_ISSUE); lpfc_issue_els_prli(vport, ndlp, 0); } } else lpfc_printf_vlog(vport, KERN_ERR, LOG_DISCOVERY, "3065 GFT_ID failed x%08x\n", irsp->ulpStatus); lpfc_ct_free_iocb(phba, cmdiocb); } static void lpfc_cmpl_ct(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_iocbq *rspiocb) { struct lpfc_vport *vport = cmdiocb->vport; struct lpfc_dmabuf *inp; struct lpfc_dmabuf *outp; IOCB_t *irsp; struct lpfc_sli_ct_request *CTrsp; struct lpfc_nodelist *ndlp; int cmdcode, rc; uint8_t retry; uint32_t latt; /* First save ndlp, before we overwrite it */ ndlp = cmdiocb->context_un.ndlp; /* we pass cmdiocb to state machine which needs rspiocb as well */ cmdiocb->context_un.rsp_iocb = rspiocb; inp = (struct lpfc_dmabuf *) cmdiocb->context1; outp = (struct lpfc_dmabuf *) cmdiocb->context2; irsp = &rspiocb->iocb; cmdcode = be16_to_cpu(((struct lpfc_sli_ct_request *) inp->virt)-> CommandResponse.bits.CmdRsp); CTrsp = (struct lpfc_sli_ct_request *) outp->virt; latt = lpfc_els_chk_latt(vport); /* RFT request completes status CmdRsp */ lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0209 CT Request completes, latt %d, " "ulpStatus x%x CmdRsp x%x, Context x%x, Tag x%x\n", latt, irsp->ulpStatus, CTrsp->CommandResponse.bits.CmdRsp, cmdiocb->iocb.ulpContext, cmdiocb->iocb.ulpIoTag); lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_CT, "CT cmd cmpl: status:x%x/x%x cmd:x%x", irsp->ulpStatus, irsp->un.ulpWord[4], cmdcode); if (irsp->ulpStatus) { lpfc_printf_vlog(vport, KERN_ERR, LOG_DISCOVERY, "0268 NS cmd x%x Error (x%x x%x)\n", cmdcode, irsp->ulpStatus, irsp->un.ulpWord[4]); if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && (((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == IOERR_SLI_DOWN) || ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == IOERR_SLI_ABORTED))) goto out; retry = cmdiocb->retry; if (retry >= LPFC_MAX_NS_RETRY) goto out; retry++; lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0250 Retrying NS cmd %x\n", cmdcode); rc = lpfc_ns_cmd(vport, cmdcode, retry, 0); if (rc == 0) goto out; } out: cmdiocb->context_un.ndlp = ndlp; /* Now restore ndlp for free */ lpfc_ct_free_iocb(phba, cmdiocb); return; } static void lpfc_cmpl_ct_cmd_rft_id(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_iocbq *rspiocb) { IOCB_t *irsp = &rspiocb->iocb; struct lpfc_vport *vport = cmdiocb->vport; if (irsp->ulpStatus == IOSTAT_SUCCESS) { struct lpfc_dmabuf *outp; struct lpfc_sli_ct_request *CTrsp; outp = (struct lpfc_dmabuf *) cmdiocb->context2; CTrsp = (struct lpfc_sli_ct_request *) outp->virt; if (CTrsp->CommandResponse.bits.CmdRsp == be16_to_cpu(SLI_CT_RESPONSE_FS_ACC)) vport->ct_flags |= FC_CT_RFT_ID; } lpfc_cmpl_ct(phba, cmdiocb, rspiocb); return; } static void lpfc_cmpl_ct_cmd_rnn_id(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_iocbq *rspiocb) { IOCB_t *irsp = &rspiocb->iocb; struct lpfc_vport *vport = cmdiocb->vport; if (irsp->ulpStatus == IOSTAT_SUCCESS) { struct lpfc_dmabuf *outp; struct lpfc_sli_ct_request *CTrsp; outp = (struct lpfc_dmabuf *) cmdiocb->context2; CTrsp = (struct lpfc_sli_ct_request *) outp->virt; if (CTrsp->CommandResponse.bits.CmdRsp == be16_to_cpu(SLI_CT_RESPONSE_FS_ACC)) vport->ct_flags |= FC_CT_RNN_ID; } lpfc_cmpl_ct(phba, cmdiocb, rspiocb); return; } static void lpfc_cmpl_ct_cmd_rspn_id(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_iocbq *rspiocb) { IOCB_t *irsp = &rspiocb->iocb; struct lpfc_vport *vport = cmdiocb->vport; if (irsp->ulpStatus == IOSTAT_SUCCESS) { struct lpfc_dmabuf *outp; struct lpfc_sli_ct_request *CTrsp; outp = (struct lpfc_dmabuf *) cmdiocb->context2; CTrsp = (struct lpfc_sli_ct_request *) outp->virt; if (CTrsp->CommandResponse.bits.CmdRsp == be16_to_cpu(SLI_CT_RESPONSE_FS_ACC)) vport->ct_flags |= FC_CT_RSPN_ID; } lpfc_cmpl_ct(phba, cmdiocb, rspiocb); return; } static void lpfc_cmpl_ct_cmd_rsnn_nn(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_iocbq *rspiocb) { IOCB_t *irsp = &rspiocb->iocb; struct lpfc_vport *vport = cmdiocb->vport; if (irsp->ulpStatus == IOSTAT_SUCCESS) { struct lpfc_dmabuf *outp; struct lpfc_sli_ct_request *CTrsp; outp = (struct lpfc_dmabuf *) cmdiocb->context2; CTrsp = (struct lpfc_sli_ct_request *) outp->virt; if (CTrsp->CommandResponse.bits.CmdRsp == be16_to_cpu(SLI_CT_RESPONSE_FS_ACC)) vport->ct_flags |= FC_CT_RSNN_NN; } lpfc_cmpl_ct(phba, cmdiocb, rspiocb); return; } static void lpfc_cmpl_ct_cmd_da_id(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_iocbq *rspiocb) { struct lpfc_vport *vport = cmdiocb->vport; /* even if it fails we will act as though it succeeded. */ vport->ct_flags = 0; lpfc_cmpl_ct(phba, cmdiocb, rspiocb); return; } static void lpfc_cmpl_ct_cmd_rff_id(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_iocbq *rspiocb) { IOCB_t *irsp = &rspiocb->iocb; struct lpfc_vport *vport = cmdiocb->vport; if (irsp->ulpStatus == IOSTAT_SUCCESS) { struct lpfc_dmabuf *outp; struct lpfc_sli_ct_request *CTrsp; outp = (struct lpfc_dmabuf *) cmdiocb->context2; CTrsp = (struct lpfc_sli_ct_request *) outp->virt; if (CTrsp->CommandResponse.bits.CmdRsp == be16_to_cpu(SLI_CT_RESPONSE_FS_ACC)) vport->ct_flags |= FC_CT_RFF_ID; } lpfc_cmpl_ct(phba, cmdiocb, rspiocb); return; } /* * Although the symbolic port name is thought to be an integer * as of January 18, 2016, leave it as a string until more of * the record state becomes defined. */ int lpfc_vport_symbolic_port_name(struct lpfc_vport *vport, char *symbol, size_t size) { int n; /* * Use the lpfc board number as the Symbolic Port * Name object. NPIV is not in play so this integer * value is sufficient and unique per FC-ID. */ n = scnprintf(symbol, size, "%d", vport->phba->brd_no); return n; } int lpfc_vport_symbolic_node_name(struct lpfc_vport *vport, char *symbol, size_t size) { char fwrev[FW_REV_STR_SIZE]; int n; lpfc_decode_firmware_rev(vport->phba, fwrev, 0); n = scnprintf(symbol, size, "Emulex %s", vport->phba->ModelName); if (size < n) return n; n += scnprintf(symbol + n, size - n, " FV%s", fwrev); if (size < n) return n; n += scnprintf(symbol + n, size - n, " DV%s.", lpfc_release_version); if (size < n) return n; n += scnprintf(symbol + n, size - n, " HN:%s.", init_utsname()->nodename); if (size < n) return n; /* Note :- OS name is "Linux" */ n += scnprintf(symbol + n, size - n, " OS:%s\n", init_utsname()->sysname); return n; } static uint32_t lpfc_find_map_node(struct lpfc_vport *vport) { struct lpfc_nodelist *ndlp, *next_ndlp; struct Scsi_Host *shost; uint32_t cnt = 0; shost = lpfc_shost_from_vport(vport); spin_lock_irq(shost->host_lock); list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { if (ndlp->nlp_type & NLP_FABRIC) continue; if ((ndlp->nlp_state == NLP_STE_MAPPED_NODE) || (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE)) cnt++; } spin_unlock_irq(shost->host_lock); return cnt; } /* * This routine will return the FC4 Type associated with the CT * GID_FT command. */ int lpfc_get_gidft_type(struct lpfc_vport *vport, struct lpfc_iocbq *cmdiocb) { struct lpfc_sli_ct_request *CtReq; struct lpfc_dmabuf *mp; uint32_t type; mp = cmdiocb->context1; if (mp == NULL) return 0; CtReq = (struct lpfc_sli_ct_request *)mp->virt; type = (uint32_t)CtReq->un.gid.Fc4Type; if ((type != SLI_CTPT_FCP) && (type != SLI_CTPT_NVME)) return 0; return type; } /* * lpfc_ns_cmd * Description: * Issue Cmd to NameServer * SLI_CTNS_GID_FT * LI_CTNS_RFT_ID */ int lpfc_ns_cmd(struct lpfc_vport *vport, int cmdcode, uint8_t retry, uint32_t context) { struct lpfc_nodelist * ndlp; struct lpfc_hba *phba = vport->phba; struct lpfc_dmabuf *mp, *bmp; struct lpfc_sli_ct_request *CtReq; struct ulp_bde64 *bpl; void (*cmpl) (struct lpfc_hba *, struct lpfc_iocbq *, struct lpfc_iocbq *) = NULL; uint32_t rsp_size = 1024; size_t size; int rc = 0; ndlp = lpfc_findnode_did(vport, NameServer_DID); if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) { rc=1; goto ns_cmd_exit; } /* fill in BDEs for command */ /* Allocate buffer for command payload */ mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); if (!mp) { rc=2; goto ns_cmd_exit; } INIT_LIST_HEAD(&mp->list); mp->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &(mp->phys)); if (!mp->virt) { rc=3; goto ns_cmd_free_mp; } /* Allocate buffer for Buffer ptr list */ bmp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); if (!bmp) { rc=4; goto ns_cmd_free_mpvirt; } INIT_LIST_HEAD(&bmp->list); bmp->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &(bmp->phys)); if (!bmp->virt) { rc=5; goto ns_cmd_free_bmp; } /* NameServer Req */ lpfc_printf_vlog(vport, KERN_INFO ,LOG_DISCOVERY, "0236 NameServer Req Data: x%x x%x x%x x%x\n", cmdcode, vport->fc_flag, vport->fc_rscn_id_cnt, context); bpl = (struct ulp_bde64 *) bmp->virt; memset(bpl, 0, sizeof(struct ulp_bde64)); bpl->addrHigh = le32_to_cpu(putPaddrHigh(mp->phys) ); bpl->addrLow = le32_to_cpu(putPaddrLow(mp->phys) ); bpl->tus.f.bdeFlags = 0; if (cmdcode == SLI_CTNS_GID_FT) bpl->tus.f.bdeSize = GID_REQUEST_SZ; else if (cmdcode == SLI_CTNS_GFF_ID) bpl->tus.f.bdeSize = GFF_REQUEST_SZ; else if (cmdcode == SLI_CTNS_GFT_ID) bpl->tus.f.bdeSize = GFT_REQUEST_SZ; else if (cmdcode == SLI_CTNS_RFT_ID) bpl->tus.f.bdeSize = RFT_REQUEST_SZ; else if (cmdcode == SLI_CTNS_RNN_ID) bpl->tus.f.bdeSize = RNN_REQUEST_SZ; else if (cmdcode == SLI_CTNS_RSPN_ID) bpl->tus.f.bdeSize = RSPN_REQUEST_SZ; else if (cmdcode == SLI_CTNS_RSNN_NN) bpl->tus.f.bdeSize = RSNN_REQUEST_SZ; else if (cmdcode == SLI_CTNS_DA_ID) bpl->tus.f.bdeSize = DA_ID_REQUEST_SZ; else if (cmdcode == SLI_CTNS_RFF_ID) bpl->tus.f.bdeSize = RFF_REQUEST_SZ; else bpl->tus.f.bdeSize = 0; bpl->tus.w = le32_to_cpu(bpl->tus.w); CtReq = (struct lpfc_sli_ct_request *) mp->virt; memset(CtReq, 0, sizeof(struct lpfc_sli_ct_request)); CtReq->RevisionId.bits.Revision = SLI_CT_REVISION; CtReq->RevisionId.bits.InId = 0; CtReq->FsType = SLI_CT_DIRECTORY_SERVICE; CtReq->FsSubType = SLI_CT_DIRECTORY_NAME_SERVER; CtReq->CommandResponse.bits.Size = 0; switch (cmdcode) { case SLI_CTNS_GID_FT: CtReq->CommandResponse.bits.CmdRsp = cpu_to_be16(SLI_CTNS_GID_FT); CtReq->un.gid.Fc4Type = context; if (vport->port_state < LPFC_NS_QRY) vport->port_state = LPFC_NS_QRY; lpfc_set_disctmo(vport); cmpl = lpfc_cmpl_ct_cmd_gid_ft; rsp_size = FC_MAX_NS_RSP; break; case SLI_CTNS_GFF_ID: CtReq->CommandResponse.bits.CmdRsp = cpu_to_be16(SLI_CTNS_GFF_ID); CtReq->un.gff.PortId = cpu_to_be32(context); cmpl = lpfc_cmpl_ct_cmd_gff_id; break; case SLI_CTNS_GFT_ID: CtReq->CommandResponse.bits.CmdRsp = cpu_to_be16(SLI_CTNS_GFT_ID); CtReq->un.gft.PortId = cpu_to_be32(context); cmpl = lpfc_cmpl_ct_cmd_gft_id; break; case SLI_CTNS_RFT_ID: vport->ct_flags &= ~FC_CT_RFT_ID; CtReq->CommandResponse.bits.CmdRsp = cpu_to_be16(SLI_CTNS_RFT_ID); CtReq->un.rft.PortId = cpu_to_be32(vport->fc_myDID); /* Register FC4 FCP type if enabled. */ if ((phba->cfg_enable_fc4_type == LPFC_ENABLE_BOTH) || (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP)) CtReq->un.rft.fcpReg = 1; /* Register NVME type if enabled. Defined LE and swapped. * rsvd[0] is used as word1 because of the hard-coded * word0 usage in the ct_request data structure. */ if ((phba->cfg_enable_fc4_type == LPFC_ENABLE_BOTH) || (phba->cfg_enable_fc4_type == LPFC_ENABLE_NVME)) CtReq->un.rft.rsvd[0] = cpu_to_be32(0x00000100); cmpl = lpfc_cmpl_ct_cmd_rft_id; break; case SLI_CTNS_RNN_ID: vport->ct_flags &= ~FC_CT_RNN_ID; CtReq->CommandResponse.bits.CmdRsp = cpu_to_be16(SLI_CTNS_RNN_ID); CtReq->un.rnn.PortId = cpu_to_be32(vport->fc_myDID); memcpy(CtReq->un.rnn.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name)); cmpl = lpfc_cmpl_ct_cmd_rnn_id; break; case SLI_CTNS_RSPN_ID: vport->ct_flags &= ~FC_CT_RSPN_ID; CtReq->CommandResponse.bits.CmdRsp = cpu_to_be16(SLI_CTNS_RSPN_ID); CtReq->un.rspn.PortId = cpu_to_be32(vport->fc_myDID); size = sizeof(CtReq->un.rspn.symbname); CtReq->un.rspn.len = lpfc_vport_symbolic_port_name(vport, CtReq->un.rspn.symbname, size); cmpl = lpfc_cmpl_ct_cmd_rspn_id; break; case SLI_CTNS_RSNN_NN: vport->ct_flags &= ~FC_CT_RSNN_NN; CtReq->CommandResponse.bits.CmdRsp = cpu_to_be16(SLI_CTNS_RSNN_NN); memcpy(CtReq->un.rsnn.