/* * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. * * Authors: * Alexander Graf * Kevin Wolf * * Description: * This file is derived from arch/powerpc/kvm/44x.c, * by Hollis Blanchard . * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU /* #define EXIT_DEBUG */ /* #define EXIT_DEBUG_SIMPLE */ /* #define DEBUG_EXT */ static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, ulong msr); /* Some compatibility defines */ #ifdef CONFIG_PPC_BOOK3S_32 #define MSR_USER32 MSR_USER #define MSR_USER64 MSR_USER #define HW_PAGE_SIZE PAGE_SIZE #endif struct kvm_stats_debugfs_item debugfs_entries[] = { { "exits", VCPU_STAT(sum_exits) }, { "mmio", VCPU_STAT(mmio_exits) }, { "sig", VCPU_STAT(signal_exits) }, { "sysc", VCPU_STAT(syscall_exits) }, { "inst_emu", VCPU_STAT(emulated_inst_exits) }, { "dec", VCPU_STAT(dec_exits) }, { "ext_intr", VCPU_STAT(ext_intr_exits) }, { "queue_intr", VCPU_STAT(queue_intr) }, { "halt_wakeup", VCPU_STAT(halt_wakeup) }, { "pf_storage", VCPU_STAT(pf_storage) }, { "sp_storage", VCPU_STAT(sp_storage) }, { "pf_instruc", VCPU_STAT(pf_instruc) }, { "sp_instruc", VCPU_STAT(sp_instruc) }, { "ld", VCPU_STAT(ld) }, { "ld_slow", VCPU_STAT(ld_slow) }, { "st", VCPU_STAT(st) }, { "st_slow", VCPU_STAT(st_slow) }, { NULL } }; void kvmppc_core_load_host_debugstate(struct kvm_vcpu *vcpu) { } void kvmppc_core_load_guest_debugstate(struct kvm_vcpu *vcpu) { } void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { #ifdef CONFIG_PPC_BOOK3S_64 memcpy(to_svcpu(vcpu)->slb, to_book3s(vcpu)->slb_shadow, sizeof(to_svcpu(vcpu)->slb)); memcpy(&get_paca()->shadow_vcpu, to_book3s(vcpu)->shadow_vcpu, sizeof(get_paca()->shadow_vcpu)); to_svcpu(vcpu)->slb_max = to_book3s(vcpu)->slb_shadow_max; #endif #ifdef CONFIG_PPC_BOOK3S_32 current->thread.kvm_shadow_vcpu = to_book3s(vcpu)->shadow_vcpu; #endif } void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) { #ifdef CONFIG_PPC_BOOK3S_64 memcpy(to_book3s(vcpu)->slb_shadow, to_svcpu(vcpu)->slb, sizeof(to_svcpu(vcpu)->slb)); memcpy(to_book3s(vcpu)->shadow_vcpu, &get_paca()->shadow_vcpu, sizeof(get_paca()->shadow_vcpu)); to_book3s(vcpu)->slb_shadow_max = to_svcpu(vcpu)->slb_max; #endif kvmppc_giveup_ext(vcpu, MSR_FP); kvmppc_giveup_ext(vcpu, MSR_VEC); kvmppc_giveup_ext(vcpu, MSR_VSX); } #if defined(EXIT_DEBUG) static u32 kvmppc_get_dec(struct kvm_vcpu *vcpu) { u64 jd = mftb() - vcpu->arch.dec_jiffies; return vcpu->arch.dec - jd; } #endif static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu) { vcpu->arch.shadow_msr = vcpu->arch.msr; /* Guest MSR values */ vcpu->arch.shadow_msr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_DE; /* Process MSR values */ vcpu->arch.shadow_msr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE; /* External providers the guest reserved */ vcpu->arch.shadow_msr |= (vcpu->arch.msr & vcpu->arch.guest_owned_ext); /* 64-bit Process MSR values */ #ifdef CONFIG_PPC_BOOK3S_64 vcpu->arch.shadow_msr |= MSR_ISF | MSR_HV; #endif } void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) { ulong old_msr = vcpu->arch.msr; #ifdef EXIT_DEBUG printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr); #endif msr &= to_book3s(vcpu)->msr_mask; vcpu->arch.msr = msr; kvmppc_recalc_shadow_msr(vcpu); if (msr & (MSR_WE|MSR_POW)) { if (!vcpu->arch.pending_exceptions) { kvm_vcpu_block(vcpu); vcpu->stat.halt_wakeup++; } } if ((vcpu->arch.msr & (MSR_PR|MSR_IR|MSR_DR)) != (old_msr & (MSR_PR|MSR_IR|MSR_DR))) { kvmppc_mmu_flush_segments(vcpu); kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); } /* Preload FPU if it's enabled */ if (vcpu->arch.msr & MSR_FP) kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); } void kvmppc_inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 flags) { vcpu->arch.srr0 = kvmppc_get_pc(vcpu); vcpu->arch.srr1 = vcpu->arch.msr | flags; kvmppc_set_pc(vcpu, to_book3s(vcpu)->hior + vec); vcpu->arch.mmu.reset_msr(vcpu); } static int kvmppc_book3s_vec2irqprio(unsigned int vec) { unsigned int prio; switch (vec) { case 0x100: prio = BOOK3S_IRQPRIO_SYSTEM_RESET; break; case 0x200: prio = BOOK3S_IRQPRIO_MACHINE_CHECK; break; case 0x300: prio = BOOK3S_IRQPRIO_DATA_STORAGE; break; case 0x380: prio = BOOK3S_IRQPRIO_DATA_SEGMENT; break; case 