/* * Copyright (C) 2011 STRATO. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include "ctree.h" #include "volumes.h" #include "disk-io.h" #include "ordered-data.h" #include "transaction.h" #include "backref.h" #include "extent_io.h" #include "check-integrity.h" /* * This is only the first step towards a full-features scrub. It reads all * extent and super block and verifies the checksums. In case a bad checksum * is found or the extent cannot be read, good data will be written back if * any can be found. * * Future enhancements: * - In case an unrepairable extent is encountered, track which files are * affected and report them * - In case of a read error on files with nodatasum, map the file and read * the extent to trigger a writeback of the good copy * - track and record media errors, throw out bad devices * - add a mode to also read unallocated space */ struct scrub_bio; struct scrub_page; struct scrub_dev; static void scrub_bio_end_io(struct bio *bio, int err); static void scrub_checksum(struct btrfs_work *work); static int scrub_checksum_data(struct scrub_dev *sdev, struct scrub_page *spag, void *buffer); static int scrub_checksum_tree_block(struct scrub_dev *sdev, struct scrub_page *spag, u64 logical, void *buffer); static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer); static int scrub_fixup_check(struct scrub_bio *sbio, int ix); static void scrub_fixup_end_io(struct bio *bio, int err); static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector, struct page *page); static void scrub_fixup(struct scrub_bio *sbio, int ix); #define SCRUB_PAGES_PER_BIO 16 /* 64k per bio */ #define SCRUB_BIOS_PER_DEV 16 /* 1 MB per device in flight */ struct scrub_page { u64 flags; /* extent flags */ u64 generation; int mirror_num; int have_csum; u8 csum[BTRFS_CSUM_SIZE]; }; struct scrub_bio { int index; struct scrub_dev *sdev; struct bio *bio; int err; u64 logical; u64 physical; struct scrub_page spag[SCRUB_PAGES_PER_BIO]; u64 count; int next_free; struct btrfs_work work; }; struct scrub_dev { struct scrub_bio *bios[SCRUB_BIOS_PER_DEV]; struct btrfs_device *dev; int first_free; int curr; atomic_t in_flight; atomic_t fixup_cnt; spinlock_t list_lock; wait_queue_head_t list_wait; u16 csum_size; struct list_head csum_list; atomic_t cancel_req; int readonly; /* * statistics */ struct btrfs_scrub_progress stat; spinlock_t stat_lock; }; struct scrub_fixup_nodatasum { struct scrub_dev *sdev; u64 logical; struct btrfs_root *root; struct btrfs_work work; int mirror_num; }; struct scrub_warning { struct btrfs_path *path; u64 extent_item_size; char *scratch_buf; char *msg_buf; const char *errstr; sector_t sector; u64 logical; struct btrfs_device *dev; int msg_bufsize; int scratch_bufsize; }; static void scrub_free_csums(struct scrub_dev *sdev) { while (!list_empty(&sdev->csum_list)) { struct btrfs_ordered_sum *sum; sum = list_first_entry(&sdev->csum_list, struct btrfs_ordered_sum, list); list_del(&sum->list); kfree(sum); } } static void scrub_free_bio(struct bio *bio) { int i; struct page *last_page = NULL; if (!bio) return; for (i = 0; i < bio->bi_vcnt; ++i) { if (bio->bi_io_vec[i].bv_page == last_page) continue; last_page = bio->bi_io_vec[i].bv_page; __free_page(last_page); } bio_put(bio); } static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev) { int i; if (!sdev) return; for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) { struct scrub_bio *sbio = sdev->bios[i]; if (!sbio) break; scrub_free_bio(sbio->bio); kfree(sbio); } scrub_free_csums(sdev); kfree(sdev); } static noinline_for_stack struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev) { struct scrub_dev *sdev; int i; struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; sdev = kzalloc(sizeof(*sdev), GFP_NOFS); if (!sdev) goto nomem; sdev->dev = dev; for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) { struct scrub_bio *sbio; sbio = kzalloc(sizeof(*sbio), GFP_NOFS); if (!sbio) goto nomem; sdev->bios[i] = sbio; sbio->index = i; sbio->sdev = sdev; sbio->count = 0; sbio->work.func = scrub_checksum; if (i != SCRUB_BIOS_PER_DEV-1) sdev->bios[i]->next_free = i + 1; else sdev->bios[i]->next_free = -1; } sdev->first_free = 0; sdev->curr = -1; atomic_set(&sdev->in_flight, 0); atomic_set(&sdev->fixup_cnt, 0); atomic_set(&sdev->cancel_req, 0); sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy); INIT_LIST_HEAD(&sdev->csum_list); spin_lock_init(&sdev->list_lock); spin_lock_init(&sdev->stat_lock); init_waitqueue_head(&sdev->list_wait); return sdev; nomem: scrub_free_dev(sdev); return ERR_PTR(-ENOMEM); } static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx) { u64 isize; u32 nlink; int ret; int i; struct extent_buffer *eb; struct btrfs_inode_item *inode_item; struct scrub_warning *swarn = ctx; struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info; struct inode_fs_paths *ipath = NULL; struct btrfs_root *local_root; struct btrfs_key root_key; root_key.objectid = root; root_key.type = BTRFS_ROOT_ITEM_KEY; root_key.offset = (u64)-1; local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); if (IS_ERR(local_root)) { ret = PTR_ERR(local_root); goto err; } ret = inode_item_info(inum, 0, local_root, swarn->path); if (ret) { btrfs_release_path(swarn->path); goto err; } eb = swarn->path->nodes[0]; inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], struct btrfs_inode_item); isize = btrfs_inode_size(eb, inode_item); nlink = btrfs_inode_nlink(eb, inode_item); btrfs_release_path(swarn->path); ipath = init_ipath(4096, local_root, swarn->path); if (IS_ERR(ipath)) { ret = PTR_ERR(ipath); ipath = NULL; goto err; } ret = paths_from_inode(inum, ipath); if (ret < 0) goto err; /* * we deliberately ignore the bit ipath might have been too small to * hold all of the paths here */ for (i = 0; i < ipath->fspath->elem_cnt; ++i) printk(KERN_WARNING "btrfs: %s at logical %llu on dev " "%s, sector %llu, root %llu, inode %llu, offset %llu, " "length %llu, links %u (path: %s)\n", swarn->errstr, swarn->logical, swarn->dev->name, (unsigned long long)swarn->sector, root, inum, offset, min(isize - offset, (u64)PAGE_SIZE), nlink, (char *)(unsigned long)ipath->fspath->val[i]); free_ipath(ipath); return 0; err: printk(KERN_WARNING "btrfs: %s at logical %llu on dev " "%s, sector %llu, root %llu, inode %llu, offset %llu: path " "resolving failed with ret=%d\n", swarn->errstr, swarn->logical, swarn->dev->name, (unsigned long long)swarn->sector, root, inum, offset, ret); free_ipath(ipath); return 0; } static void scrub_print_warning(const char *errstr, struct scrub_bio *sbio, int ix) { struct btrfs_device *dev = sbio->sdev->dev; struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; struct btrfs_path *path; struct btrfs_key found_key; struct extent_buffer *eb; struct btrfs_extent_item *ei; struct scrub_warning swarn; u32 item_size; int ret; u64 ref_root; u8 ref_level; unsigned long ptr = 0; const int bufsize = 4096; u64 extent_item_pos; path = btrfs_alloc_path(); swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS); swarn.msg_buf = kmalloc(bufsize, GFP_NOFS); swarn.sector = (sbio->physical + ix * PAGE_SIZE) >> 9; swarn.logical = sbio->logical + ix * PAGE_SIZE; swarn.errstr = errstr; swarn.dev = dev; swarn.msg_bufsize = bufsize; swarn.scratch_bufsize = bufsize; if (!path || !swarn.scratch_buf || !swarn.msg_buf) goto out; ret = extent_from_logical(fs_info, swarn.logical, path, &found_key); if (ret < 0) goto out; extent_item_pos = swarn.logical - found_key.objectid; swarn.extent_item_size = found_key.offset; eb = path->nodes[0]; ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); item_size = btrfs_item_size_nr(eb, path->slots[0]); btrfs_release_path(path); if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) { do { ret = tree_backref_for_extent(&ptr, eb, ei, item_size, &ref_root, &ref_level); printk(KERN_WARNING "%s at logical %llu on dev %s, " "sector %llu: metadata %s (level %d) in tree " "%llu\n", errstr, swarn.logical, dev->name, (unsigned long long)swarn.sector, ref_level ? "node" : "leaf", ret < 0 ? -1 : ref_level, ret < 0 ? -1 : ref_root); } while (ret != 1); } else { swarn.path = path; iterate_extent_inodes(fs_info, path, found_key.objectid, extent_item_pos, scrub_print_warning_inode, &swarn); } out: btrfs_free_path(path); kfree(swarn.scratch_buf); kfree(swarn.msg_buf); } static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx) { struct page *page = NULL; unsigned long index; struct scrub_fixup_nodatasum *fixup = ctx; int ret; int corrected = 0; struct btrfs_key key; struct inode *inode = NULL; u64 end = offset + PAGE_SIZE - 1; struct btrfs_root *local_root; key.objectid = root; key.type = BTRFS_ROOT_ITEM_KEY; key.offset = (u64)-1; local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key); if (IS_ERR(local_root)) return PTR_ERR(local_root); key.type = BTRFS_INODE_ITEM_KEY; key.objectid = inum; key.offset = 0; inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL); if (IS_ERR(inode)) return PTR_ERR(inode); index = offset >> PAGE_CACHE_SHIFT; page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); if (!page) { ret = -ENOMEM; goto out; } if (PageUptodate(page)) { struct btrfs_mapping_tree *map_tree; if (PageDirty(page)) { /* * we need to write the data to the defect sector. the * data that was in that sector is not in memory, * because the page was modified. we must not write the * modified page to that sector. * * TODO: what could be done here: wait for the delalloc * runner to write out that page (might involve * COW) and see whether the sector is still * referenced afterwards. * * For the meantime, we'll treat this error * incorrectable, although there is a chance that a * later scrub will find the bad sector again and that * there's no dirty page in memory, then. */ ret = -EIO; goto out; } map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree; ret = repair_io_failure(map_tree, offset, PAGE_SIZE, fixup->logical, page, fixup->mirror_num); unlock_page(page); corrected = !ret; } else { /* * we need to get good data first. the general readpage path * will call repair_io_failure for us, we just have to make * sure we read the bad mirror. */ ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, EXTENT_DAMAGED, GFP_NOFS); if (ret) { /* set_extent_bits should give proper error */ WARN_ON(ret > 