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name)); size = sizeof(CtReq->un.rsnn.symbname); CtReq->un.rsnn.len = lpfc_vport_symbolic_node_name(vport, CtReq->un.rsnn.symbname, size); cmpl = lpfc_cmpl_ct_cmd_rsnn_nn; break; case SLI_CTNS_DA_ID: /* Implement DA_ID Nameserver request */ CtReq->CommandResponse.bits.CmdRsp = cpu_to_be16(SLI_CTNS_DA_ID); CtReq->un.da_id.port_id = cpu_to_be32(vport->fc_myDID); cmpl = lpfc_cmpl_ct_cmd_da_id; break; case SLI_CTNS_RFF_ID: vport->ct_flags &= ~FC_CT_RFF_ID; CtReq->CommandResponse.bits.CmdRsp = cpu_to_be16(SLI_CTNS_RFF_ID); CtReq->un.rff.PortId = cpu_to_be32(vport->fc_myDID); CtReq->un.rff.fbits = FC4_FEATURE_INIT; /* The driver always supports FC_TYPE_FCP. However, the * caller can specify NVME (type x28) as well. But only * these that FC4 type is supported. */ if (((phba->cfg_enable_fc4_type == LPFC_ENABLE_BOTH) || (phba->cfg_enable_fc4_type == LPFC_ENABLE_NVME)) && (context == FC_TYPE_NVME)) { if ((vport == phba->pport) && phba->nvmet_support) { CtReq->un.rff.fbits = (FC4_FEATURE_TARGET | FC4_FEATURE_NVME_DISC); lpfc_nvmet_update_targetport(phba); } else { lpfc_nvme_update_localport(vport); } CtReq->un.rff.type_code = context; } else if (((phba->cfg_enable_fc4_type == LPFC_ENABLE_BOTH) || (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP)) && (context == FC_TYPE_FCP)) CtReq->un.rff.type_code = context; else goto ns_cmd_free_bmpvirt; cmpl = lpfc_cmpl_ct_cmd_rff_id; break; } /* The lpfc_ct_cmd/lpfc_get_req shall increment ndlp reference count * to hold ndlp reference for the corresponding callback function. */ if (!lpfc_ct_cmd(vport, mp, bmp, ndlp, cmpl, rsp_size, retry)) { /* On success, The cmpl function will free the buffers */ lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_CT, "Issue CT cmd: cmd:x%x did:x%x", cmdcode, ndlp->nlp_DID, 0); return 0; } rc=6; /* Decrement ndlp reference count to release ndlp reference held * for the failed command's callback function. */ lpfc_nlp_put(ndlp); ns_cmd_free_bmpvirt: lpfc_mbuf_free(phba, bmp->virt, bmp->phys); ns_cmd_free_bmp: kfree(bmp); ns_cmd_free_mpvirt: lpfc_mbuf_free(phba, mp->virt, mp->phys); ns_cmd_free_mp: kfree(mp); ns_cmd_exit: lpfc_printf_vlog(vport, KERN_ERR, LOG_DISCOVERY, "0266 Issue NameServer Req x%x err %d Data: x%x x%x\n", cmdcode, rc, vport->fc_flag, vport->fc_rscn_id_cnt); return 1; } /** * lpfc_cmpl_ct_disc_fdmi - Handle a discovery FDMI completion * @phba: Pointer to HBA context object. * @cmdiocb: Pointer to the command IOCBQ. * @rspiocb: Pointer to the response IOCBQ. * * This function to handle the completion of a driver initiated FDMI * CT command issued during discovery. */ static void lpfc_cmpl_ct_disc_fdmi(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_iocbq *rspiocb) { struct lpfc_vport *vport = cmdiocb->vport; struct lpfc_dmabuf *inp = cmdiocb->context1; struct lpfc_dmabuf *outp = cmdiocb->context2; struct lpfc_sli_ct_request *CTcmd = inp->virt; struct lpfc_sli_ct_request *CTrsp = outp->virt; uint16_t fdmi_cmd = CTcmd->CommandResponse.bits.CmdRsp; uint16_t fdmi_rsp = CTrsp->CommandResponse.bits.CmdRsp; IOCB_t *irsp = &rspiocb->iocb; struct lpfc_nodelist *ndlp; uint32_t latt, cmd, err; latt = lpfc_els_chk_latt(vport); lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_CT, "FDMI cmpl: status:x%x/x%x latt:%d", irsp->ulpStatus, irsp->un.ulpWord[4], latt); if (latt || irsp->ulpStatus) { /* Look for a retryable error */ if (irsp->ulpStatus == IOSTAT_LOCAL_REJECT) { switch ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK)) { case IOERR_SLI_ABORTED: case IOERR_ABORT_IN_PROGRESS: case IOERR_SEQUENCE_TIMEOUT: case IOERR_ILLEGAL_FRAME: case IOERR_NO_RESOURCES: case IOERR_ILLEGAL_COMMAND: cmdiocb->retry++; if (cmdiocb->retry >= LPFC_FDMI_MAX_RETRY) break; /* Retry the same FDMI command */ err = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, cmdiocb, 0); if (err == IOCB_ERROR) break; return; default: break; } } lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0229 FDMI cmd %04x failed, latt = %d " "ulpStatus: x%x, rid x%x\n", be16_to_cpu(fdmi_cmd), latt, irsp->ulpStatus, irsp->un.ulpWord[4]); } lpfc_ct_free_iocb(phba, cmdiocb); ndlp = lpfc_findnode_did(vport, FDMI_DID); if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) return; /* Check for a CT LS_RJT response */ cmd = be16_to_cpu(fdmi_cmd); if (fdmi_rsp == cpu_to_be16(SLI_CT_RESPONSE_FS_RJT)) { /* FDMI rsp failed */ lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0220 FDMI cmd failed FS_RJT Data: x%x", cmd); /* Should we fallback to FDMI-2 / FDMI-1 ? */ switch (cmd) { case SLI_MGMT_RHBA: if (vport->fdmi_hba_mask == LPFC_FDMI2_HBA_ATTR) { /* Fallback to FDMI-1 */ vport->fdmi_hba_mask = LPFC_FDMI1_HBA_ATTR; vport->fdmi_port_mask = LPFC_FDMI1_PORT_ATTR; /* Start over */ lpfc_fdmi_cmd(vport, ndlp, SLI_MGMT_DHBA, 0); } return; case SLI_MGMT_RPRT: if (vport->fdmi_port_mask == LPFC_FDMI2_PORT_ATTR) { /* Fallback to FDMI-1 */ vport->fdmi_port_mask = LPFC_FDMI1_PORT_ATTR; /* Start over */ lpfc_fdmi_cmd(vport, ndlp, cmd, 0); } if (vport->fdmi_port_mask == LPFC_FDMI2_SMART_ATTR) { vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR; /* Retry the same command */ lpfc_fdmi_cmd(vport, ndlp, cmd, 0); } return; case SLI_MGMT_RPA: if (vport->fdmi_port_mask == LPFC_FDMI2_PORT_ATTR) { /* Fallback to FDMI-1 */ vport->fdmi_hba_mask = LPFC_FDMI1_HBA_ATTR; vport->fdmi_port_mask = LPFC_FDMI1_PORT_ATTR; /* Start over */ lpfc_fdmi_cmd(vport, ndlp, SLI_MGMT_DHBA, 0); } if (vport->fdmi_port_mask == LPFC_FDMI2_SMART_ATTR) { vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR; /* Retry the same command */ lpfc_fdmi_cmd(vport, ndlp, cmd, 0); } return; } } /* * On success, need to cycle thru FDMI registration for discovery * DHBA -> DPRT -> RHBA -> RPA (physical port) * DPRT -> RPRT (vports) */ switch (cmd) { case SLI_MGMT_RHBA: lpfc_fdmi_cmd(vport, ndlp, SLI_MGMT_RPA, 0); break; case SLI_MGMT_DHBA: lpfc_fdmi_cmd(vport, ndlp, SLI_MGMT_DPRT, 0); break; case SLI_MGMT_DPRT: if (vport->port_type == LPFC_PHYSICAL_PORT) lpfc_fdmi_cmd(vport, ndlp, SLI_MGMT_RHBA, 0); else lpfc_fdmi_cmd(vport, ndlp, SLI_MGMT_RPRT, 0); break; } return; } /** * lpfc_fdmi_num_disc_check - Check how many mapped NPorts we are connected to * @vport: pointer to a host virtual N_Port data structure. * * Called from hbeat timeout routine to check if the number of discovered * ports has changed. If so, re-register thar port Attribute. */ void lpfc_fdmi_num_disc_check(struct lpfc_vport *vport) { struct lpfc_hba *phba = vport->phba; struct lpfc_nodelist *ndlp; uint16_t cnt; if (!lpfc_is_link_up(phba)) return; /* Must be connected to a Fabric */ if (!