0x400: prio = BOOK3S_IRQPRIO_INST_STORAGE; break; case 0x480: prio = BOOK3S_IRQPRIO_INST_SEGMENT; break; case 0x500: prio = BOOK3S_IRQPRIO_EXTERNAL; break; case 0x600: prio = BOOK3S_IRQPRIO_ALIGNMENT; break; case 0x700: prio = BOOK3S_IRQPRIO_PROGRAM; break; case 0x800: prio = BOOK3S_IRQPRIO_FP_UNAVAIL; break; case 0x900: prio = BOOK3S_IRQPRIO_DECREMENTER; break; case 0xc00: prio = BOOK3S_IRQPRIO_SYSCALL; break; case 0xd00: prio = BOOK3S_IRQPRIO_DEBUG; break; case 0xf20: prio = BOOK3S_IRQPRIO_ALTIVEC; break; case 0xf40: prio = BOOK3S_IRQPRIO_VSX; break; default: prio = BOOK3S_IRQPRIO_MAX; break; } return prio; } static void kvmppc_book3s_dequeue_irqprio(struct kvm_vcpu *vcpu, unsigned int vec) { clear_bit(kvmppc_book3s_vec2irqprio(vec), &vcpu->arch.pending_exceptions); } void kvmppc_book3s_queue_irqprio(struct kvm_vcpu *vcpu, unsigned int vec) { vcpu->stat.queue_intr++; set_bit(kvmppc_book3s_vec2irqprio(vec), &vcpu->arch.pending_exceptions); #ifdef EXIT_DEBUG printk(KERN_INFO "Queueing interrupt %x\n", vec); #endif } void kvmppc_core_queue_program(struct kvm_vcpu *vcpu, ulong flags) { to_book3s(vcpu)->prog_flags = flags; kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_PROGRAM); } void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu) { kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DECREMENTER); } int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu) { return test_bit(BOOK3S_INTERRUPT_DECREMENTER >> 7, &vcpu->arch.pending_exceptions); } void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu) { kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_DECREMENTER); } void kvmppc_core_queue_external(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) { kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL); } void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) { kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL); } int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu, unsigned int priority) { int deliver = 1; int vec = 0; ulong flags = 0ULL; switch (priority) { case BOOK3S_IRQPRIO_DECREMENTER: deliver = vcpu->arch.msr & MSR_EE; vec = BOOK3S_INTERRUPT_DECREMENTER; break; case BOOK3S_IRQPRIO_EXTERNAL: deliver = vcpu->arch.msr & MSR_EE; vec = BOOK3S_INTERRUPT_EXTERNAL; break; case BOOK3S_IRQPRIO_SYSTEM_RESET: vec = BOOK3S_INTERRUPT_SYSTEM_RESET; break; case BOOK3S_IRQPRIO_MACHINE_CHECK: vec = BOOK3S_INTERRUPT_MACHINE_CHECK; break; case BOOK3S_IRQPRIO_DATA_STORAGE: vec = BOOK3S_INTERRUPT_DATA_STORAGE; break; case BOOK3S_IRQPRIO_INST_STORAGE: vec = BOOK3S_INTERRUPT_INST_STORAGE; break; case BOOK3S_IRQPRIO_DATA_SEGMENT: vec = BOOK3S_INTERRUPT_DATA_SEGMENT; break; case BOOK3S_IRQPRIO_INST_SEGMENT: vec = BOOK3S_INTERRUPT_INST_SEGMENT; break; case BOOK3S_IRQPRIO_ALIGNMENT: vec = BOOK3S_INTERRUPT_ALIGNMENT; break; case BOOK3S_IRQPRIO_PROGRAM: vec = BOOK3S_INTERRUPT_PROGRAM; flags = to_book3s(vcpu)->prog_flags; break; case BOOK3S_IRQPRIO_VSX: vec = BOOK3S_INTERRUPT_VSX; break; case BOOK3S_IRQPRIO_ALTIVEC: vec = BOOK3S_INTERRUPT_ALTIVEC; break; case BOOK3S_IRQPRIO_FP_UNAVAIL: vec = BOOK3S_INTERRUPT_FP_UNAVAIL; break; case BOOK3S_IRQPRIO_SYSCALL: vec = BOOK3S_INTERRUPT_SYSCALL; break; case BOOK3S_IRQPRIO_DEBUG: vec = BOOK3S_INTERRUPT_TRACE; break; case BOOK3S_IRQPRIO_PERFORMANCE_MONITOR: vec = BOOK3S_INTERRUPT_PERFMON; break; default: deliver = 0; printk(KERN_ERR "KVM: Unknown interrupt: 0x%x\n", priority); break; } #if 0 printk(KERN_INFO "Deliver interrupt 0x%x? %x\n", vec, deliver); #endif if (deliver) kvmppc_inject_interrupt(vcpu, vec, flags); return deliver; } void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu) { unsigned long *pending = &vcpu->arch.pending_exceptions; unsigned int priority; #ifdef EXIT_DEBUG if (vcpu->arch.pending_exceptions) printk(KERN_EMERG "KVM: Check pending: %lx\n", vcpu->arch.pending_exceptions); #endif priority = __ffs(*pending); while (priority < BOOK3S_IRQPRIO_MAX) { if (kvmppc_book3s_irqprio_deliver(vcpu, priority) && (priority != BOOK3S_IRQPRIO_DECREMENTER)) { /* DEC interrupts get cleared by mtdec */ clear_bit(priority, &vcpu->arch.pending_exceptions); break; } priority = find_next_bit(pending, BITS_PER_BYTE * sizeof(*pending), priority + 