/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_RESCTRL_INTERNAL_H #define _ASM_X86_RESCTRL_INTERNAL_H #include #include #include #define MSR_IA32_L3_QOS_CFG 0xc81 #define MSR_IA32_L2_QOS_CFG 0xc82 #define MSR_IA32_L3_CBM_BASE 0xc90 #define MSR_IA32_L2_CBM_BASE 0xd10 #define MSR_IA32_MBA_THRTL_BASE 0xd50 #define MSR_IA32_QM_CTR 0x0c8e #define MSR_IA32_QM_EVTSEL 0x0c8d #define L3_QOS_CDP_ENABLE 0x01ULL #define L2_QOS_CDP_ENABLE 0x01ULL /* * Event IDs are used to program IA32_QM_EVTSEL before reading event * counter from IA32_QM_CTR */ #define QOS_L3_OCCUP_EVENT_ID 0x01 #define QOS_L3_MBM_TOTAL_EVENT_ID 0x02 #define QOS_L3_MBM_LOCAL_EVENT_ID 0x03 #define CQM_LIMBOCHECK_INTERVAL 1000 #define MBM_CNTR_WIDTH 24 #define MBM_OVERFLOW_INTERVAL 1000 #define MAX_MBA_BW 100u #define MBA_IS_LINEAR 0x4 #define MBA_MAX_MBPS U32_MAX #define RMID_VAL_ERROR BIT_ULL(63) #define RMID_VAL_UNAVAIL BIT_ULL(62) DECLARE_STATIC_KEY_FALSE(rdt_enable_key); /** * struct mon_evt - Entry in the event list of a resource * @evtid: event id * @name: name of the event */ struct mon_evt { u32 evtid; char *name; struct list_head list; }; /** * struct mon_data_bits - Monitoring details for each event file * @rid: Resource id associated with the event file. * @evtid: Event id associated with the event file * @domid: The domain to which the event file belongs */ union mon_data_bits { void *priv; struct { unsigned int rid : 10; unsigned int evtid : 8; unsigned int domid : 14; } u; }; struct rmid_read { struct rdtgroup *rgrp; struct rdt_domain *d; int evtid; bool first; u64 val; }; extern unsigned int resctrl_cqm_threshold; extern bool rdt_alloc_capable; extern bool rdt_mon_capable; extern unsigned int rdt_mon_features; enum rdt_group_type { RDTCTRL_GROUP = 0, RDTMON_GROUP, RDT_NUM_GROUP, }; /** * enum rdtgrp_mode - Mode of a RDT resource group * @RDT_MODE_SHAREABLE: This resource group allows sharing of its allocations * @RDT_MODE_EXCLUSIVE: No sharing of this resource group's allocations allowed * @RDT_MODE_PSEUDO_LOCKSETUP: Resource group will be used for Pseudo-Locking * @RDT_MODE_PSEUDO_LOCKED: No sharing of this resource group's allocations * allowed AND the allocations are Cache Pseudo-Locked * * The mode of a resource group enables control over the allowed overlap * between allocations associated with different resource groups (classes * of service). User is able to modify the mode of a resource group by * writing to the "mode" resctrl file associated with the resource group. * * The "shareable", "exclusive", and "pseudo-locksetup" modes are set by * writing the appropriate text to the "mode" file. A resource group enters * "pseudo-locked" mode after the schemata is written while the resource * group is in "pseudo-locksetup" mode. */ enum rdtgrp_mode { RDT_MODE_SHAREABLE = 0, RDT_MODE_EXCLUSIVE, RDT_MODE_PSEUDO_LOCKSETUP, RDT_MODE_PSEUDO_LOCKED, /* Must be last */ RDT_NUM_MODES, }; /** * struct mongroup - store mon group's data in resctrl fs. * @mon_data_kn kernlfs node for the mon_data directory * @parent: parent rdtgrp * @crdtgrp_list: child rdtgroup node list * @rmid: rmid for this rdtgroup */ struct mongroup { struct kernfs_node *mon_data_kn; struct rdtgroup *parent; struct list_head crdtgrp_list; u32 rmid; }; /** * struct pseudo_lock_region - pseudo-lock region information * @r: RDT resource to which this pseudo-locked region * belongs * @d: RDT domain to which this pseudo-locked region * belongs * @cbm: bitmask of the pseudo-locked region * @lock_thread_wq: waitqueue used to wait on the pseudo-locking thread * completion * @thread_done: variable used by waitqueue to test if pseudo-locking * thread completed * @cpu: core associated with the cache on which the setup code * will be run * @line_size: size of the cache lines * @size: size of pseudo-locked region in bytes * @kmem: the kernel memory associated with pseudo-locked region * @minor: minor number of character device associated with this * region * @debugfs_dir: pointer to this region's directory in the debugfs * filesystem * @pm_reqs: Power management QoS requests related to this region */ struct pseudo_lock_region { struct rdt_resource *r; struct rdt_domain *d; u32 cbm; wait_queue_head_t lock_thread_wq; int thread_done; int cpu; unsigned int line_size; unsigned int size; void *kmem; unsigned int minor; struct dentry *debugfs_dir; struct list_head pm_reqs; }; /** * struct rdtgroup - store rdtgroup's data in resctrl file system. * @kn: kernfs node * @rdtgroup_list: linked list for all rdtgroups * @closid: closid for this rdtgroup * @cpu_mask: CPUs assigned to this rdtgroup * @flags: status bits * @waitcount: how many cpus expect to find this * group when they acquire rdtgroup_mutex * @type: indicates type of this rdtgroup - either * monitor only or ctrl_mon group * @mon: mongroup related data * @mode: mode of resource group * @plr: pseudo-locked region */ struct rdtgroup { struct kernfs_node *kn; struct list_head rdtgroup_list; u32 closid; struct cpumask cpu_mask; int flags; atomic_t waitcount; enum rdt_group_type type; struct mongroup mon; enum rdtgrp_mode mode; struct pseudo_lock_region *plr; }; /* rdtgroup.flags */ #define RDT_DELETED 1 /* rftype.flags */ #define RFTYPE_FLAGS_CPUS_LIST 1 /* * Define the file type flags for base and info directories. */ #define RFTYPE_INFO BIT(0) #define RFTYPE_BASE BIT(1) #define RF_CTRLSHIFT 4 #define RF_MONSHIFT 5 #define RF_TOPSHIFT 6 #define RFTYPE_CTRL BIT(RF_CTRLSHIFT) #define RFTYPE_MON BIT(RF_MONSHIFT) #define RFTYPE_TOP BIT(RF_TOPSHIFT) #define RFTYPE_RES_CACHE BIT(8) #define RFTYPE_RES_MB BIT(9) #define RF_CTRL_INFO (RFTYPE_INFO | RFTYPE_CTRL) #define RF_MON_INFO (RFTYPE_INFO | RFTYPE_MON) #define RF_TOP_INFO (RFTYPE_INFO | RFTYPE_TOP) #define RF_CTRL_BASE (RFTYPE_BASE | RFTYPE_CTRL) /* List of all resource groups */ extern struct list_head rdt_all_groups; extern int max_name_width, max_data_width; int __init rdtgroup_init(void); void __exit rdtgroup_exit(void); /** * struct rftype - describe each file in the resctrl file system * @name: File name * @mode: Access mode * @kf_ops: File operations * @flags: File specific RFTYPE_FLAGS_* flags * @fflags: File specific RF_* or RFTYPE_* flags * @seq_show: Show content of the file * @write: Write to the file */ struct rftype { char *name; umode_t mode; struct kernfs_ops *kf_ops; unsigned long flags; unsigned long fflags; int (*seq_show)(struct kernfs_open_file *of, struct seq_file *sf, void *v); /* * write() is the generic write callback which maps directly to * kernfs write operation and overrides all other operations. * Maximum write size is determined by ->max_write_len. */ ssize_t (*write)(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off); }; /** * struct mbm_state - status for each MBM counter in each domain * @chunks: Total data moved (multiply by rdt_group.mon_scale to get bytes) * @prev_msr Value of IA32_QM_CTR for this RMID last time we read it * @chunks_bw Total local data moved. Used for bandwidth calculation * @prev_bw_msr:Value of previous IA32_QM_CTR for bandwidth counting * @prev_bw The most recent bandwidth in MBps * @delta_bw Difference between the current and previous bandwidth * @delta_comp Indicates whether to compute the delta_bw */ struct mbm_state { u64 chunks; u64 prev_msr; u64 chunks_bw; u64 prev_bw_msr; u32 prev_bw; u32 delta_bw; bool delta_comp; }; /** * struct rdt_domain - group of cpus sharing an RDT resource * @list: all instances of this resource * @id: unique id for this instance * @cpu_mask: which cpus share this resource * @rmid_busy_llc: * bitmap of which limbo RMIDs are above threshold * @mbm_total: saved state for MBM total bandwidth * @mbm_local: saved state for MBM local bandwidth * @mbm_over: worker to periodically read MBM h/w counters * @cqm_limbo: worker to periodically read CQM h/w counters * @mbm_work_cpu: * worker cpu for MBM h/w counters * @cqm_work_cpu: * worker cpu for CQM h/w counters * @ctrl_val: array of cache or mem ctrl values (indexed by CLOSID) * @mbps_val: When mba_sc is enabled, this holds the bandwidth in MBps * @new_ctrl: new ctrl value to be loaded * @have_new_ctrl: did user provide new_ctrl for this domain * @plr: pseudo-locked region (if any) associated with domain */ struct rdt_domain { struct list_head list; int