(vport->fc_flag & FC_FABRIC)) return; if (!(vport->fdmi_port_mask & LPFC_FDMI_PORT_ATTR_num_disc)) return; cnt = lpfc_find_map_node(vport); if (cnt == vport->fdmi_num_disc) return; ndlp = lpfc_findnode_did(vport, FDMI_DID); if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) return; if (vport->port_type == LPFC_PHYSICAL_PORT) { lpfc_fdmi_cmd(vport, ndlp, SLI_MGMT_RPA, LPFC_FDMI_PORT_ATTR_num_disc); } else { lpfc_fdmi_cmd(vport, ndlp, SLI_MGMT_RPRT, LPFC_FDMI_PORT_ATTR_num_disc); } } /* Routines for all individual HBA attributes */ static int lpfc_fdmi_hba_attr_wwnn(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, sizeof(struct lpfc_name)); memcpy(&ae->un.AttrWWN, &vport->fc_sparam.nodeName, sizeof(struct lpfc_name)); size = FOURBYTES + sizeof(struct lpfc_name); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_NODENAME); return size; } static int lpfc_fdmi_hba_attr_manufacturer(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); strncpy(ae->un.AttrString, "Emulex Corporation", sizeof(ae->un.AttrString)); len = strnlen(ae->un.AttrString, sizeof(ae->un.AttrString)); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_MANUFACTURER); return size; } static int lpfc_fdmi_hba_attr_sn(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_hba *phba = vport->phba; struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); strncpy(ae->un.AttrString, phba->SerialNumber, sizeof(ae->un.AttrString)); len = strnlen(ae->un.AttrString, sizeof(ae->un.AttrString)); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_SERIAL_NUMBER); return size; } static int lpfc_fdmi_hba_attr_model(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_hba *phba = vport->phba; struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); strncpy(ae->un.AttrString, phba->ModelName, sizeof(ae->un.AttrString)); len = strnlen(ae->un.AttrString, sizeof(ae->un.AttrString)); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_MODEL); return size; } static int lpfc_fdmi_hba_attr_description(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_hba *phba = vport->phba; struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); strncpy(ae->un.AttrString, phba->ModelDesc, sizeof(ae->un.AttrString)); len = strnlen(ae->un.AttrString, sizeof(ae->un.AttrString)); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_MODEL_DESCRIPTION); return size; } static int lpfc_fdmi_hba_attr_hdw_ver(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_hba *phba = vport->phba; lpfc_vpd_t *vp = &phba->vpd; struct lpfc_fdmi_attr_entry *ae; uint32_t i, j, incr, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); /* Convert JEDEC ID to ascii for hardware version */ incr = vp->rev.biuRev; for (i = 0; i < 8; i++) { j = (incr & 0xf); if (j <= 9) ae->un.AttrString[7 - i] = (char)((uint8_t) 0x30 + (uint8_t) j); else ae->un.AttrString[7 - i] = (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); incr = (incr >> 4); } size = FOURBYTES + 8; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_HARDWARE_VERSION); return size; } static int lpfc_fdmi_hba_attr_drvr_ver(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); strncpy(ae->un.AttrString, lpfc_release_version, sizeof(ae->un.AttrString)); len = strnlen(ae->un.AttrString, sizeof(ae->un.AttrString)); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_DRIVER_VERSION); return size; } static int lpfc_fdmi_hba_attr_rom_ver(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_hba *phba = vport->phba; struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); if (phba->sli_rev == LPFC_SLI_REV4) lpfc_decode_firmware_rev(phba, ae->un.AttrString, 1); else strncpy(ae->un.AttrString, phba->OptionROMVersion, sizeof(ae->un.AttrString)); len = strnlen(ae->un.AttrString, sizeof(ae->un.AttrString)); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_OPTION_ROM_VERSION); return size; } static int lpfc_fdmi_hba_attr_fmw_ver(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_hba *phba = vport->phba; struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); lpfc_decode_firmware_rev(phba, ae->un.AttrString, 1); len = strnlen(ae->un.AttrString, sizeof(ae->un.AttrString)); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_FIRMWARE_VERSION); return size; } static int lpfc_fdmi_hba_attr_os_ver(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); snprintf(ae->un.AttrString, sizeof(ae->un.AttrString), "%s %s %s", init_utsname()->sysname, init_utsname()->release, init_utsname()->version); len = strnlen(ae->un.AttrString, sizeof(ae->un.AttrString)); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_OS_NAME_VERSION); return size; } static int lpfc_fdmi_hba_attr_ct_len(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; ae->un.AttrInt = cpu_to_be32(LPFC_MAX_CT_SIZE); size = FOURBYTES + sizeof(uint32_t); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_MAX_CT_PAYLOAD_LEN); return size; } static int lpfc_fdmi_hba_attr_symbolic_name(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); len = lpfc_vport_symbolic_node_name(vport, ae->un.AttrString, 256); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_SYM_NODENAME); return size; } static int