1); } } void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) { u32 host_pvr; vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB; vcpu->arch.pvr = pvr; #ifdef CONFIG_PPC_BOOK3S_64 if ((pvr >= 0x330000) && (pvr < 0x70330000)) { kvmppc_mmu_book3s_64_init(vcpu); to_book3s(vcpu)->hior = 0xfff00000; to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL; } else #endif { kvmppc_mmu_book3s_32_init(vcpu); to_book3s(vcpu)->hior = 0; to_book3s(vcpu)->msr_mask = 0xffffffffULL; } /* If we are in hypervisor level on 970, we can tell the CPU to * treat DCBZ as 32 bytes store */ vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32; if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) && !strcmp(cur_cpu_spec->platform, "ppc970")) vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; /* Cell performs badly if MSR_FEx are set. So let's hope nobody really needs them in a VM on Cell and force disable them. */ if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be")) to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1); #ifdef CONFIG_PPC_BOOK3S_32 /* 32 bit Book3S always has 32 byte dcbz */ vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; #endif /* On some CPUs we can execute paired single operations natively */ asm ( "mfpvr %0" : "=r"(host_pvr)); switch (host_pvr) { case 0x00080200: /* lonestar 2.0 */ case 0x00088202: /* lonestar 2.2 */ case 0x70000100: /* gekko 1.0 */ case 0x00080100: /* gekko 2.0 */ case 0x00083203: /* gekko 2.3a */ case 0x00083213: /* gekko 2.3b */ case 0x00083204: /* gekko 2.4 */ case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */ case 0x00087200: /* broadway */ vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS; /* Enable HID2.PSE - in case we need it later */ mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29)); } } /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to * emulate 32 bytes dcbz length. * * The Book3s_64 inventors also realized this case and implemented a special bit * in the HID5 register, which is a hypervisor ressource. Thus we can't use it. * * My approach here is to patch the dcbz instruction on executing pages. */ static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) { struct page *hpage; u64 hpage_offset; u32 *page; int i; hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT); if (is_error_page(hpage)) return; hpage_offset = pte->raddr & ~PAGE_MASK; hpage_offset &= ~0xFFFULL; hpage_offset /= 4; get_page(hpage); page = kmap_atomic(hpage, KM_USER0); /* patch dcbz into reserved instruction, so we trap */ for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++) if ((page[i] & 0xff0007ff) == INS_DCBZ) page[i] &= 0xfffffff7; kunmap_atomic(page, KM_USER0); put_page(hpage); } static int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, bool data, struct kvmppc_pte *pte) { int relocated = (vcpu->arch.msr & (data ? MSR_DR : MSR_IR)); int r; if (relocated) { r = vcpu->arch.mmu.xlate(vcpu, eaddr, pte, data); } else { pte->eaddr = eaddr; pte->raddr = eaddr & 0xffffffff; pte->vpage = VSID_REAL | eaddr >> 12; pte->may_read = true; pte->may_write = true; pte->may_execute = true; r = 0; } return r; } static hva_t kvmppc_bad_hva(void) { return PAGE_OFFSET; } static hva_t kvmppc_pte_to_hva(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte, bool read) { hva_t hpage; if (read && !pte->may_read) goto err; if (!read && !pte->may_write) goto err; hpage = gfn_to_hva(vcpu->kvm, pte->raddr >> PAGE_SHIFT); if (kvm_is_error_hva(hpage)) goto err; return hpage | (pte->raddr & ~PAGE_MASK); err: return kvmppc_bad_hva(); } int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, bool data) { struct kvmppc_pte pte; vcpu->stat.st++; if (kvmppc_xlate(vcpu, *eaddr, data, &pte)) return -ENOENT; *eaddr = pte.raddr; if (!pte.may_write) return -EPERM; if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) return EMULATE_DO_MMIO; return EMULATE_DONE; } int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, bool data) { struct kvmppc_pte pte; hva_t hva = *eaddr; vcpu->stat.ld++; if (kvmppc_xlate(vcpu, *eaddr, data, &pte)) goto nopte; *eaddr = pte.raddr; hva = kvmppc_pte_to_hva(vcpu, &pte, true); if (kvm_is_error_hva(hva)) goto mmio; if (copy_from_user(ptr, (void __user *)hva, size)) { printk(KERN_INFO "kvmppc_ld at 0x%lx failed\n", hva); goto mmio; } return EMULATE_DONE; nopte: return -ENOENT; mmio: return EMULATE_DO_MMIO; } static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) { return kvm_is_visible_gfn(vcpu->kvm, gfn); } int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu, ulong eaddr, int vec) { bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE); int r = RESUME_GUEST; int relocated; int page_found = 0; struct kvmppc_pte pte; bool is_mmio = false; bool dr = (vcpu->arch.msr & MSR_DR) ? true : false; bool ir = (vcpu->arch.msr & MSR_IR) ? true : false; u64 vsid; relocated = data ? dr : ir; /* Resolve real address if translation turned on */ if (relocated) { page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data); } else { pte.may_execute = true; pte.may_read = true; pte.may_write = true; pte.raddr = eaddr & 0xffffffff; pte.eaddr = eaddr; pte.vpage = eaddr >> 12; } switch (vcpu->arch.msr & (MSR_DR|MSR_IR)) { case 0: pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12)); break; case MSR_DR: case MSR_IR: vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); if ((vcpu->arch.msr & (MSR_DR|MSR_IR)) == MSR_DR) pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12)); else pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12)); pte.vpage |= vsid; if (vsid == -1) page_found = -EINVAL; break; } if (vcpu->arch.mmu.is_dcbz32(vcpu) && (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { /* * If we do the dcbz hack, we have to NX on every execution, * so we can patch the executing code. This renders our guest * NX-less. */ pte.may_execute = !data; } if (page_found == -ENOENT) { /* Page not found in guest PTE entries */ vcpu->arch.dear = kvmppc_get_fault_dar(vcpu); to_book3s(vcpu)->dsisr = to_svcpu(vcpu)->fault_dsisr; vcpu->arch.msr |= (to_svcpu(vcpu)->shadow_srr1 & 0x00000000f8000000ULL); kvmppc_book3s_queue_irqprio(vcpu, vec); } else if (page_found == -EPERM) { /* Storage protection */ vcpu->arch.dear = kvmppc_get_fault_dar(vcpu); to_book3s(vcpu)->dsisr = to_svcpu(vcpu)->fault_dsisr & ~DSISR_NOHPTE; to_book3s(vcpu)->dsisr |= DSISR_PROTFAULT; vcpu->arch.msr |= (to_svcpu(vcpu)->shadow_srr1 & 0x00000000f8000000ULL); kvmppc_book3s_queue_irqprio(vcpu, vec); } else if (page_found == -EINVAL) { /* Page not found in guest SLB */ vcpu->arch.dear = kvmppc_get_fault_dar(vcpu); kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80); } else if (!is_mmio && kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) { /* The guest's PTE is not mapped yet. Map on the host */ kvmppc_mmu_map_page(vcpu, &pte); if (data) vcpu->stat.sp_storage++; else if (vcpu->arch.mmu.is_dcbz32(vcpu) && (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) kvmppc_patch_dcbz(vcpu, &pte); } else { /* MMIO */ vcpu->stat.mmio_exits++; vcpu->arch.paddr_accessed = pte.raddr; r = kvmppc_emulate_mmio(run, vcpu); if ( r == RESUME_HOST_NV ) r = RESUME_HOST; } return r; } static inline int get_fpr_index(int i) { #ifdef CONFIG_VSX i *= 2; #endif return i; } /* Give up external provider (FPU, Altivec, VSX) */ void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr) { struct thread_struct *t = ¤t->thread; u64 *vcpu_fpr = vcpu->arch.fpr; #ifdef CONFIG_VSX u64 *vcpu_vsx = vcpu->arch.vsr; #endif u64 *thread_fpr = (u64*)t->fpr; int i; if (!(vcpu->arch.guest_owned_ext & msr)) return; #ifdef DEBUG_EXT printk(KERN_INFO "Giving up ext 0x%lx\n", msr); #endif switch (msr) { case MSR_FP: giveup_fpu(current); for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++) vcpu_fpr[i] = thread_fpr[get_fpr_index(i)]; vcpu->arch.fpscr = t->fpscr.val; break; case MSR_VEC: #ifdef CONFIG_ALTIVEC giveup_altivec(current); memcpy(vcpu->arch.vr, t->vr, sizeof(vcpu->arch.vr)); vcpu->arch.vscr = t->vscr; #endif break; case MSR_VSX: #ifdef CONFIG_VSX __giveup_vsx(current); for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr); i++) vcpu_vsx[i] = thread_fpr[get_fpr_index(i) + 1]; #endif break; default: BUG(); } vcpu->arch.guest_owned_ext &= ~msr; current->thread.regs->msr &= ~msr; kvmppc_recalc_shadow_msr(vcpu); } static int kvmppc_read_inst(struct kvm_vcpu *vcpu) { ulong srr0 = kvmppc_get_pc(vcpu); u32 last_inst = kvmppc_get_last_inst(vcpu); int