id; struct cpumask cpu_mask; unsigned long *rmid_busy_llc; struct mbm_state *mbm_total; struct mbm_state *mbm_local; struct delayed_work mbm_over; struct delayed_work cqm_limbo; int mbm_work_cpu; int cqm_work_cpu; u32 *ctrl_val; u32 *mbps_val; u32 new_ctrl; bool have_new_ctrl; struct pseudo_lock_region *plr; }; /** * struct msr_param - set a range of MSRs from a domain * @res: The resource to use * @low: Beginning index from base MSR * @high: End index */ struct msr_param { struct rdt_resource *res; int low; int high; }; /** * struct rdt_cache - Cache allocation related data * @cbm_len: Length of the cache bit mask * @min_cbm_bits: Minimum number of consecutive bits to be set * @cbm_idx_mult: Multiplier of CBM index * @cbm_idx_offset: Offset of CBM index. CBM index is computed by: * closid * cbm_idx_multi + cbm_idx_offset * in a cache bit mask * @shareable_bits: Bitmask of shareable resource with other * executing entities */ struct rdt_cache { unsigned int cbm_len; unsigned int min_cbm_bits; unsigned int cbm_idx_mult; unsigned int cbm_idx_offset; unsigned int shareable_bits; }; /** * struct rdt_membw - Memory bandwidth allocation related data * @max_delay: Max throttle delay. Delay is the hardware * representation for memory bandwidth. * @min_bw: Minimum memory bandwidth percentage user can request * @bw_gran: Granularity at which the memory bandwidth is allocated * @delay_linear: True if memory B/W delay is in linear scale * @mba_sc: True if MBA software controller(mba_sc) is enabled * @mb_map: Mapping of memory B/W percentage to memory B/W delay */ struct rdt_membw { u32 max_delay; u32 min_bw; u32 bw_gran; u32 delay_linear; bool mba_sc; u32 *mb_map; }; static inline bool is_llc_occupancy_enabled(void) { return (rdt_mon_features & (1 << QOS_L3_OCCUP_EVENT_ID)); } static inline bool is_mbm_total_enabled(void) { return (rdt_mon_features & (1 << QOS_L3_MBM_TOTAL_EVENT_ID)); } static inline bool is_mbm_local_enabled(void) { return (rdt_mon_features & (1 << QOS_L3_MBM_LOCAL_EVENT_ID)); } static inline bool is_mbm_enabled(void) { return (is_mbm_total_enabled() || is_mbm_local_enabled()); } static inline bool is_mbm_event(int e) { return (e >= QOS_L3_MBM_TOTAL_EVENT_ID && e <= QOS_L3_MBM_LOCAL_EVENT_ID); } struct rdt_parse_data { struct rdtgroup *rdtgrp; char *buf; }; /** * struct rdt_resource - attributes of an RDT resource * @rid: The index of the resource * @alloc_enabled: Is allocation enabled on this machine * @mon_enabled: Is monitoring enabled for this feature * @alloc_capable: Is allocation available on this machine * @mon_capable: Is monitor feature available on this machine * @name: Name to use in "schemata" file * @num_closid: Number of CLOSIDs available * @cache_level: Which cache level defines scope of this resource * @default_ctrl: Specifies default cache cbm or memory B/W percent. * @msr_base: Base MSR address for CBMs * @msr_update: Function pointer to update QOS MSRs * @data_width: Character width of data when displaying * @domains: All domains for this resource * @cache: Cache allocation related data * @format_str: Per resource format string to show domain value * @parse_ctrlval: Per resource function pointer to parse control values * @evt_list: List of monitoring events * @num_rmid: Number of RMIDs available * @mon_scale: cqm counter * mon_scale = occupancy in bytes * @fflags: flags to choose base and info files */ struct rdt_resource { int rid; bool alloc_enabled; bool mon_enabled; bool alloc_capable; bool mon_capable; char *name; int num_closid; int cache_level; u32 default_ctrl; unsigned int msr_base; void (*msr_update) (struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r); int data_width; struct list_head domains; struct rdt_cache cache; struct rdt_membw membw; const char *format_str; int (*parse_ctrlval)(struct rdt_parse_data *data, struct rdt_resource *r, struct rdt_domain *d); struct list_head evt_list; int num_rmid; unsigned int mon_scale; unsigned long fflags; }; int parse_cbm(struct rdt_parse_data *data, struct rdt_resource *r, struct rdt_domain *d); int parse_bw_intel(struct rdt_parse_data *data, struct rdt_resource *r, struct