/* * AMD Cryptographic Coprocessor (CCP) driver * * Copyright (C) 2016 Advanced Micro Devices, Inc. * * Author: Gary R Hook * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include "ccp-dev.h" /* Allocate the requested number of contiguous LSB slots * from the LSB bitmap. Look in the private range for this * queue first; failing that, check the public area. * If no space is available, wait around. * Return: first slot number */ static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count) { struct ccp_device *ccp; int start; /* First look at the map for the queue */ if (cmd_q->lsb >= 0) { start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap, LSB_SIZE, 0, count, 0); if (start < LSB_SIZE) { bitmap_set(cmd_q->lsbmap, start, count); return start + cmd_q->lsb * LSB_SIZE; } } /* No joy; try to get an entry from the shared blocks */ ccp = cmd_q->ccp; for (;;) { mutex_lock(&ccp->sb_mutex); start = (u32)bitmap_find_next_zero_area(ccp->lsbmap, MAX_LSB_CNT * LSB_SIZE, 0, count, 0); if (start <= MAX_LSB_CNT * LSB_SIZE) { bitmap_set(ccp->lsbmap, start, count); mutex_unlock(&ccp->sb_mutex); return start; } ccp->sb_avail = 0; mutex_unlock(&ccp->sb_mutex); /* Wait for KSB entries to become available */ if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail)) return 0; } } /* Free a number of LSB slots from the bitmap, starting at * the indicated starting slot number. */ static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start, unsigned int count) { if (!start) return; if (cmd_q->lsb == start) { /* An entry from the private LSB */ bitmap_clear(cmd_q->lsbmap, start, count); } else { /* From the shared LSBs */ struct ccp_device *ccp = cmd_q->ccp; mutex_lock(&ccp->sb_mutex); bitmap_clear(ccp->lsbmap, start, count); ccp->sb_avail = 1; mutex_unlock(&ccp->sb_mutex); wake_up_interruptible_all(&ccp->sb_queue); } } /* CCP version 5: Union to define the function field (cmd_reg1/dword0) */ union ccp_function { struct { u16 size:7; u16 encrypt:1; u16 mode:5; u16 type:2; } aes; struct { u16 size:7; u16 encrypt:1; u16 rsvd:5; u16 type:2; } aes_xts; struct { u16 size:7; u16 encrypt:1; u16 mode:5; u16 type:2; } des3; struct { u16 rsvd1:10; u16 type:4; u16 rsvd2:1; } sha; struct { u16 mode:3; u16 size:12; } rsa; struct { u16 byteswap:2; u16 bitwise:3; u16 reflect:2; u16 rsvd:8; } pt; struct { u16 rsvd:13; } zlib; struct { u16 size:10; u16 type:2; u16 mode:3; } ecc; u16 raw; }; #define CCP_AES_SIZE(p) ((p)->aes.size) #define CCP_AES_ENCRYPT(p) ((p)->aes.encrypt) #define CCP_AES_MODE(p) ((p)->aes.mode) #define CCP_AES_TYPE(p) ((p)->aes.type) #define CCP_XTS_SIZE(p) ((p)->aes_xts.size) #define CCP_XTS_ENCRYPT(p) ((p)->aes_xts.encrypt) #define CCP_DES3_SIZE(p) ((p)->des3.size) #define CCP_DES3_ENCRYPT(p) ((p)->des3.encrypt) #define CCP_DES3_MODE(p) ((p)->des3.mode) #define CCP_DES3_TYPE(p) ((p)->des3.type) #define CCP_SHA_TYPE(p) ((p)->sha.type) #define CCP_RSA_SIZE(p) ((p)->rsa.size) #define CCP_PT_BYTESWAP(p) ((p)->pt.byteswap) #define CCP_PT_BITWISE(p) ((p)->pt.bitwise) #define CCP_ECC_MODE(p) ((p)->ecc.mode) #define CCP_ECC_AFFINE(p) ((p)->ecc.one) /* Word 0 */ #define CCP5_CMD_DW0(p) ((p)->dw0) #define CCP5_CMD_SOC(p) (CCP5_CMD_DW0(p).soc) #define CCP5_CMD_IOC(p) (CCP5_CMD_DW0(p).ioc) #define CCP5_CMD_INIT(p) (CCP5_CMD_DW0(p).init) #define CCP5_CMD_EOM(p) (CCP5_CMD_DW0(p).eom) #define CCP5_CMD_FUNCTION(p) (CCP5_CMD_DW0(p).function) #define CCP5_CMD_ENGINE(p) (CCP5_CMD_DW0(p).engine) #define CCP5_CMD_PROT(p) (CCP5_CMD_DW0(p).prot) /* Word 1 */ #define CCP5_CMD_DW1(p) ((p)->length) #define CCP5_CMD_LEN(p) (CCP5_CMD_DW1(p)) /* Word 2 */ #define CCP5_CMD_DW2(p) ((p)->src_lo) #define CCP5_CMD_SRC_LO(p) (CCP5_CMD_DW2(p)) /* Word 3 */ #define CCP5_CMD_DW3(p) ((p)->dw3) #define CCP5_CMD_SRC_MEM(p) ((p)->dw3.src_mem) #define CCP5_CMD_SRC_HI(p) ((p)->dw3.src_hi) #define CCP5_CMD_LSB_ID(p) ((p)->dw3.lsb_cxt_id) #define CCP5_CMD_FIX_SRC(p) ((p)->dw3.fixed) /* Words 4/5 */ #define CCP5_CMD_DW4(p) ((p)->dw4) #define CCP5_CMD_DST_LO(p) (CCP5_CMD_DW4(p).dst_lo) #define CCP5_CMD_DW5(p) ((p)->dw5.fields.dst_hi) #define