ret; ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false); if (ret == -ENOENT) { vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 33, 33, 1); vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 34, 36, 0); vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 42, 47, 0); kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE); return EMULATE_AGAIN; } return EMULATE_DONE; } static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr) { /* Need to do paired single emulation? */ if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)) return EMULATE_DONE; /* Read out the instruction */ if (kvmppc_read_inst(vcpu) == EMULATE_DONE) /* Need to emulate */ return EMULATE_FAIL; return EMULATE_AGAIN; } /* Handle external providers (FPU, Altivec, VSX) */ static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, ulong msr) { struct thread_struct *t = ¤t->thread; u64 *vcpu_fpr = vcpu->arch.fpr; #ifdef CONFIG_VSX u64 *vcpu_vsx = vcpu->arch.vsr; #endif u64 *thread_fpr = (u64*)t->fpr; int i; /* When we have paired singles, we emulate in software */ if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) return RESUME_GUEST; if (!(vcpu->arch.msr & msr)) { kvmppc_book3s_queue_irqprio(vcpu, exit_nr); return RESUME_GUEST; } /* We already own the ext */ if (vcpu->arch.guest_owned_ext & msr) { return RESUME_GUEST; } #ifdef DEBUG_EXT printk(KERN_INFO "Loading up ext 0x%lx\n", msr); #endif current->thread.regs->msr |= msr; switch (msr) { case MSR_FP: for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++) thread_fpr[get_fpr_index(i)] = vcpu_fpr[i]; t->fpscr.val = vcpu->arch.fpscr; t->fpexc_mode = 0; kvmppc_load_up_fpu(); break; case MSR_VEC: #ifdef CONFIG_ALTIVEC memcpy(t->vr, vcpu->arch.vr, sizeof(vcpu->arch.vr)); t->vscr = vcpu->arch.vscr; t->vrsave = -1; kvmppc_load_up_altivec(); #endif break; case MSR_VSX: #ifdef CONFIG_VSX for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr); i++) thread_fpr[get_fpr_index(i) + 1] = vcpu_vsx[i]; kvmppc_load_up_vsx(); #endif break; default: BUG(); } vcpu->arch.guest_owned_ext |= msr; kvmppc_recalc_shadow_msr(vcpu); return RESUME_GUEST; } int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, unsigned int exit_nr) { int r = RESUME_HOST; vcpu->stat.sum_exits++; run->exit_reason = KVM_EXIT_UNKNOWN; run->ready_for_interrupt_injection = 1; #ifdef EXIT_DEBUG printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | dar=0x%lx | dec=0x%x | msr=0x%lx\n", exit_nr, kvmppc_get_pc(vcpu), kvmppc_get_fault_dar(vcpu), kvmppc_get_dec(vcpu), to_svcpu(vcpu)->shadow_srr1); #elif defined (EXIT_DEBUG_SIMPLE) if ((exit_nr != 0x900) && (exit_nr != 0x500)) printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | dar=0x%lx | msr=0x%lx\n", exit_nr, kvmppc_get_pc(vcpu), kvmppc_get_fault_dar(vcpu), vcpu->arch.msr); #endif kvm_resched(vcpu); switch (exit_nr) { case BOOK3S_INTERRUPT_INST_STORAGE: vcpu->stat.pf_instruc++; #ifdef CONFIG_PPC_BOOK3S_32 /* We set segments as unused segments when invalidating them. So * treat the respective fault as segment fault. */ if (to_svcpu(vcpu)->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT] == SR_INVALID) { kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); r = RESUME_GUEST; break; } #endif /* only care about PTEG not found errors, but leave NX alone */ if (to_svcpu(vcpu)->shadow_srr1 & 0x40000000) { r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr); vcpu->stat.sp_instruc++; } else if (vcpu->arch.mmu.is_dcbz32(vcpu) && (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { /* * XXX If we do the dcbz hack we use the NX bit to flush&patch the page, * so we can't use the NX bit inside the guest. Let's cross our fingers, * that no guest that needs the dcbz hack does NX. */ kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); r = RESUME_GUEST; } else { vcpu->arch.msr |= to_svcpu(vcpu)->shadow_srr1 & 0x58000000; kvmppc_book3s_queue_irqprio(vcpu, exit_nr); kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); r = RESUME_GUEST; } break; case BOOK3S_INTERRUPT_DATA_STORAGE: { ulong dar = kvmppc_get_fault_dar(vcpu); vcpu->stat.pf_storage++; #ifdef CONFIG_PPC_BOOK3S_32 /* We set segments as unused segments when invalidating them. So * treat the respective