rdt_domain *d); extern struct mutex rdtgroup_mutex; extern struct rdt_resource rdt_resources_all[]; extern struct rdtgroup rdtgroup_default; DECLARE_STATIC_KEY_FALSE(rdt_alloc_enable_key); extern struct dentry *debugfs_resctrl; enum { RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE, RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE, RDT_RESOURCE_MBA, /* Must be the last */ RDT_NUM_RESOURCES, }; #define for_each_rdt_resource(r) \ for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\ r++) #define for_each_capable_rdt_resource(r) \ for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\ r++) \ if (r->alloc_capable || r->mon_capable) #define for_each_alloc_capable_rdt_resource(r) \ for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\ r++) \ if (r->alloc_capable) #define for_each_mon_capable_rdt_resource(r) \ for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\ r++) \ if (r->mon_capable) #define for_each_alloc_enabled_rdt_resource(r) \ for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\ r++) \ if (r->alloc_enabled) #define for_each_mon_enabled_rdt_resource(r) \ for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\ r++) \ if (r->mon_enabled) /* CPUID.(EAX=10H, ECX=ResID=1).EAX */ union cpuid_0x10_1_eax { struct { unsigned int cbm_len:5; } split; unsigned int full; }; /* CPUID.(EAX=10H, ECX=ResID=3).EAX */ union cpuid_0x10_3_eax { struct { unsigned int max_delay:12; } split; unsigned int full; }; /* CPUID.(EAX=10H, ECX=ResID).EDX */ union cpuid_0x10_x_edx { struct { unsigned int cos_max:16; } split; unsigned int full; }; void rdt_last_cmd_clear(void); void rdt_last_cmd_puts(const char *s); void rdt_last_cmd_printf(const char *fmt, ...); void rdt_ctrl_update(void *arg); struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn); void rdtgroup_kn_unlock(struct kernfs_node *kn); int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name); int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, umode_t mask); struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id, struct list_head **pos); ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off); int rdtgroup_schemata_show(struct kernfs_open_file *of, struct seq_file *s, void *v); bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, unsigned long cbm, int closid, bool exclusive); unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, struct rdt_domain *d, unsigned long cbm); enum rdtgrp_mode rdtgroup_mode_by_closid(int closid); int rdtgroup_tasks_assigned(struct rdtgroup *r); int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp); int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp); bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm); bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d); int rdt_pseudo_lock_init(void); void rdt_pseudo_lock_release(void); int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp); void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp); struct rdt_domain *get_domain_from_cpu(int cpu, struct rdt_resource *r); int update_domains(struct rdt_resource *r, int closid); int closids_supported(void); void closid_free(int closid); int alloc_rmid(void); void free_rmid(u32 rmid); int rdt_get_mon_l3_config(struct rdt_resource *r); void mon_event_count(void *info); int rdtgroup_mondata_show(struct seq_file *m, void *arg); void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id); void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, struct rdt_domain *d); void mon_event_read(struct rmid_read *rr, struct rdt_domain *d, struct rdtgroup *rdtgrp, int evtid, int first); void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms); void mbm_handle_overflow(struct work_struct *work); bool is_mba_sc(struct rdt_resource *r); void setup_default_ctrlval(struct rdt_resource *r, u32 *dc, u32 *dm); u32 delay_bw_map(unsigned long bw, struct rdt_resource *r); void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms); void cqm_handle_limbo(struct work_struct *work); bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d); void __check_limbo(struct rdt_domain *d, bool force_free); #endif /* _ASM_X86_RESCTRL_INTERNAL_H */