lpfc_fdmi_hba_attr_vendor_info(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; /* Nothing is defined for this currently */ ae->un.AttrInt = cpu_to_be32(0); size = FOURBYTES + sizeof(uint32_t); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_VENDOR_INFO); return size; } static int lpfc_fdmi_hba_attr_num_ports(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; /* Each driver instance corresponds to a single port */ ae->un.AttrInt = cpu_to_be32(1); size = FOURBYTES + sizeof(uint32_t); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_NUM_PORTS); return size; } static int lpfc_fdmi_hba_attr_fabric_wwnn(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, sizeof(struct lpfc_name)); memcpy(&ae->un.AttrWWN, &vport->fabric_nodename, sizeof(struct lpfc_name)); size = FOURBYTES + sizeof(struct lpfc_name); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_FABRIC_WWNN); return size; } static int lpfc_fdmi_hba_attr_bios_ver(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_hba *phba = vport->phba; struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); lpfc_decode_firmware_rev(phba, ae->un.AttrString, 1); len = strnlen(ae->un.AttrString, sizeof(ae->un.AttrString)); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_BIOS_VERSION); return size; } static int lpfc_fdmi_hba_attr_bios_state(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; /* Driver doesn't have access to this information */ ae->un.AttrInt = cpu_to_be32(0); size = FOURBYTES + sizeof(uint32_t); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_BIOS_STATE); return size; } static int lpfc_fdmi_hba_attr_vendor_id(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); strncpy(ae->un.AttrString, "EMULEX", sizeof(ae->un.AttrString)); len = strnlen(ae->un.AttrString, sizeof(ae->un.AttrString)); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RHBA_VENDOR_ID); return size; } /* Routines for all individual PORT attributes */ static int lpfc_fdmi_port_attr_fc4type(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 32); ae->un.AttrTypes[3] = 0x02; /* Type 1 - ELS */ ae->un.AttrTypes[2] = 0x01; /* Type 8 - FCP */ ae->un.AttrTypes[6] = 0x01; /* Type 40 - NVME */ ae->un.AttrTypes[7] = 0x01; /* Type 32 - CT */ size = FOURBYTES + 32; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_SUPPORTED_FC4_TYPES); return size; } static int lpfc_fdmi_port_attr_support_speed(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_hba *phba = vport->phba; struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; ae->un.AttrInt = 0; if (!(phba->hba_flag & HBA_FCOE_MODE)) { if (phba->lmt & LMT_64Gb) ae->un.AttrInt |= HBA_PORTSPEED_64GFC; if (phba->lmt & LMT_32Gb) ae->un.AttrInt |= HBA_PORTSPEED_32GFC; if (phba->lmt & LMT_16Gb) ae->un.AttrInt |= HBA_PORTSPEED_16GFC; if (phba->lmt & LMT_10Gb) ae->un.AttrInt |= HBA_PORTSPEED_10GFC; if (phba->lmt & LMT_8Gb) ae->un.AttrInt |= HBA_PORTSPEED_8GFC; if (phba->lmt & LMT_4Gb) ae->un.AttrInt |= HBA_PORTSPEED_4GFC; if (phba->lmt & LMT_2Gb) ae->un.AttrInt |= HBA_PORTSPEED_2GFC; if (phba->lmt & LMT_1Gb) ae->un.AttrInt |= HBA_PORTSPEED_1GFC; } else { /* FCoE links support only one speed */ switch (phba->fc_linkspeed) { case LPFC_ASYNC_LINK_SPEED_10GBPS: ae->un.AttrInt = HBA_PORTSPEED_10GE; break; case LPFC_ASYNC_LINK_SPEED_25GBPS: ae->un.AttrInt = HBA_PORTSPEED_25GE; break; case LPFC_ASYNC_LINK_SPEED_40GBPS: ae->un.AttrInt = HBA_PORTSPEED_40GE; break; case LPFC_ASYNC_LINK_SPEED_100GBPS: ae->un.AttrInt = HBA_PORTSPEED_100GE; break; } } ae->un.AttrInt = cpu_to_be32(ae->un.AttrInt); size = FOURBYTES + sizeof(uint32_t); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_SUPPORTED_SPEED); return size; } static int lpfc_fdmi_port_attr_speed(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_hba *phba = vport->phba; struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; if (!(phba->hba_flag & HBA_FCOE_MODE)) { switch (phba->fc_linkspeed) { case LPFC_LINK_SPEED_1GHZ: ae->un.AttrInt = HBA_PORTSPEED_1GFC; break; case LPFC_LINK_SPEED_2GHZ: ae->un.AttrInt = HBA_PORTSPEED_2GFC; break; case LPFC_LINK_SPEED_4GHZ: ae->un.AttrInt = HBA_PORTSPEED_4GFC; break; case LPFC_LINK_SPEED_8GHZ: ae->un.AttrInt = HBA_PORTSPEED_8GFC; break; case LPFC_LINK_SPEED_10GHZ: ae->un.AttrInt = HBA_PORTSPEED_10GFC; break; case LPFC_LINK_SPEED_16GHZ: ae->un.AttrInt = HBA_PORTSPEED_16GFC; break; case LPFC_LINK_SPEED_32GHZ: ae->un.AttrInt = HBA_PORTSPEED_32GFC; break; case LPFC_LINK_SPEED_64GHZ: ae->un.AttrInt = HBA_PORTSPEED_64GFC; break; default: ae->un.AttrInt = HBA_PORTSPEED_UNKNOWN; break; } } else { switch (phba->fc_linkspeed) { case LPFC_ASYNC_LINK_SPEED_10GBPS: ae->un.AttrInt = HBA_PORTSPEED_10GE; break; case LPFC_ASYNC_LINK_SPEED_25GBPS: ae->un.AttrInt = HBA_PORTSPEED_25GE; break; case LPFC_ASYNC_LINK_SPEED_40GBPS: ae->un.AttrInt = HBA_PORTSPEED_40GE; break; case LPFC_ASYNC_LINK_SPEED_100GBPS: ae->un.AttrInt = HBA_PORTSPEED_100GE; break; default: ae->un.AttrInt = HBA_PORTSPEED_UNKNOWN; break; } } ae->un.AttrInt = cpu_to_be32(ae->un.AttrInt); size = FOURBYTES + sizeof(uint32_t); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_PORT_SPEED); return size; } static int lpfc_fdmi_port_attr_max_frame(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct serv_parm *hsp; struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; hsp = (struct serv_parm *)&vport->fc_sparam; ae->un.AttrInt = (((uint32_t) hsp->cmn.bbRcvSizeMsb) << 8) | (uint32_t) hsp->cmn.bbRcvSizeLsb; ae->un.AttrInt = cpu_to_be32(ae->un.AttrInt); size = FOURBYTES + sizeof(uint32_t); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_MAX_FRAME_SIZE); return size; } static int lpfc_fdmi_port_attr_os_devname(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); snprintf(ae->un.AttrString, sizeof(ae->un.AttrString), "/sys/class/scsi_host/host%d", shost->host_no); len = strnlen((char *)ae->un.AttrString, sizeof(ae->un.AttrString)); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_OS_DEVICE_NAME); return size; } static