fault as segment fault. */ if ((to_svcpu(vcpu)->sr[dar >> SID_SHIFT]) == SR_INVALID) { kvmppc_mmu_map_segment(vcpu, dar); r = RESUME_GUEST; break; } #endif /* The only case we need to handle is missing shadow PTEs */ if (to_svcpu(vcpu)->fault_dsisr & DSISR_NOHPTE) { r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr); } else { vcpu->arch.dear = dar; to_book3s(vcpu)->dsisr = to_svcpu(vcpu)->fault_dsisr; kvmppc_book3s_queue_irqprio(vcpu, exit_nr); kvmppc_mmu_pte_flush(vcpu, vcpu->arch.dear, ~0xFFFUL); r = RESUME_GUEST; } break; } case BOOK3S_INTERRUPT_DATA_SEGMENT: if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) { vcpu->arch.dear = kvmppc_get_fault_dar(vcpu); kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DATA_SEGMENT); } r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_INST_SEGMENT: if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) { kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_SEGMENT); } r = RESUME_GUEST; break; /* We're good on these - the host merely wanted to get our attention */ case BOOK3S_INTERRUPT_DECREMENTER: vcpu->stat.dec_exits++; r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_EXTERNAL: vcpu->stat.ext_intr_exits++; r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_PERFMON: r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_PROGRAM: { enum emulation_result er; ulong flags; program_interrupt: flags = to_svcpu(vcpu)->shadow_srr1 & 0x1f0000ull; if (vcpu->arch.msr & MSR_PR) { #ifdef EXIT_DEBUG printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu)); #endif if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) { kvmppc_core_queue_program(vcpu, flags); r = RESUME_GUEST; break; } } vcpu->stat.emulated_inst_exits++; er = kvmppc_emulate_instruction(run, vcpu); switch (er) { case EMULATE_DONE: r = RESUME_GUEST_NV; break; case EMULATE_AGAIN: r = RESUME_GUEST; break; case EMULATE_FAIL: printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n", __func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu)); kvmppc_core_queue_program(vcpu, flags); r = RESUME_GUEST; break; case EMULATE_DO_MMIO: run->exit_reason = KVM_EXIT_MMIO; r = RESUME_HOST_NV; break; default: BUG(); } break; } case BOOK3S_INTERRUPT_SYSCALL: // XXX make user settable if (vcpu->arch.osi_enabled && (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) && (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) { u64 *gprs = run->osi.gprs; int i; run->exit_reason = KVM_EXIT_OSI; for (i = 0; i < 32; i++) gprs[i] = kvmppc_get_gpr(vcpu, i); vcpu->arch.osi_needed = 1; r = RESUME_HOST_NV; } else { vcpu->stat.syscall_exits++; kvmppc_book3s_queue_irqprio(vcpu, exit_nr); r = RESUME_GUEST; } break; case BOOK3S_INTERRUPT_FP_UNAVAIL: case BOOK3S_INTERRUPT_ALTIVEC: case BOOK3S_INTERRUPT_VSX: { int ext_msr = 0; switch (exit_nr) { case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP; break; case BOOK3S_INTERRUPT_ALTIVEC: ext_msr = MSR_VEC; break; case BOOK3S_INTERRUPT_VSX: ext_msr = MSR_VSX; break; } switch (kvmppc_check_ext(vcpu, exit_nr)) { case EMULATE_DONE: /* everything ok - let's enable the ext */ r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr); break; case EMULATE_FAIL: /* we need to emulate this instruction */ goto program_interrupt; break; default: /* nothing to worry about - go again */ break; } break; } case BOOK3S_INTERRUPT_ALIGNMENT: if (kvmppc_read_inst(vcpu) == EMULATE_DONE) { to_book3s(vcpu)->dsisr = kvmppc_alignment_dsisr(vcpu, kvmppc_get_last_inst(vcpu)); vcpu->arch.dear = kvmppc_alignment_dar(vcpu, kvmppc_get_last_inst(vcpu)); kvmppc_book3s_queue_irqprio(vcpu, exit_nr); } r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_MACHINE_CHECK: case BOOK3S_INTERRUPT_TRACE: kvmppc_book3s_queue_irqprio(vcpu, exit_nr); r = RESUME_GUEST; break; default: /* Ugh - bork here! What did we get? */ printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n", exit_nr, kvmppc_get_pc(vcpu), to_svcpu(vcpu)->shadow_srr1); r = RESUME_HOST; BUG(); break; } if (!