CCP5_CMD_DST_HI(p) (CCP5_CMD_DW5(p)) #define CCP5_CMD_DST_MEM(p) ((p)->dw5.fields.dst_mem) #define CCP5_CMD_FIX_DST(p) ((p)->dw5.fields.fixed) #define CCP5_CMD_SHA_LO(p) ((p)->dw4.sha_len_lo) #define CCP5_CMD_SHA_HI(p) ((p)->dw5.sha_len_hi) /* Word 6/7 */ #define CCP5_CMD_DW6(p) ((p)->key_lo) #define CCP5_CMD_KEY_LO(p) (CCP5_CMD_DW6(p)) #define CCP5_CMD_DW7(p) ((p)->dw7) #define CCP5_CMD_KEY_HI(p) ((p)->dw7.key_hi) #define CCP5_CMD_KEY_MEM(p) ((p)->dw7.key_mem) static inline u32 low_address(unsigned long addr) { return (u64)addr & 0x0ffffffff; } static inline u32 high_address(unsigned long addr) { return ((u64)addr >> 32) & 0x00000ffff; } static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q) { unsigned int head_idx, n; u32 head_lo, queue_start; queue_start = low_address(cmd_q->qdma_tail); head_lo = ioread32(cmd_q->reg_head_lo); head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc); n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1; return n % COMMANDS_PER_QUEUE; /* Always one unused spot */ } static int ccp5_do_cmd(struct ccp5_desc *desc, struct ccp_cmd_queue *cmd_q) { u32 *mP; __le32 *dP; u32 tail; int i; int ret = 0; if (CCP5_CMD_SOC(desc)) { CCP5_CMD_IOC(desc) = 1; CCP5_CMD_SOC(desc) = 0; } mutex_lock(&cmd_q->q_mutex); mP = (u32 *) &cmd_q->qbase[cmd_q->qidx]; dP = (__le32 *) desc; for (i = 0; i < 8; i++) mP[i] = cpu_to_le32(dP[i]); /* handle endianness */ cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE; /* The data used by this command must be flushed to memory */ wmb(); /* Write the new tail address back to the queue register */ tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE); iowrite32(tail, cmd_q->reg_tail_lo); /* Turn the queue back on using our cached control register */ iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control); mutex_unlock(&cmd_q->q_mutex); if (CCP5_CMD_IOC(desc)) { /* Wait for the job to complete */ ret = wait_event_interruptible(cmd_q->int_queue, cmd_q->int_rcvd); if (ret || cmd_q->cmd_error) { /* Log the error and flush the queue by * moving the head pointer */ if (cmd_q->cmd_error) ccp_log_error(cmd_q->ccp, cmd_q->cmd_error); iowrite32(tail, cmd_q->reg_head_lo); if (!ret) ret = -EIO; } cmd_q->int_rcvd = 0; } return ret; } static int ccp5_perform_aes(struct ccp_op *op) { struct ccp5_desc desc; union ccp_function function; u32 key_addr = op->sb_key * LSB_ITEM_SIZE; /* Zero out all the fields of the command desc */ memset(&desc, 0, Q_DESC_SIZE); CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES; CCP5_CMD_SOC(&desc) = op->soc; CCP5_CMD_IOC(&desc) = 1; CCP5_CMD_INIT(&desc) = op->init; CCP5_CMD_EOM(&desc) = op->eom; CCP5_CMD_PROT(&desc) = 0; function.raw = 0; CCP_AES_ENCRYPT(&function) = op->u.aes.action; CCP_AES_MODE(&function) = op->u.aes.mode; CCP_AES_TYPE(&function) = op->u.aes.type; CCP_AES_SIZE(&function) = op->u.aes.size; CCP5_CMD_FUNCTION(&desc) = function.raw; CCP5_CMD_LEN(&desc) = op->src.u.dma.length; CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma); CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma); CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM; CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma); CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma); CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM; CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr); CCP5_CMD_KEY_HI(&desc) = 0; CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB; CCP5_CMD_LSB_ID(&desc) = op->sb_ctx; return ccp5_do_cmd(&desc, op->cmd_q); } static int ccp5_perform_xts_aes(struct ccp_op *op) { struct ccp5_desc desc; union ccp_function function; u32 key_addr = op->sb_key * LSB_ITEM_SIZE; /* Zero out all the fields of the command desc */ memset(&desc, 0, Q_DESC_SIZE); CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128; CCP5_CMD_SOC(&desc) = op->soc; CCP5_CMD_IOC(&desc) = 1; CCP5_CMD_INIT(&desc) = op->init; CCP5_CMD_EOM(&desc) = op->eom; CCP5_CMD_PROT(&desc) = 0; function.raw = 