int lpfc_fdmi_port_attr_host_name(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); snprintf(ae->un.AttrString, sizeof(ae->un.AttrString), "%s", init_utsname()->nodename); len = strnlen(ae->un.AttrString, sizeof(ae->un.AttrString)); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_HOST_NAME); return size; } static int lpfc_fdmi_port_attr_wwnn(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, sizeof(struct lpfc_name)); memcpy(&ae->un.AttrWWN, &vport->fc_sparam.nodeName, sizeof(struct lpfc_name)); size = FOURBYTES + sizeof(struct lpfc_name); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_NODENAME); return size; } static int lpfc_fdmi_port_attr_wwpn(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, sizeof(struct lpfc_name)); memcpy(&ae->un.AttrWWN, &vport->fc_sparam.portName, sizeof(struct lpfc_name)); size = FOURBYTES + sizeof(struct lpfc_name); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_PORTNAME); return size; } static int lpfc_fdmi_port_attr_symbolic_name(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); len = lpfc_vport_symbolic_port_name(vport, ae->un.AttrString, 256); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_SYM_PORTNAME); return size; } static int lpfc_fdmi_port_attr_port_type(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_hba *phba = vport->phba; struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) ae->un.AttrInt = cpu_to_be32(LPFC_FDMI_PORTTYPE_NLPORT); else ae->un.AttrInt = cpu_to_be32(LPFC_FDMI_PORTTYPE_NPORT); size = FOURBYTES + sizeof(uint32_t); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_PORT_TYPE); return size; } static int lpfc_fdmi_port_attr_class(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; ae->un.AttrInt = cpu_to_be32(FC_COS_CLASS2 | FC_COS_CLASS3); size = FOURBYTES + sizeof(uint32_t); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_SUPPORTED_CLASS); return size; } static int lpfc_fdmi_port_attr_fabric_wwpn(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, sizeof(struct lpfc_name)); memcpy(&ae->un.AttrWWN, &vport->fabric_portname, sizeof(struct lpfc_name)); size = FOURBYTES + sizeof(struct lpfc_name); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_FABRICNAME); return size; } static int lpfc_fdmi_port_attr_active_fc4type(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 32); ae->un.AttrTypes[3] = 0x02; /* Type 1 - ELS */ ae->un.AttrTypes[2] = 0x01; /* Type 8 - FCP */ ae->un.AttrTypes[7] = 0x01; /* Type 32 - CT */ size = FOURBYTES + 32; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_ACTIVE_FC4_TYPES); return size; } static int lpfc_fdmi_port_attr_port_state(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; /* Link Up - operational */ ae->un.AttrInt = cpu_to_be32(LPFC_FDMI_PORTSTATE_ONLINE); size = FOURBYTES + sizeof(uint32_t); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_PORT_STATE); return size; } static int lpfc_fdmi_port_attr_num_disc(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; vport->fdmi_num_disc = lpfc_find_map_node(vport); ae->un.AttrInt = cpu_to_be32(vport->fdmi_num_disc); size = FOURBYTES + sizeof(uint32_t); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_DISC_PORT); return size; } static int lpfc_fdmi_port_attr_nportid(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; ae->un.AttrInt = cpu_to_be32(vport->fc_myDID); size = FOURBYTES + sizeof(uint32_t); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_PORT_ID); return size; } static int lpfc_fdmi_smart_attr_service(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); strncpy(ae->un.AttrString, "Smart SAN Initiator", sizeof(ae->un.AttrString)); len = strnlen(ae->un.AttrString, sizeof(ae->un.AttrString)); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_SMART_SERVICE); return size; } static int lpfc_fdmi_smart_attr_guid(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); memcpy(&ae->un.AttrString, &vport->fc_sparam.nodeName, sizeof(struct lpfc_name)); memcpy((((uint8_t *)&ae->un.AttrString) + sizeof(struct lpfc_name)), &vport->fc_sparam.portName, sizeof(struct lpfc_name)); size = FOURBYTES + (2 * sizeof(struct lpfc_name)); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_SMART_GUID); return size; } static int lpfc_fdmi_smart_attr_version(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); strncpy(ae->un.AttrString, "Smart SAN Version 2.0", sizeof(ae->un.AttrString)); len = strnlen(ae->un.AttrString, sizeof(ae->un.AttrString)); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_SMART_VERSION); return size; } static int lpfc_fdmi_smart_attr_model(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_hba *phba = vport->phba; struct lpfc_fdmi_attr_entry *ae; uint32_t len, size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; memset(ae, 0, 256); strncpy(ae->un.AttrString, phba->ModelName, sizeof(ae->un.AttrString)); len = strnlen(ae->un.AttrString, sizeof(ae->un.AttrString)); len += (len & 3) ? (4 - (len & 3)) : 4; size = FOURBYTES + len; ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_SMART_MODEL); return size; } static int lpfc_fdmi_smart_attr_port_info(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; /* SRIOV (type 3) is not supported */ if (vport->vpi) ae->un.AttrInt = cpu_to_be32(2); /* NPIV */ else ae->un.AttrInt = cpu_to_be32(1); /* Physical */ size = FOURBYTES + sizeof(uint32_t); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_SMART_PORT_INFO); return size; } static int lpfc_fdmi_smart_attr_qos(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; ae->un.AttrInt = cpu_to_be32(0); size = FOURBYTES + sizeof(uint32_t); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_SMART_QOS); return size; } static int lpfc_fdmi_smart_attr_security(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) { struct lpfc_fdmi_attr_entry *ae; uint32_t size; ae = (struct lpfc_fdmi_attr_entry *)&ad->AttrValue; ae->un.AttrInt = cpu_to_be32(1); size = FOURBYTES + sizeof(uint32_t); ad->AttrLen = cpu_to_be16(size); ad->AttrType = cpu_to_be16(RPRT_SMART_SECURITY); return size; } /* RHBA attribute jump table */ int (*lpfc_fdmi_hba_action[]) (struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) = { /* Action routine Mask bit Attribute type */ lpfc_fdmi_hba_attr_wwnn, /* bit0 RHBA_NODENAME */ lpfc_fdmi_hba_attr_manufacturer, /* bit1 RHBA_MANUFACTURER */ lpfc_fdmi_hba_attr_sn, /* bit2 RHBA_SERIAL_NUMBER */ lpfc_fdmi_hba_attr_model, /* bit3 RHBA_MODEL */ lpfc_fdmi_hba_attr_description, /* bit4 RHBA_MODEL_DESCRIPTION */ lpfc_fdmi_hba_attr_hdw_ver, /* bit5 RHBA_HARDWARE_VERSION */ lpfc_fdmi_hba_attr_drvr_ver, /* bit6 RHBA_DRIVER_VERSION */ lpfc_fdmi_hba_attr_rom_ver, /* bit7 RHBA_OPTION_ROM_VERSION */ lpfc_fdmi_hba_attr_fmw_ver, /* bit8 RHBA_FIRMWARE_VERSION */ lpfc_fdmi_hba_attr_os_ver, /* bit9 RHBA_OS_NAME_VERSION */ lpfc_fdmi_hba_attr_ct_len, /* bit10 RHBA_MAX_CT_PAYLOAD_LEN */ lpfc_fdmi_hba_attr_symbolic_name, /* bit11 RHBA_SYM_NODENAME */ lpfc_fdmi_hba_attr_vendor_info, /* bit12 RHBA_VENDOR_INFO */ lpfc_fdmi_hba_attr_num_ports, /* bit13 RHBA_NUM_PORTS */ lpfc_fdmi_hba_attr_fabric_wwnn, /* bit14 RHBA_FABRIC_WWNN */ lpfc_fdmi_hba_attr_bios_ver, /* bit15 RHBA_BIOS_VERSION */ lpfc_fdmi_hba_attr_bios_state, /* bit16 RHBA_BIOS_STATE */ lpfc_fdmi_hba_attr_vendor_id, /* bit17 RHBA_VENDOR_ID */ }; /* RPA / RPRT attribute jump table */ int (*lpfc_fdmi_port_action[]) (struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad) = { /* Action routine Mask bit Attribute type */ lpfc_fdmi_port_attr_fc4type, /* bit0 RPRT_SUPPORT_FC4_TYPES */ lpfc_fdmi_port_attr_support_speed, /* bit1 RPRT_SUPPORTED_SPEED */ lpfc_fdmi_port_attr_speed, /* bit2 RPRT_PORT_SPEED */ lpfc_fdmi_port_attr_max_frame, /* bit3 RPRT_MAX_FRAME_SIZE */ lpfc_fdmi_port_attr_os_devname, /* bit4 RPRT_OS_DEVICE_NAME */ lpfc_fdmi_port_attr_host_name, /* bit5 RPRT_HOST_NAME */ lpfc_fdmi_port_attr_wwnn, /* bit6 RPRT_NODENAME */ lpfc_fdmi_port_attr_wwpn, /* bit7 RPRT_PORTNAME */ lpfc_fdmi_port_attr_symbolic_name, /* bit8 RPRT_SYM_PORTNAME */ lpfc_fdmi_port_attr_port_type, /* bit9 RPRT_PORT_TYPE */ lpfc_fdmi_port_attr_class, /* bit10 RPRT_SUPPORTED_CLASS */ lpfc_fdmi_port_attr_fabric_wwpn, /* bit11 RPRT_FABRICNAME */ lpfc_fdmi_port_attr_active_fc4type, /* bit12 RPRT_ACTIVE_FC4_TYPES */ lpfc_fdmi_port_attr_port_state, /* bit13 RPRT_PORT_STATE */ lpfc_fdmi_port_attr_num_disc, /* bit14 RPRT_DISC_PORT */ lpfc_fdmi_port_attr_nportid, /* bit15 RPRT_PORT_ID */ lpfc_fdmi_smart_attr_service, /* bit16 RPRT_SMART_SERVICE */ lpfc_fdmi_smart_attr_guid, /* bit17 RPRT_SMART_GUID */ lpfc_fdmi_smart_attr_version, /* bit18 RPRT_SMART_VERSION */ lpfc_fdmi_smart_attr_model, /* bit19 RPRT_SMART_MODEL */ lpfc_fdmi_smart_attr_port_info, /* bit20 RPRT_SMART_PORT_INFO */ lpfc_fdmi_smart_attr_qos, /* bit21 RPRT_SMART_QOS */ lpfc_fdmi_smart_attr_security, /* bit22 RPRT_SMART_SECURITY */ }; /** * lpfc_fdmi_cmd - Build and send a FDMI cmd to the specified NPort * @vport: pointer to a host virtual N_Port data structure. * @ndlp: ndlp to send FDMI cmd to (if NULL use FDMI_DID) * cmdcode: FDMI command to send * mask: Mask of HBA or PORT Attributes to send * * Builds and sends a FDMI command using the CT subsystem. */ int lpfc_fdmi_cmd(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp, int cmdcode, uint32_t new_mask) { struct lpfc_hba *phba = vport->phba; struct lpfc_dmabuf *mp, *bmp; struct lpfc_sli_ct_request *CtReq; struct ulp_bde64 *bpl; uint32_t bit_pos; uint32_t size; uint32_t rsp_size; uint32_t mask; struct lpfc_fdmi_reg_hba *rh; struct lpfc_fdmi_port_entry *pe; struct lpfc_fdmi_reg_portattr *pab = NULL; struct lpfc_fdmi_attr_block *ab = NULL; int (*func)(struct lpfc_vport *vport, struct lpfc_fdmi_attr_def *ad); void (*cmpl)(struct lpfc_hba *, struct lpfc_iocbq *, struct lpfc_iocbq *); if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) return 0; cmpl = lpfc_cmpl_ct_disc_fdmi; /* called from discovery */ /* fill in BDEs for command */ /* Allocate buffer for command payload */ mp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); if (!mp) goto fdmi_cmd_exit; mp->virt = lpfc_mbuf_alloc(phba, 0, &(mp->phys)); if (!mp->virt) goto fdmi_cmd_free_mp; /* Allocate buffer for Buffer ptr list */ bmp = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); if (!bmp) goto fdmi_cmd_free_mpvirt; bmp->virt = lpfc_mbuf_alloc(phba, 0, &(bmp->phys)); if (!bmp->virt) goto fdmi_cmd_free_bmp; INIT_LIST_HEAD(&mp->list); INIT_LIST_HEAD(&bmp->list); /* FDMI request */ lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0218 FDMI Request Data: x%x x%x x%x\n", vport->fc_flag, vport->port_state, cmdcode); CtReq = (struct lpfc_sli_ct_request *)mp->virt; /* First populate the CT_IU preamble */ memset(CtReq, 0, sizeof(struct lpfc_sli_ct_request)); CtReq->RevisionId.bits.Revision = SLI_CT_REVISION; CtReq->RevisionId.bits.InId = 0; CtReq->FsType = SLI_CT_MANAGEMENT_SERVICE; CtReq->FsSubType = SLI_CT_FDMI_Subtypes; CtReq->CommandResponse.bits.CmdRsp = cpu_to_be16(cmdcode); rsp_size = LPFC_BPL_SIZE; size = 0; /* Next fill in the specific FDMI cmd information */ switch (cmdcode) { case SLI_MGMT_RHAT: case SLI_MGMT_RHBA: rh = (struct lpfc_fdmi_reg_hba *)&CtReq->un.PortID; /* HBA Identifier */ memcpy(&rh->hi.PortName, &phba->pport->fc_sparam.portName, sizeof(struct lpfc_name)); if (cmdcode == SLI_MGMT_RHBA) { /* Registered Port List */ /* One entry (port) per adapter */ rh->rpl.EntryCnt = cpu_to_be32(1); memcpy(&rh->rpl.pe, &phba->pport->fc_sparam.portName, sizeof(struct lpfc_name)); /* point to the HBA attribute block */ size = 2 * sizeof(struct lpfc_name) + FOURBYTES; } else { size = sizeof(struct lpfc_name); } ab = (struct lpfc_fdmi_attr_block *)((uint8_t *)rh + size); ab->EntryCnt = 0; size += FOURBYTES; bit_pos = 0; if (new_mask) mask = new_mask; else mask = vport->fdmi_hba_mask; /* Mask will dictate what attributes to build in the request */ while (mask) { if (mask & 0x1) { func = lpfc_fdmi_hba_action[bit_pos]; size += func(vport, (struct