(r & RESUME_HOST)) { /* To avoid clobbering exit_reason, only check for signals if * we aren't already exiting to userspace for some other * reason. */ if (signal_pending(current)) { #ifdef EXIT_DEBUG printk(KERN_EMERG "KVM: Going back to host\n"); #endif vcpu->stat.signal_exits++; run->exit_reason = KVM_EXIT_INTR; r = -EINTR; } else { /* In case an interrupt came in that was triggered * from userspace (like DEC), we need to check what * to inject now! */ kvmppc_core_deliver_interrupts(vcpu); } } #ifdef EXIT_DEBUG printk(KERN_EMERG "KVM exit: vcpu=0x%p pc=0x%lx r=0x%x\n", vcpu, kvmppc_get_pc(vcpu), r); #endif return r; } int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) { return 0; } int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { int i; regs->pc = kvmppc_get_pc(vcpu); regs->cr = kvmppc_get_cr(vcpu); regs->ctr = kvmppc_get_ctr(vcpu); regs->lr = kvmppc_get_lr(vcpu); regs->xer = kvmppc_get_xer(vcpu); regs->msr = vcpu->arch.msr; regs->srr0 = vcpu->arch.srr0; regs->srr1 = vcpu->arch.srr1; regs->pid = vcpu->arch.pid; regs->sprg0 = vcpu->arch.sprg0; regs->sprg1 = vcpu->arch.sprg1; regs->sprg2 = vcpu->arch.sprg2; regs->sprg3 = vcpu->arch.sprg3; regs->sprg5 = vcpu->arch.sprg4; regs->sprg6 = vcpu->arch.sprg5; regs->sprg7 = vcpu->arch.sprg6; for (i = 0; i < ARRAY_SIZE(regs->gpr); i++) regs->gpr[i] = kvmppc_get_gpr(vcpu, i); return 0; } int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { int i; kvmppc_set_pc(vcpu, regs->pc); kvmppc_set_cr(vcpu, regs->cr); kvmppc_set_ctr(vcpu, regs->ctr); kvmppc_set_lr(vcpu, regs->lr); kvmppc_set_xer(vcpu, regs->xer); kvmppc_set_msr(vcpu, regs->msr); vcpu->arch.srr0 = regs->srr0; vcpu->arch.srr1 = regs->srr1; vcpu->arch.sprg0 = regs->sprg0; vcpu->arch.sprg1 = regs->sprg1; vcpu->arch.sprg2 = regs->sprg2; vcpu->arch.sprg3 = regs->sprg3; vcpu->arch.sprg5 = regs->sprg4; vcpu->arch.sprg6 = regs->sprg5; vcpu->arch.sprg7 = regs->sprg6; for (i = 0; i < ARRAY_SIZE(regs->gpr); i++) kvmppc_set_gpr(vcpu, i, regs->gpr[i]); return 0; } int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); int i; sregs->pvr = vcpu->arch.pvr; sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1; if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { for (i = 0; i < 64; i++) { sregs->u.s.ppc64.slb[i].slbe = vcpu3s->slb[i].orige | i; sregs->u.s.ppc64.slb[i].slbv = vcpu3s->slb[i].origv; } } else { for (i = 0; i < 16; i++) { sregs->u.s.ppc32.sr[i] = vcpu3s->sr[i].raw; sregs->u.s.ppc32.sr[i] = vcpu3s->sr[i].raw; } for (i = 0; i < 8; i++) { sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw; sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw; } } return 0; } int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); int i; kvmppc_set_pvr(vcpu, sregs->pvr); vcpu3s->sdr1 = sregs->u.s.sdr1; if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { for (i = 0; i < 64; i++) { vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv, sregs->u.s.ppc64.slb[i].slbe); } } else { for (i = 0; i < 16; i++) { vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]); } for (i = 0; i < 8; i++) { kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false, (u32)sregs->u.s.ppc32.ibat[i]); kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true, (u32)(sregs->u.s.ppc32.ibat[i] >> 32)); kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false, (u32)sregs->u.s.ppc32.dbat[i]); kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true, (u32)(sregs->u.s.ppc32.dbat[i] >> 32)); } } /* Flush the MMU after messing with the segments */ kvmppc_mmu_pte_flush(vcpu, 0, 0); return 0; } int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -ENOTSUPP; } int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -ENOTSUPP; } int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { return 0; } /* * Get (and clear) the dirty memory log for a memory slot. */ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { struct kvm_memory_slot *memslot; struct kvm_vcpu *vcpu; ulong ga, ga_end; int is_dirty = 0; int r; unsigned long n; mutex_lock(&kvm->slots_lock); r = kvm_get_dirty_log(kvm, log, &is_dirty); if (r) goto out; /* If nothing is dirty, don't bother messing with page tables. */ if (is_dirty) { memslot = &kvm->memslots->memslots[log->slot]; ga = memslot->base_gfn << PAGE_SHIFT; ga_end = ga + (memslot->npages << PAGE_SHIFT); kvm_for_each_vcpu(n, vcpu, kvm) kvmppc_mmu_pte_pflush(vcpu, ga, ga_end); n = kvm_dirty_bitmap_bytes(memslot); memset(memslot->dirty_bitmap, 0, n); } r = 0; out: mutex_unlock(&kvm->slots_lock); return r; } int kvmppc_core_check_processor_compat(void) { return 0; } struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) { struct kvmppc_vcpu_book3s *vcpu_book3s; struct kvm_vcpu *vcpu; int err = -ENOMEM; vcpu_book3s = vmalloc(sizeof(struct kvmppc_vcpu_book3s)); if (!vcpu_book3s) goto out; memset(vcpu_book3s, 0, sizeof(struct kvmppc_vcpu_book3s)); vcpu_book3s->shadow_vcpu = (struct kvmppc_book3s_shadow_vcpu *) kzalloc(sizeof(*vcpu_book3s->shadow_vcpu), GFP_KERNEL); if (!vcpu_book3s->shadow_vcpu) goto free_vcpu; vcpu = &vcpu_book3s->vcpu; err = kvm_vcpu_init(vcpu, kvm, id); if (err) goto free_shadow_vcpu; vcpu->arch.host_retip = kvm_return_point; vcpu->arch.host_msr = mfmsr(); #ifdef CONFIG_PPC_BOOK3S_64 /* default to book3s_64 (970fx) */ vcpu->arch.pvr = 0x3C0301; #else /* default to book3s_32 (750) */ vcpu->arch.pvr = 0x84202; #endif kvmppc_set_pvr(vcpu, vcpu->arch.pvr); vcpu_book3s->slb_nr = 64; /* remember where some real-mode handlers are */ vcpu->arch.trampoline_lowmem = kvmppc_trampoline_lowmem; vcpu->arch.trampoline_enter = kvmppc_trampoline_enter; vcpu->arch.highmem_handler = (ulong)kvmppc_handler_highmem; #ifdef CONFIG_PPC_BOOK3S_64 vcpu->arch.rmcall = *(ulong*)kvmppc_rmcall; #else vcpu->arch.rmcall = (ulong)kvmppc_rmcall; #endif vcpu->arch.shadow_msr = MSR_USER64; err = kvmppc_mmu_init(vcpu); if (err < 0) goto free_shadow_vcpu; return vcpu; free_shadow_vcpu: kfree(vcpu_book3s->shadow_vcpu); free_vcpu: vfree(vcpu_book3s); out: return ERR_PTR(err); } void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); kvm_vcpu_uninit(vcpu); kfree(vcpu_book3s->shadow_vcpu); vfree(vcpu_book3s); } extern int __kvmppc_vcpu_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu); int __kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) { int ret; double fpr[32][TS_FPRWIDTH]; unsigned int fpscr; int fpexc_mode; #ifdef CONFIG_ALTIVEC vector128 vr[32]; vector128 vscr; unsigned long uninitialized_var(vrsave); int used_vr; #endif #ifdef CONFIG_VSX int used_vsr; #endif ulong ext_msr; /* No need to go into the guest when all we do is going out */ if (signal_pending(current)) { kvm_run->exit_reason = KVM_EXIT_INTR; return -EINTR; } /* Save FPU state in stack */ if (current->thread.regs->msr & MSR_FP) giveup_fpu(current); memcpy(fpr, current->thread.fpr, sizeof(current->thread.fpr)); fpscr = current->thread.fpscr.val; fpexc_mode = current->thread.fpexc_mode; #ifdef CONFIG_ALTIVEC /* Save Altivec state in stack */ used_vr = current->thread.used_vr; if (used_vr) { if (current->thread.regs->msr & MSR_VEC) giveup_altivec(current); memcpy(vr, current->thread.vr, sizeof(current->thread.vr)); vscr = current->thread.vscr; vrsave = current->thread.vrsave; } #endif #ifdef CONFIG_VSX /* Save VSX state in stack */ used_vsr = current->thread.used_vsr; if (used_vsr && (current->thread.regs->msr & MSR_VSX)) __giveup_vsx(current); #endif /* Remember the MSR with disabled extensions */ ext_msr = current->thread.regs->msr; /* XXX we get called with irq disabled - change that! */ local_irq_enable(); /* Preload FPU if it's enabled */ if (vcpu->arch.msr & MSR_FP) kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); ret = __kvmppc_vcpu_entry(kvm_run, vcpu); local_irq_disable(); current->thread.regs->msr = ext_msr; /* Make sure we save the guest FPU/Altivec/VSX state */ kvmppc_giveup_ext(vcpu, MSR_FP); kvmppc_giveup_ext(vcpu, MSR_VEC); kvmppc_giveup_ext(vcpu, MSR_VSX); /* Restore FPU state from stack */ memcpy(current->thread.fpr, fpr, sizeof(current->thread.fpr)); current->thread.fpscr.val = fpscr; current->thread.fpexc_mode = fpexc_mode; #ifdef CONFIG_ALTIVEC /* Restore Altivec state from stack */ if (used_vr && current->thread.used_vr) { memcpy(current->thread.vr, vr, sizeof(current->thread.vr)); current->thread.vscr = vscr; current->thread.vrsave = vrsave; } current->thread.used_vr = used_vr; #endif #ifdef CONFIG_VSX current->thread.used_vsr = used_vsr; #endif return ret; } static int kvmppc_book3s_init(void) { return kvm_init(NULL, sizeof(struct kvmppc_vcpu_book3s), 0, THIS_MODULE); } static void kvmppc_book3s_exit(void) { kvm_exit(); } module_init(kvmppc_book3s_init); module_exit(kvmppc_book3s_exit);