0; CCP_XTS_ENCRYPT(&function) = op->u.xts.action; CCP_XTS_SIZE(&function) = op->u.xts.unit_size; CCP5_CMD_FUNCTION(&desc) = function.raw; CCP5_CMD_LEN(&desc) = op->src.u.dma.length; CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma); CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma); CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM; CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma); CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma); CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM; CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr); CCP5_CMD_KEY_HI(&desc) = 0; CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB; CCP5_CMD_LSB_ID(&desc) = op->sb_ctx; return ccp5_do_cmd(&desc, op->cmd_q); } static int ccp5_perform_sha(struct ccp_op *op) { struct ccp5_desc desc; union ccp_function function; /* Zero out all the fields of the command desc */ memset(&desc, 0, Q_DESC_SIZE); CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA; CCP5_CMD_SOC(&desc) = op->soc; CCP5_CMD_IOC(&desc) = 1; CCP5_CMD_INIT(&desc) = 1; CCP5_CMD_EOM(&desc) = op->eom; CCP5_CMD_PROT(&desc) = 0; function.raw = 0; CCP_SHA_TYPE(&function) = op->u.sha.type; CCP5_CMD_FUNCTION(&desc) = function.raw; CCP5_CMD_LEN(&desc) = op->src.u.dma.length; CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma); CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma); CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM; CCP5_CMD_LSB_ID(&desc) = op->sb_ctx; if (op->eom) { CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits); CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits); } else { CCP5_CMD_SHA_LO(&desc) = 0; CCP5_CMD_SHA_HI(&desc) = 0; } return ccp5_do_cmd(&desc, op->cmd_q); } static int ccp5_perform_des3(struct ccp_op *op) { struct ccp5_desc desc; union ccp_function function; u32 key_addr = op->sb_key * LSB_ITEM_SIZE; /* Zero out all the fields of the command desc */ memset(&desc, 0, sizeof(struct ccp5_desc)); CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_DES3; CCP5_CMD_SOC(&desc) = op->soc; CCP5_CMD_IOC(&desc) = 1; CCP5_CMD_INIT(&desc) = op->init; CCP5_CMD_EOM(&desc) = op->eom; CCP5_CMD_PROT(&desc) = 0; function.raw = 0; CCP_DES3_ENCRYPT(&function) = op->u.des3.action; CCP_DES3_MODE(&function) = op->u.des3.mode; CCP_DES3_TYPE(&function) = op->u.des3.type; CCP5_CMD_FUNCTION(&desc) = function.raw; CCP5_CMD_LEN(&desc) = op->src.u.dma.length; CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma); CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma); CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM; CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma); CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma); CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM; CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr); CCP5_CMD_KEY_HI(&desc) = 0; CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB; CCP5_CMD_LSB_ID(&desc) = op->sb_ctx; return ccp5_do_cmd(&desc, op->cmd_q); } static int ccp5_perform_rsa(struct ccp_op *op) { struct ccp5_desc desc; union ccp_function function; /* Zero out all the fields of the command desc */ memset(&desc, 0, Q_DESC_SIZE); CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA; CCP5_CMD_SOC(&desc) = op->soc; CCP5_CMD_IOC(&desc) = 1; CCP5_CMD_INIT(&desc) = 0; CCP5_CMD_EOM(&desc) = 1; CCP5_CMD_PROT(&desc) = 0; function.raw = 0; CCP_RSA_SIZE(&function) = op->u.rsa.mod_size >> 3; CCP5_CMD_FUNCTION(&desc) = function.raw; CCP5_CMD_LEN(&desc) = op->u.rsa.input_len; /* Source is from external memory */ CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma); CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma); CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM; /* Destination is in external memory */ CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma); CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma); CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM; /* Exponent is in LSB memory */ CCP5_CMD_KEY_LO(&desc) = op->sb_key * LSB_ITEM_SIZE; CCP5_CMD_KEY_HI(&desc) = 0; CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB; return ccp5_do_cmd(&desc, op->cmd_q); } static