0); if (ret > 0) ret = -EFAULT; goto out; } ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, btrfs_get_extent, fixup->mirror_num); wait_on_page_locked(page); corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, end, EXTENT_DAMAGED, 0, NULL); if (!corrected) clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, EXTENT_DAMAGED, GFP_NOFS); } out: if (page) put_page(page); if (inode) iput(inode); if (ret < 0) return ret; if (ret == 0 && corrected) { /* * we only need to call readpage for one of the inodes belonging * to this extent. so make iterate_extent_inodes stop */ return 1; } return -EIO; } static void scrub_fixup_nodatasum(struct btrfs_work *work) { int ret; struct scrub_fixup_nodatasum *fixup; struct scrub_dev *sdev; struct btrfs_trans_handle *trans = NULL; struct btrfs_fs_info *fs_info; struct btrfs_path *path; int uncorrectable = 0; fixup = container_of(work, struct scrub_fixup_nodatasum, work); sdev = fixup->sdev; fs_info = fixup->root->fs_info; path = btrfs_alloc_path(); if (!path) { spin_lock(&sdev->stat_lock); ++sdev->stat.malloc_errors; spin_unlock(&sdev->stat_lock); uncorrectable = 1; goto out; } trans = btrfs_join_transaction(fixup->root); if (IS_ERR(trans)) { uncorrectable = 1; goto out; } /* * the idea is to trigger a regular read through the standard path. we * read a page from the (failed) logical address by specifying the * corresponding copynum of the failed sector. thus, that readpage is * expected to fail. * that is the point where on-the-fly error correction will kick in * (once it's finished) and rewrite the failed sector if a good copy * can be found. */ ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info, path, scrub_fixup_readpage, fixup); if (ret < 0) { uncorrectable = 1; goto out; } WARN_ON(ret != 1); spin_lock(&sdev->stat_lock); ++sdev->stat.corrected_errors; spin_unlock(&sdev->stat_lock); out: if (trans && !IS_ERR(trans)) btrfs_end_transaction(trans, fixup->root); if (uncorrectable) { spin_lock(&sdev->stat_lock); ++sdev->stat.uncorrectable_errors; spin_unlock(&sdev->stat_lock); printk_ratelimited(KERN_ERR "btrfs: unable to fixup " "(nodatasum) error at logical %llu\n", fixup->logical); } btrfs_free_path(path); kfree(fixup); /* see caller why we're pretending to be paused in the scrub counters */ mutex_lock(&fs_info->scrub_lock); atomic_dec(&fs_info->scrubs_running); atomic_dec(&fs_info->scrubs_paused); mutex_unlock(&fs_info->scrub_lock); atomic_dec(&sdev->fixup_cnt); wake_up(&fs_info->scrub_pause_wait); wake_up(&sdev->list_wait); } /* * scrub_recheck_error gets called when either verification of the page * failed or the bio failed to read, e.g. with EIO. In the latter case, * recheck_error gets called for every page in the bio, even though only * one may be bad */ static int scrub_recheck_error(struct scrub_bio *sbio, int ix) { struct scrub_dev *sdev = sbio->sdev; u64 sector = (sbio->physical + ix * PAGE_SIZE) >> 9; static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST); if (sbio->err) { if (scrub_fixup_io(READ, sbio->sdev->dev->bdev, sector, sbio->bio->bi_io_vec[ix].bv_page) == 0) { if (scrub_fixup_check(sbio, ix) == 0) return 0; } if (__ratelimit(&_rs)) scrub_print_warning("i/o error", sbio, ix); } else { if (__ratelimit(&_rs)) scrub_print_warning("checksum error", sbio, ix); } spin_lock(&sdev->stat_lock); ++sdev->stat.read_errors; spin_unlock(&sdev->stat_lock); scrub_fixup(sbio, ix); return 1; } static int scrub_fixup_check(struct scrub_bio *sbio, int ix) { int ret = 1; struct page *page; void *buffer; u64 flags = sbio->spag[ix].flags; page = sbio->bio->bi_io_vec[ix].bv_page; buffer = kmap_atomic(page, KM_USER0); if (flags & BTRFS_EXTENT_FLAG_DATA) { ret = scrub_checksum_data(sbio->sdev, sbio->spag + ix, buffer); } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { ret = scrub_checksum_tree_block(sbio->sdev, sbio->spag + ix, sbio->logical + ix * PAGE_SIZE, buffer); } else { WARN_ON(1); } kunmap_atomic(buffer, KM_USER0); return ret; } static void scrub_fixup_end_io(struct bio *bio, int err) { complete((struct completion *)bio->bi_private); } static void scrub_fixup(struct scrub_bio *sbio, int ix) { struct scrub_dev *sdev = sbio->sdev; struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info; struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; struct btrfs_bio *bbio = NULL; struct scrub_fixup_nodatasum *fixup; u64 logical = sbio->logical + ix * PAGE_SIZE; u64 length; int i; int ret; DECLARE_COMPLETION_ONSTACK(complete); if ((sbio->spag[ix].flags & BTRFS_EXTENT_FLAG_DATA) && (sbio->spag[ix].have_csum == 0)) { fixup = kzalloc(sizeof(*fixup), GFP_NOFS); if (!fixup) goto uncorrectable; fixup->sdev = sdev; fixup->logical = logical; fixup->root = fs_info->extent_root; fixup->mirror_num = sbio->spag[ix].mirror_num; /* * increment scrubs_running to prevent cancel requests from * completing as long as a fixup worker is running. we must also * increment scrubs_paused to prevent deadlocking on pause * requests used for transactions commits (as the worker uses a * transaction context). it is safe to regard the fixup worker * as paused for all matters practical. effectively, we only * avoid