lpfc_fdmi_attr_def *) ((uint8_t *)rh + size)); ab->EntryCnt++; if ((size + 256) > (LPFC_BPL_SIZE - LPFC_CT_PREAMBLE)) goto hba_out; } mask = mask >> 1; bit_pos++; } hba_out: ab->EntryCnt = cpu_to_be32(ab->EntryCnt); /* Total size */ size = GID_REQUEST_SZ - 4 + size; break; case SLI_MGMT_RPRT: case SLI_MGMT_RPA: pab = (struct lpfc_fdmi_reg_portattr *)&CtReq->un.PortID; if (cmdcode == SLI_MGMT_RPRT) { rh = (struct lpfc_fdmi_reg_hba *)pab; /* HBA Identifier */ memcpy(&rh->hi.PortName, &phba->pport->fc_sparam.portName, sizeof(struct lpfc_name)); pab = (struct lpfc_fdmi_reg_portattr *) ((uint8_t *)pab + sizeof(struct lpfc_name)); } memcpy((uint8_t *)&pab->PortName, (uint8_t *)&vport->fc_sparam.portName, sizeof(struct lpfc_name)); size += sizeof(struct lpfc_name) + FOURBYTES; pab->ab.EntryCnt = 0; bit_pos = 0; if (new_mask) mask = new_mask; else mask = vport->fdmi_port_mask; /* Mask will dictate what attributes to build in the request */ while (mask) { if (mask & 0x1) { func = lpfc_fdmi_port_action[bit_pos]; size += func(vport, (struct lpfc_fdmi_attr_def *) ((uint8_t *)pab + size)); pab->ab.EntryCnt++; if ((size + 256) > (LPFC_BPL_SIZE - LPFC_CT_PREAMBLE)) goto port_out; } mask = mask >> 1; bit_pos++; } port_out: pab->ab.EntryCnt = cpu_to_be32(pab->ab.EntryCnt); /* Total size */ if (cmdcode == SLI_MGMT_RPRT) size += sizeof(struct lpfc_name); size = GID_REQUEST_SZ - 4 + size; break; case SLI_MGMT_GHAT: case SLI_MGMT_GRPL: rsp_size = FC_MAX_NS_RSP; case SLI_MGMT_DHBA: case SLI_MGMT_DHAT: pe = (struct lpfc_fdmi_port_entry *)&CtReq->un.PortID; memcpy((uint8_t *)&pe->PortName, (uint8_t *)&vport->fc_sparam.portName, sizeof(struct lpfc_name)); size = GID_REQUEST_SZ - 4 + sizeof(struct lpfc_name); break; case SLI_MGMT_GPAT: case SLI_MGMT_GPAS: rsp_size = FC_MAX_NS_RSP; case SLI_MGMT_DPRT: case SLI_MGMT_DPA: pe = (struct lpfc_fdmi_port_entry *)&CtReq->un.PortID; memcpy((uint8_t *)&pe->PortName, (uint8_t *)&vport->fc_sparam.portName, sizeof(struct lpfc_name)); size = GID_REQUEST_SZ - 4 + sizeof(struct lpfc_name); break; case SLI_MGMT_GRHL: size = GID_REQUEST_SZ - 4; break; default: lpfc_printf_vlog(vport, KERN_WARNING, LOG_DISCOVERY, "0298 FDMI cmdcode x%x not supported\n", cmdcode); goto fdmi_cmd_free_bmpvirt; } CtReq->CommandResponse.bits.Size = cpu_to_be16(rsp_size); bpl = (struct ulp_bde64 *)bmp->virt; bpl->addrHigh = le32_to_cpu(putPaddrHigh(mp->phys)); bpl->addrLow = le32_to_cpu(putPaddrLow(mp->phys)); bpl->tus.f.bdeFlags = 0; bpl->tus.f.bdeSize = size; /* * The lpfc_ct_cmd/lpfc_get_req shall increment ndlp reference count * to hold ndlp reference for the corresponding callback function. */ if (!lpfc_ct_cmd(vport, mp, bmp, ndlp, cmpl, rsp_size, 0)) return 0; /* * Decrement ndlp reference count to release ndlp reference held * for the failed command's callback function. */ lpfc_nlp_put(ndlp); fdmi_cmd_free_bmpvirt: lpfc_mbuf_free(phba, bmp->virt, bmp->phys); fdmi_cmd_free_bmp: kfree(bmp); fdmi_cmd_free_mpvirt: lpfc_mbuf_free(phba, mp->virt, mp->phys); fdmi_cmd_free_mp: kfree(mp); fdmi_cmd_exit: /* Issue FDMI request failed */ lpfc_printf_vlog(vport, KERN_INFO, LOG_DISCOVERY, "0244 Issue FDMI request failed Data: x%x\n", cmdcode); return 1; } /** * lpfc_delayed_disc_tmo - Timeout handler for delayed discovery timer. * @ptr - Context object of the timer. * * This function set the WORKER_DELAYED_DISC_TMO flag and wake up * the worker thread. **/ void lpfc_delayed_disc_tmo(struct timer_list *t) { struct lpfc_vport *vport = from_timer(vport, t, delayed_disc_tmo); struct lpfc_hba *phba = vport->phba; uint32_t tmo_posted; unsigned long iflag; spin_lock_irqsave(&vport->work_port_lock, iflag); tmo_posted = vport->work_port_events & WORKER_DELAYED_DISC_TMO; if (!tmo_posted) vport->work_port_events |= WORKER_DELAYED_DISC_TMO; spin_unlock_irqrestore(&vport->work_port_lock, iflag); if (!tmo_posted) lpfc_worker_wake_up(phba); return; } /** * lpfc_delayed_disc_timeout_handler - Function called by worker thread to * handle delayed discovery. * @vport: pointer to a host virtual N_Port data structure. * * This function start nport discovery of the vport. **/ void lpfc_delayed_disc_timeout_handler(struct lpfc_vport *vport) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); spin_lock_irq(shost->host_lock); if (!(vport->fc_flag & FC_DISC_DELAYED)) { spin_unlock_irq(shost->host_lock); return; } vport->fc_flag &= ~FC_DISC_DELAYED; spin_unlock_irq(shost->host_lock); lpfc_do_scr_ns_plogi(vport->phba, vport); } void lpfc_decode_firmware_rev(struct lpfc_hba *phba, char *fwrevision, int flag) { struct lpfc_sli *psli = &phba->sli; lpfc_vpd_t *vp = &phba->vpd; uint32_t b1, b2, b3, b4, i, rev; char c; uint32_t *ptr, str[4]; uint8_t *fwname; if (phba->sli_rev == LPFC_SLI_REV4) snprintf(fwrevision, FW_REV_STR_SIZE, "%s", vp->rev.opFwName); else if (vp->rev.rBit) { if (psli->sli_flag & LPFC_SLI_ACTIVE) rev = vp->rev.sli2FwRev; else rev = vp->rev.sli1FwRev; b1 = (rev & 0x0000f000) >> 12; b2 = (rev & 0x00000f00) >> 8; b3 = (rev & 0x000000c0) >> 6; b4 = (rev & 0x00000030) >> 4; switch (b4) { case 0: c = 'N'; break; case 1: c = 'A'; break; case 2: c = 'B'; break; case 3: c = 'X'; break; default: c = 0; break; } b4 = (rev & 0x0000000f); if (psli->sli_flag & LPFC_SLI_ACTIVE) fwname = vp->rev.sli2FwName; else fwname = vp->rev.sli1FwName; for (i = 0; i < 16; i++) if (fwname[i] == 0x20) fwname[i] = 0; ptr = (uint32_t*)fwname; for (i = 0; i < 3; i++) str[i] = be32_to_cpu(*ptr++); if (c == 0) { if (flag) sprintf(fwrevision, "%d.%d%d (%s)", b1, b2, b3, (char *)str); else sprintf(fwrevision, "%d.%d%d", b1, b2, b3); } else { if (flag) sprintf(fwrevision, "%d.%d%d%c%d (%s)", b1, b2, b3, c, b4, (char *)str); else sprintf(fwrevision, "%d.%d%d%c%d", b1, b2, b3, c, b4); } } else { rev = vp->rev.smFwRev; b1 = (rev & 0xff000000) >> 24; b2 = (rev & 0x00f00000) >> 20; b3 = (rev & 0x000f0000) >> 16; c = (rev & 0x0000ff00) >> 8; b4 = (rev & 0x000000ff); sprintf(fwrevision, "%d.%d%d%c%d", b1, b2, b3, c, b4); } return; }