cancellation requests from completing. */ mutex_lock(&fs_info->scrub_lock); atomic_inc(&fs_info->scrubs_running); atomic_inc(&fs_info->scrubs_paused); mutex_unlock(&fs_info->scrub_lock); atomic_inc(&sdev->fixup_cnt); fixup->work.func = scrub_fixup_nodatasum; btrfs_queue_worker(&fs_info->scrub_workers, &fixup->work); return; } length = PAGE_SIZE; ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length, &bbio, 0); if (ret || !bbio || length < PAGE_SIZE) { printk(KERN_ERR "scrub_fixup: btrfs_map_block failed us for %llu\n", (unsigned long long)logical); WARN_ON(1); kfree(bbio); return; } if (bbio->num_stripes == 1) /* there aren't any replicas */ goto uncorrectable; /* * first find a good copy */ for (i = 0; i < bbio->num_stripes; ++i) { if (i + 1 == sbio->spag[ix].mirror_num) continue; if (scrub_fixup_io(READ, bbio->stripes[i].dev->bdev, bbio->stripes[i].physical >> 9, sbio->bio->bi_io_vec[ix].bv_page)) { /* I/O-error, this is not a good copy */ continue; } if (scrub_fixup_check(sbio, ix) == 0) break; } if (i == bbio->num_stripes) goto uncorrectable; if (!sdev->readonly) { /* * bi_io_vec[ix].bv_page now contains good data, write it back */ if (scrub_fixup_io(WRITE, sdev->dev->bdev, (sbio->physical + ix * PAGE_SIZE) >> 9, sbio->bio->bi_io_vec[ix].bv_page)) { /* I/O-error, writeback failed, give up */ goto uncorrectable; } } kfree(bbio); spin_lock(&sdev->stat_lock); ++sdev->stat.corrected_errors; spin_unlock(&sdev->stat_lock); printk_ratelimited(KERN_ERR "btrfs: fixed up error at logical %llu\n", (unsigned long long)logical); return; uncorrectable: kfree(bbio); spin_lock(&sdev->stat_lock); ++sdev->stat.uncorrectable_errors; spin_unlock(&sdev->stat_lock); printk_ratelimited(KERN_ERR "btrfs: unable to fixup (regular) error at " "logical %llu\n", (unsigned long long)logical); } static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector, struct page *page) { struct bio *bio = NULL; int ret; DECLARE_COMPLETION_ONSTACK(complete); bio = bio_alloc(GFP_NOFS, 1); bio->bi_bdev = bdev; bio->bi_sector = sector; bio_add_page(bio, page, PAGE_SIZE, 0); bio->bi_end_io = scrub_fixup_end_io; bio->bi_private = &complete; btrfsic_submit_bio(rw, bio); /* this will also unplug the queue */ wait_for_completion(&complete); ret = !test_bit(BIO_UPTODATE, &bio->bi_flags); bio_put(bio); return ret; } static void scrub_bio_end_io(struct bio *bio, int err) { struct scrub_bio *sbio = bio->bi_private; struct scrub_dev *sdev = sbio->sdev; struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info; sbio->err = err; sbio->bio = bio; btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work); } static void scrub_checksum(struct btrfs_work *work) { struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); struct scrub_dev *sdev = sbio->sdev; struct page *page; void *buffer; int i; u64 flags; u64 logical; int ret; if (sbio->err) { ret = 0; for (i = 0; i < sbio->count; ++i) ret |= scrub_recheck_error(sbio, i); if (!ret) { spin_lock(&sdev->stat_lock); ++sdev->stat.unverified_errors; spin_unlock(&sdev->stat_lock); } sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1); sbio->bio->bi_flags |= 1 << BIO_UPTODATE; sbio->bio->bi_phys_segments = 0; sbio->bio->bi_idx = 0; for (i = 0; i < sbio->count; i++) { struct bio_vec *bi; bi = &sbio->bio->bi_io_vec[i]; bi->bv_offset = 0; bi->bv_len = PAGE_SIZE; } goto out; } for (i = 0; i < sbio->count; ++i) { page = sbio->bio->bi_io_vec[i].bv_page; buffer = kmap_atomic(page, KM_USER0); flags = sbio->spag[i].flags; logical = sbio->logical + i * PAGE_SIZE; ret = 0; if (flags & BTRFS_EXTENT_FLAG_DATA) { ret = scrub_checksum_data(sdev, sbio->spag + i, buffer); } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { ret = scrub_checksum_tree_block(sdev, sbio->spag + i, logical, buffer); } else if (flags & BTRFS_EXTENT_FLAG_SUPER) { BUG_ON(i); (void)scrub_checksum_super(sbio, buffer); } else { WARN_ON(1); } kunmap_atomic(buffer, KM_USER0); if (ret) { ret = scrub_recheck_error(sbio, i); if (!ret) { spin_lock(&sdev->stat_lock); ++sdev->stat.unverified_errors; spin_unlock(&sdev->stat_lock); } } } out: scrub_free_bio(sbio->bio); sbio->bio = NULL; spin_lock(&sdev->list_lock); sbio->next_free = sdev->first_free; sdev->first_free = sbio->index; spin_unlock(&sdev->list_lock); atomic_dec(&sdev->in_flight); wake_up(&sdev->list_wait); } static int scrub_checksum_data(struct scrub_dev *sdev, struct scrub_page *spag, void *buffer) { u8 csum[BTRFS_CSUM_SIZE]; u32 crc = ~(u32)0; int fail = 0; struct btrfs_root *root = sdev->dev->dev_root; if (!spag->have_csum) return 0; crc = btrfs_csum_data(root, buffer, crc, PAGE_SIZE); btrfs_csum_final(crc, csum); if (memcmp(csum, spag->csum, sdev->csum_size)) fail = 1; spin_lock(&sdev->stat_lock); ++sdev->stat.data_extents_scrubbed; sdev->stat.data_bytes_scrubbed += PAGE_SIZE; if (fail) ++sdev->stat.csum_errors; spin_unlock(&sdev->stat_lock); return fail; } static int scrub_checksum_tree_block(struct scrub_dev *sdev, struct scrub_page *spag, u64 logical, void *buffer) { struct btrfs_header *h; struct btrfs_root *root = sdev->dev->dev_root; struct btrfs_fs_info *fs_info = root->fs_info; u8 csum[BTRFS_CSUM_SIZE]; u32 crc = ~(u32)0; int fail = 0; int crc_fail = 0; /* * we don't use the getter functions here, as we * a) don't have an extent buffer and * b) the page is already kmapped */ h = (struct btrfs_header *)buffer; if (logical != le64_to_cpu(h->bytenr)) ++fail; if (spag->generation != le64_to_cpu(h->generation)) ++fail; if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) ++fail; if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, BTRFS_UUID_SIZE)) ++fail; crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc, PAGE_SIZE - BTRFS_CSUM_SIZE); btrfs_csum_final(crc, csum); if (memcmp(csum, h->csum, sdev->csum_size)) ++crc_fail; spin_lock(&sdev->stat_lock); ++sdev->stat.tree_extents_scrubbed; sdev->stat.tree_bytes_scrubbed += PAGE_SIZE; if (crc_fail) ++sdev->stat.csum_errors; if (fail) ++sdev->stat.verify_errors; spin_unlock(&sdev->stat_lock); return fail || crc_fail; } static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer) { struct btrfs_super_block *s; u64 logical; struct scrub_dev *sdev = sbio->sdev; struct btrfs_root *root = sdev->dev->dev_root; struct btrfs_fs_info *fs_info = root->fs_info; u8 csum[BTRFS_CSUM_SIZE]; u32 crc = ~(u32)0; int fail = 0; s = (struct btrfs_super_block *)buffer; logical = sbio->logical; if (logical != le64_to_cpu(s->bytenr)) ++fail; if (sbio->spag[0].generation != le64_to_cpu(s->generation)) ++fail; if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) ++fail; crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc, PAGE_SIZE - BTRFS_CSUM_SIZE); btrfs_csum_final(crc, csum); if (memcmp(csum, s->csum, sbio->sdev->csum_size)) ++fail; if (fail) { /* * if we find an error in a super block, we just report it. * They will get written with the next transaction commit * anyway */ spin_lock(&sdev->stat_lock); ++sdev->stat.super_errors; spin_unlock(&sdev->stat_lock); } return fail; } static void scrub_submit(struct scrub_dev *sdev) { struct scrub_bio *sbio; if (sdev->curr == -1) return; sbio = sdev->bios[sdev->curr]; sbio->err = 0; sdev->curr = -1; atomic_inc(&sdev->in_flight); btrfsic_submit_bio(READ, sbio->bio); } static int scrub_page(struct scrub_dev *sdev, u64 logical, u64 len, u64 physical, u64 flags, u64 gen, int mirror_num, u8 *csum, int force) { struct scrub_bio *sbio; struct page *page; int ret; again: /* * grab a fresh bio or wait for one to become available */ while (sdev->curr == -1) { spin_lock(&sdev->list_lock); sdev->curr = sdev->first_free; if (sdev->curr != -1) { sdev->first_free = sdev->bios[sdev->curr]->next_free; sdev->bios[sdev->curr]->next_free = -1; sdev->bios[sdev->curr]->count = 0; spin_unlock(&sdev->list_lock); } else { spin_unlock(&sdev->list_lock); wait_event(sdev->list_wait, sdev->first_free != -1); } } sbio = sdev->bios[sdev->curr]; if (sbio->count == 0) { struct bio *bio; sbio->physical = physical; sbio->logical = logical; bio = bio_alloc(GFP_NOFS, SCRUB_PAGES_PER_BIO); if (!bio) return -ENOMEM; bio->bi_private = sbio; bio->bi_end_io = scrub_bio_end_io; bio->bi_bdev = sdev->dev->bdev; bio->bi_sector = sbio->physical >> 9; sbio->err = 0; sbio->bio = bio; } else if (sbio->physical + sbio->count * PAGE_SIZE != physical || sbio->logical + sbio->count * PAGE_SIZE != logical) { scrub_submit(sdev); goto again; } sbio->spag[sbio->count].flags = flags; sbio->spag[sbio->count].generation = gen; sbio->spag[sbio->count].have_csum = 0; sbio->spag[sbio->count].mirror_num = mirror_num; page = alloc_page(GFP_NOFS); if (!page) return -ENOMEM; ret = bio_add_page(sbio->bio, page, PAGE_SIZE, 0); if (!ret) { __free_page(page); scrub_submit(sdev); goto again; } if (csum) { sbio->spag[sbio->count].have_csum = 1; memcpy(sbio->spag[sbio->count].csum, csum, sdev->csum_size); } ++sbio->count; if (sbio->count == SCRUB_PAGES_PER_BIO || force) scrub_submit(sdev); return 0; } static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len, u8 *csum) { struct btrfs_ordered_sum *sum = NULL; int ret = 0; unsigned long i; unsigned long num_sectors; u32 sectorsize = sdev->dev->dev_root->sectorsize; while (!list_empty(&sdev->csum_list)) { sum = list_first_entry(&sdev->csum_list, struct btrfs_ordered_sum, list); if (sum->bytenr > logical) return 0; if (sum->bytenr + sum->len > logical) break; ++sdev->stat.csum_discards; list_del(&sum->list); kfree(sum); sum = NULL; } if (!sum) return 0; num_sectors = sum->len / sectorsize; for (i = 0; i < num_sectors; ++i) { if (sum->sums[i].bytenr == logical) { memcpy(csum, &sum->sums[i].sum, sdev->csum_size); ret = 1; break; } } if (ret && i == num_sectors - 1) { list_del(&sum->list); kfree(sum); } return ret; } /* scrub extent tries to collect up to 64 kB for each bio */ static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len, u64 physical, u64 flags, u64 gen, int mirror_num) { int ret; u8 csum[BTRFS_CSUM_SIZE]; while (len) { u64 l = min_t(u64, len, PAGE_SIZE); int have_csum = 0; if (flags & BTRFS_EXTENT_FLAG_DATA) { /* push csums to sbio */ have_csum = scrub_find_csum(sdev, logical, l, csum); if (have_csum == 0) ++sdev->stat.no_csum; } ret = scrub_page(sdev, logical, l, physical, flags, gen, mirror_num, have_csum ? csum : NULL, 0); if (ret) return ret; len -= l; logical += l; physical += l; } return 0; } static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev, struct map_lookup *map, int num, u64 base, u64 length) { struct btrfs_path *path; struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info; struct btrfs_root *root = fs_info->extent_root; struct btrfs_root *csum_root = fs_info->csum_root; struct btrfs_extent_item *extent; struct blk_plug plug; u64 flags; int ret; int slot; int i; u64 nstripes; struct extent_buffer *l; struct btrfs_key key; u64 physical; u64 logical; u64 generation; int mirror_num; struct reada_control *reada1; struct reada_control *reada2; struct btrfs_key key_start; struct btrfs_key key_end; u64 increment = map->stripe_len; u64 offset; nstripes = length; offset = 0; do_div(nstripes, map->stripe_len); if (map->type & BTRFS_BLOCK_GROUP_RAID0) { offset = map->stripe_len * num; increment = map->stripe_len * map->num_stripes; mirror_num = 1; } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { int factor = map->num_stripes / map->sub_stripes; offset = map->stripe_len * (num / map->sub_stripes); increment = map->stripe_len * factor; mirror_num = num % map->sub_stripes + 1; } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { increment = map->stripe_len; mirror_num = num % map->num_stripes + 1; } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { increment = map->stripe_len; mirror_num = num % map->num_stripes + 1; } else { increment = map->stripe_len; mirror_num = 1; } path = btrfs_alloc_path(); if (!path) return -ENOMEM; path->search_commit_root = 1; path->skip_locking = 1; /* * trigger the readahead for extent tree csum tree and wait for * completion. During readahead, the scrub is officially paused * to not hold off transaction commits */ logical = base + offset; wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0); atomic_inc(&fs_info->scrubs_paused); wake_up(&fs_info->scrub_pause_wait); /* FIXME it might be better to start readahead at commit root */ key_start.objectid = logical; key_start.type = BTRFS_EXTENT_ITEM_KEY; key_start.offset = (u64)0; key_end.objectid = base + offset + nstripes * increment; key_end.type = BTRFS_EXTENT_ITEM_KEY; key_end.offset = (u64)0; reada1 = btrfs_reada_add(root, &key_start, &key_end); key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID; key_start.type = BTRFS_EXTENT_CSUM_KEY; key_start.offset = logical; key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; key_end.type = BTRFS_EXTENT_CSUM_KEY; key_end.offset = base + offset + nstripes * increment; reada2 = btrfs_reada_add(csum_root, &key_start, &key_end); if (!IS_ERR(reada1)) btrfs_reada_wait(reada1); if (!IS_ERR(reada2)) btrfs_reada_wait(reada2); mutex_lock(&fs_info->scrub_lock); while (atomic_read(&fs_info->scrub_pause_req)) { mutex_unlock(&fs_info->scrub_lock); wait_event(fs_info->scrub_pause_wait, atomic_read(&fs_info->scrub_pause_req) == 0); mutex_lock(&fs_info->scrub_lock); } atomic_dec(&fs_info->scrubs_paused); mutex_unlock(&fs_info->scrub_lock); wake_up(&fs_info->scrub_pause_wait); /* * collect all data csums for the stripe to avoid seeking during * the scrub. This might currently (crc32) end up to be about 1MB */ blk_start_plug(&plug); /* * now find all extents for each stripe and scrub them */ logical = base + offset; physical = map->stripes[num].physical; ret = 0; for (i = 0; i < nstripes; ++i) { /* * canceled? */ if (atomic_read(&fs_info->scrub_cancel_req) || atomic_read(&sdev->cancel_req)) { ret = -ECANCELED; goto out; } /* * check to see if we have to pause */ if (atomic_read(&fs_info->scrub_pause_req)) { /* push queued extents */ scrub_submit(sdev); wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0); atomic_inc(&fs_info->scrubs_paused); wake_up(&fs_info->scrub_pause_wait); mutex_lock(&fs_info->scrub_lock); while (atomic_read(&fs_info->scrub_pause_req)) { mutex_unlock(&fs_info->scrub_lock); wait_event(fs_info->scrub_pause_wait, atomic_read(&fs_info->scrub_pause_req) == 0); mutex_lock(&fs_info->scrub_lock); } atomic_dec(&fs_info->scrubs_paused); mutex_unlock(&fs_info->scrub_lock); wake_up(&fs_info->scrub_pause_wait); } ret = btrfs_lookup_csums_range(csum_root, logical, logical + map->stripe_len - 1, &sdev->csum_list, 1); if (ret) goto out; key.objectid = logical; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = (u64)0; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto out; if (ret > 0) { ret = btrfs_previous_item(root, path, 0, BTRFS_EXTENT_ITEM_KEY); if (ret < 0) goto out; if (ret > 0) { /* there's no smaller item, so stick with the * larger one */ btrfs_release_path(path); ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto out; } } while (1) { l = path->nodes[0]; slot = path->slots[0]; if (slot >= btrfs_header_nritems(l)) { ret = btrfs_next_leaf(root, path); if (ret == 0) continue; if (ret < 0) goto out; break; } btrfs_item_key_to_cpu(l, &key, slot); if (key.objectid + key.offset <= logical) goto next; if (key.objectid >= logical + map->stripe_len) break; if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY) goto next; extent = btrfs_item_ptr(l, slot, struct btrfs_extent_item); flags = btrfs_extent_flags(l, extent); generation = btrfs_extent_generation(l, extent); if (key.objectid < logical && (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) { printk(KERN_ERR "btrfs scrub: tree block %llu spanning " "stripes, ignored. logical=%llu\n", (unsigned long long)key.objectid, (unsigned long long)logical); goto next; } /* * trim extent to this stripe */ if (key.objectid < logical) { key.offset -= logical - key.objectid; key.objectid = logical; } if (key.objectid + key.offset > logical + map->stripe_len) { key.offset = logical + map->stripe_len - key.objectid; } ret = scrub_extent(sdev, key.objectid, key.offset, key.objectid - logical + physical, flags, generation, mirror_num); if (ret) goto out; next: path->slots[0]++; } btrfs_release_path(path); logical += increment; physical += map->stripe_len; spin_lock(&sdev->stat_lock); sdev->stat.last_physical = physical; spin_unlock(&sdev->stat_lock); } /* push queued extents */ scrub_submit(sdev); out: blk_finish_plug(&plug); btrfs_free_path(path); return ret < 0 ? ret : 0; } static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev, u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length, u64 dev_offset) { struct btrfs_mapping_tree *map_tree = &sdev->dev->dev_root->fs_info->mapping_tree; struct map_lookup *map; struct extent_map *em; int i; int ret = -EINVAL; read_lock(&map_tree->map_tree.lock); em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); read_unlock(&map_tree->map_tree.lock); if (!em) return -EINVAL; map = (struct map_lookup *)em->bdev; if (em->start != chunk_offset) goto out; if (em->len < length) goto out; for (i = 0; i < map->num_stripes; ++i) { if (map->stripes[i].dev == sdev->dev && map->stripes[i].physical == dev_offset) { ret = scrub_stripe(sdev, map, i, chunk_offset, length); if (ret) goto out; } } out: free_extent_map(em); return ret; } static noinline_for_stack int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end) { struct btrfs_dev_extent *dev_extent = NULL; struct btrfs_path *path; struct btrfs_root *root = sdev->dev->dev_root; struct btrfs_fs_info *fs_info = root->fs_info; u64 length; u64 chunk_tree; u64 chunk_objectid; u64 chunk_offset; int ret; int slot; struct extent_buffer *l; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_block_group_cache *cache; path = btrfs_alloc_path(); if (!path) return -ENOMEM; path->reada = 2; path->search_commit_root = 1; path->skip_locking = 1; key.objectid = sdev->dev->devid; key.offset = 0ull; key.type = BTRFS_DEV_EXTENT_KEY; while (1) { ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) break; if (ret > 0) { if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { ret = btrfs_next_leaf(root, path); if (ret) break; } } l = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(l, &found_key, slot); if (found_key.objectid != sdev->dev->devid) break; if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY) break; if (found_key.offset >= end) break; if (found_key.offset < key.offset) break; dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); length = btrfs_dev_extent_length(l, dev_extent); if (found_key.offset + length <= start) { key.offset = found_key.offset + length; btrfs_release_path(path); continue; } chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); /* * get a reference on the corresponding block group to prevent * the chunk from going away while we scrub it */ cache = btrfs_lookup_block_group(fs_info, chunk_offset); if (!cache) { ret = -ENOENT; break; } ret = scrub_chunk(sdev, chunk_tree, chunk_objectid, chunk_offset, length, found_key.offset); btrfs_put_block_group(cache); if (ret) break; key.offset = found_key.offset + length; btrfs_release_path(path); } btrfs_free_path(path); /* * ret can still be 1 from search_slot or next_leaf, * that's not an error */ return ret < 0 ? ret : 0; } static noinline_for_stack int scrub_supers(struct scrub_dev *sdev) { int i; u64 bytenr; u64 gen; int ret; struct btrfs_device *device = sdev->dev; struct btrfs_root *root = device->dev_root; if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) return -EIO; gen = root->fs_info->last_trans_committed; for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { bytenr = btrfs_sb_offset(i); if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) break; ret = scrub_page(sdev, bytenr, PAGE_SIZE, bytenr, BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1); if (ret) return ret; } wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0); return 0; } /* * get a reference count on fs_info->scrub_workers. start worker if necessary */ static noinline_for_stack int scrub_workers_get(struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; int ret = 0; mutex_lock(&fs_info->scrub_lock); if (fs_info->scrub_workers_refcnt == 0) { btrfs_init_workers(&fs_info->scrub_workers, "scrub", fs_info->thread_pool_size, &fs_info->generic_worker); fs_info->scrub_workers.idle_thresh = 4; ret = btrfs_start_workers(&fs_info->scrub_workers); if (ret) goto out; } ++fs_info->scrub_workers_refcnt; out: mutex_unlock(&fs_info->scrub_lock); return ret; } static noinline_for_stack void scrub_workers_put(struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; mutex_lock(&fs_info->scrub_lock); if (--fs_info->scrub_workers_refcnt == 0) btrfs_stop_workers(&fs_info->scrub_workers); WARN_ON(fs_info->scrub_workers_refcnt < 0); mutex_unlock(&fs_info->scrub_lock); } int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end, struct btrfs_scrub_progress *progress, int readonly) { struct scrub_dev *sdev; struct btrfs_fs_info *fs_info = root->fs_info; int ret; struct btrfs_device *dev; if (btrfs_fs_closing(root->fs_info)) return -EINVAL; /* * check some assumptions */ if (root->sectorsize != PAGE_SIZE || root->sectorsize != root->leafsize || root->sectorsize != root->nodesize) { printk(KERN_ERR "btrfs_scrub: size assumptions fail\n"); return -EINVAL; } ret = scrub_workers_get(root); if (ret) return ret; mutex_lock(&root->fs_info->fs_devices->device_list_mutex); dev = btrfs_find_device(root, devid, NULL, NULL); if (!dev || dev->missing) { mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); scrub_workers_put(root); return -ENODEV; } mutex_lock(&fs_info->scrub_lock); if (!dev->in_fs_metadata) { mutex_unlock(&fs_info->scrub_lock); mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); scrub_workers_put(root); return -ENODEV; } if (dev->scrub_device) { mutex_unlock(&fs_info->scrub_lock); mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); scrub_workers_put(root); return -EINPROGRESS; } sdev = scrub_setup_dev(dev); if (IS_ERR(sdev)) { mutex_unlock(&fs_info->scrub_lock); mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); scrub_workers_put(root); return PTR_ERR(sdev); } sdev->readonly = readonly; dev->scrub_device = sdev; atomic_inc(&fs_info->scrubs_running); mutex_unlock(&fs_info->scrub_lock); mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); down_read(&fs_info->scrub_super_lock); ret = scrub_supers(sdev); up_read(&fs_info->scrub_super_lock); if (!ret) ret = scrub_enumerate_chunks(sdev, start, end); wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0); atomic_dec(&fs_info->scrubs_running); wake_up(&fs_info->scrub_pause_wait); wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0); if (progress) memcpy(progress, &sdev->stat, sizeof(*progress)); mutex_lock(&fs_info->scrub_lock); dev->scrub_device = NULL; mutex_unlock(&fs_info->scrub_lock); scrub_free_dev(sdev); scrub_workers_put(root); return ret; } void btrfs_scrub_pause(struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; mutex_lock(&fs_info->scrub_lock); atomic_inc(&fs_info->scrub_pause_req); while (atomic_read(&fs_info->scrubs_paused) != atomic_read(&fs_info->scrubs_running)) { mutex_unlock(&fs_info->scrub_lock); wait_event(fs_info->scrub_pause_wait, atomic_read(&fs_info->scrubs_paused) == atomic_read(&fs_info->scrubs_running)); mutex_lock(&fs_info->scrub_lock); } mutex_unlock(&fs_info->scrub_lock); } void btrfs_scrub_continue(struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; atomic_dec(&fs_info->scrub_pause_req); wake_up(&fs_info->scrub_pause_wait); } void btrfs_scrub_pause_super(struct btrfs_root *root) { down_write(&root->fs_info->scrub_super_lock); } void btrfs_scrub_continue_super(struct btrfs_root *root) { up_write(&root->fs_info->scrub_super_lock); } int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) { mutex_lock(&fs_info->scrub_lock); if (!atomic_read(&fs_info->scrubs_running)) { mutex_unlock(&fs_info->scrub_lock); return -ENOTCONN; } atomic_inc(&fs_info->scrub_cancel_req); while (atomic_read(&fs_info->scrubs_running)) { mutex_unlock(&fs_info->scrub_lock); wait_event(fs_info->scrub_pause_wait, atomic_read(&fs_info->scrubs_running) == 0); mutex_lock(&fs_info->scrub_lock); } atomic_dec(&fs_info->scrub_cancel_req); mutex_unlock(&fs_info->scrub_lock); return 0; } int btrfs_scrub_cancel(struct btrfs_root *root) { return __btrfs_scrub_cancel(root->fs_info); } int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev) { struct btrfs_fs_info *fs_info = root->fs_info; struct scrub_dev *sdev; mutex_lock(&fs_info->scrub_lock); sdev = dev->scrub_device; if (!sdev) { mutex_unlock(&fs_info->scrub_lock); return -ENOTCONN; } atomic_inc(&sdev->cancel_req); while (dev->scrub_device) { mutex_unlock(&fs_info->scrub_lock); wait_event(fs_info->scrub_pause_wait, dev->scrub_device == NULL); mutex_lock(&fs_info->scrub_lock); } mutex_unlock(&fs_info->scrub_lock); return 0; } int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_device *dev; int ret; /* * we have to hold the device_list_mutex here so the device * does not go away in cancel_dev. FIXME: find a better solution */ mutex_lock(&fs_info->fs_devices->device_list_mutex); dev = btrfs_find_device(root, devid, NULL, NULL); if (!dev) { mutex_unlock(&fs_info->fs_devices->device_list_mutex); return -ENODEV; } ret = btrfs_scrub_cancel_dev(root, dev); mutex_unlock(&fs_info->fs_devices->device_list_mutex); return ret; } int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, struct btrfs_scrub_progress *progress) { struct btrfs_device *dev; struct scrub_dev *sdev = NULL; mutex_lock(&root->fs_info->fs_devices->device_list_mutex); dev = btrfs_find_device(root, devid, NULL, NULL); if (dev) sdev = dev->scrub_device; if (sdev) memcpy(progress, &sdev->stat, sizeof(*progress)); mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV; }