int ccp5_perform_passthru(struct ccp_op *op) { struct ccp5_desc desc; union ccp_function function; struct ccp_dma_info *saddr = &op->src.u.dma; struct ccp_dma_info *daddr = &op->dst.u.dma; memset(&desc, 0, Q_DESC_SIZE); CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU; CCP5_CMD_SOC(&desc) = 0; CCP5_CMD_IOC(&desc) = 1; CCP5_CMD_INIT(&desc) = 0; CCP5_CMD_EOM(&desc) = op->eom; CCP5_CMD_PROT(&desc) = 0; function.raw = 0; CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap; CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod; CCP5_CMD_FUNCTION(&desc) = function.raw; /* Length of source data is always 256 bytes */ if (op->src.type == CCP_MEMTYPE_SYSTEM) CCP5_CMD_LEN(&desc) = saddr->length; else CCP5_CMD_LEN(&desc) = daddr->length; if (op->src.type == CCP_MEMTYPE_SYSTEM) { CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma); CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma); CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM; if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP) CCP5_CMD_LSB_ID(&desc) = op->sb_key; } else { u32 key_addr = op->src.u.sb * CCP_SB_BYTES; CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr); CCP5_CMD_SRC_HI(&desc) = 0; CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB; } if (op->dst.type == CCP_MEMTYPE_SYSTEM) { CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma); CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma); CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM; } else { u32 key_addr = op->dst.u.sb * CCP_SB_BYTES; CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr); CCP5_CMD_DST_HI(&desc) = 0; CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB; } return ccp5_do_cmd(&desc, op->cmd_q); } static int ccp5_perform_ecc(struct ccp_op *op) { struct ccp5_desc desc; union ccp_function function; /* Zero out all the fields of the command desc */ memset(&desc, 0, Q_DESC_SIZE); CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC; CCP5_CMD_SOC(&desc) = 0; CCP5_CMD_IOC(&desc) = 1; CCP5_CMD_INIT(&desc) = 0; CCP5_CMD_EOM(&desc) = 1; CCP5_CMD_PROT(&desc) = 0; function.raw = 0; function.ecc.mode = op->u.ecc.function; CCP5_CMD_FUNCTION(&desc) = function.raw; CCP5_CMD_LEN(&desc) = op->src.u.dma.length; CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma); CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma); CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM; CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma); CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma); CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM; return ccp5_do_cmd(&desc, op->cmd_q); } static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status) { int q_mask = 1 << cmd_q->id; int queues = 0; int j; /* Build a bit mask to know which LSBs this queue has access to. * Don't bother with segment 0 as it has special privileges. */ for (j = 1; j < MAX_LSB_CNT; j++) { if (status & q_mask) bitmap_set(cmd_q->lsbmask, j, 1); status >>= LSB_REGION_WIDTH; } queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT); dev_dbg(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n", cmd_q->id, queues); return queues ? 0 : -EINVAL; } static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp, int lsb_cnt, int n_lsbs, unsigned long *lsb_pub) { DECLARE_BITMAP(qlsb, MAX_LSB_CNT); int bitno; int qlsb_wgt; int i; /* For each queue: * If the count of potential LSBs available to a queue matches the * ordinal given to us in lsb_cnt: * Copy the mask of possible LSBs for this queue into "qlsb"; * For each bit in qlsb, see if the corresponding bit in the * aggregation mask is set; if so, we have a match. * If we have a match, clear the bit in the aggregation to * mark it as no longer available. * If there is no match, clear the bit in qlsb and keep looking. */ for (i = 0; i < ccp->cmd_q_count; i++) { struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i]; qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT); if (qlsb_wgt == lsb_cnt) { bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT); bitno = find_first_bit(qlsb, MAX_LSB_CNT); while (bitno < MAX_LSB_CNT) { if (test_bit(bitno, lsb_pub)) { /* We found an available LSB * that this queue can access */ cmd_q->lsb = bitno; bitmap_clear(lsb_pub, bitno, 1); dev_dbg(ccp->dev, "Queue %d gets LSB %d\n", i, bitno); break; } bitmap_clear(qlsb, bitno, 1); bitno = find_first_bit(qlsb, MAX_LSB_CNT); } if (bitno >= MAX_LSB_CNT) return -EINVAL; n_lsbs--; } } return n_lsbs; } /* For each queue, from the most- to least-constrained: * find an LSB that can be assigned to the queue. If there are N queues that * can only use M LSBs, where N > M, fail; otherwise, every queue will get a * dedicated LSB. Remaining LSB regions become a shared resource. * If we have fewer LSBs than queues, all LSB regions become shared resources. */ static int ccp_assign_lsbs(struct ccp_device *ccp) { DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT); DECLARE_BITMAP(qlsb, MAX_LSB_CNT); int n_lsbs = 0; int bitno; int i, lsb_cnt; int rc = 0; bitmap_zero(lsb_pub, MAX_LSB_CNT); /* Create an aggregate bitmap to get a total count of available LSBs */ for (i = 0; i < ccp->cmd_q_count; i++) bitmap_or(lsb_pub, lsb_pub, ccp->cmd_q[i].lsbmask, MAX_LSB_CNT); n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT); if (n_lsbs >= ccp->cmd_q_count) { /* We have enough LSBS to give every queue a private LSB. * Brute force search to start with the queues that are more * constrained in LSB choice. When an LSB is privately * assigned, it is removed from the public mask. * This is an ugly N squared algorithm with some optimization. */ for (lsb_cnt = 1; n_lsbs && (lsb_cnt <= MAX_LSB_CNT); lsb_cnt++) { rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs, lsb_pub); if (rc < 0) return -EINVAL; n_lsbs = rc; } } rc = 0; /* What's left of the LSBs, according to the public mask, now become * shared. Any zero bits in the lsb_pub mask represent an LSB region * that can't be used as a shared resource, so mark the LSB slots for * them as "in use". */ bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT); bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT); while (bitno < MAX_LSB_CNT) { bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE); bitmap_set(qlsb, bitno, 1); bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT); } return rc; } static int ccp5_init(struct ccp_device *ccp) { struct device *dev = ccp->dev; struct ccp_cmd_queue *cmd_q; struct dma_pool *dma_pool; char dma_pool_name[MAX_DMAPOOL_NAME_LEN]; unsigned int qmr, qim, i; u64 status; u32 status_lo, status_hi; int ret; /* Find available queues */ qim = 0; qmr = ioread32(ccp->io_regs + Q_MASK_REG); for (i = 0; i < MAX_HW_QUEUES; i++) { if (!(qmr & (1 << i))) continue; /* Allocate a dma pool for this queue */ snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d", ccp->name, i); dma_pool = dma_pool_create(dma_pool_name, dev, CCP_DMAPOOL_MAX_SIZE, CCP_DMAPOOL_ALIGN, 0); if (!dma_pool) { dev_err(dev, "unable to allocate dma pool\n"); ret = -ENOMEM; } cmd_q = &ccp->cmd_q[ccp->cmd_q_count]; ccp->cmd_q_count++; cmd_q->ccp = ccp; cmd_q->id = i; cmd_q->dma_pool = dma_pool; mutex_init(&cmd_q->q_mutex); /* Page alignment satisfies our needs for N <= 128 */ BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128); cmd_q->qsize = Q_SIZE(Q_DESC_SIZE); cmd_q->qbase = dma_zalloc_coherent(dev, cmd_q->qsize, &cmd_q->qbase_dma, GFP_KERNEL); if (!cmd_q->qbase) { dev_err(dev, "unable to allocate command queue\n"); ret = -ENOMEM; goto e_pool; } cmd_q->qidx = 0; /* Preset some register values and masks that are queue * number dependent */ cmd_q->reg_control = ccp->io_regs + CMD5_Q_STATUS_INCR * (i + 1); cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE; cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE; cmd_q->reg_int_enable = cmd_q->reg_control + CMD5_Q_INT_ENABLE_BASE; cmd_q->reg_interrupt_status = cmd_q->reg_control + CMD5_Q_INTERRUPT_STATUS_BASE; cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE; cmd_q->reg_int_status = cmd_q->reg_control + CMD5_Q_INT_STATUS_BASE; cmd_q->reg_dma_status = cmd_q->reg_control + CMD5_Q_DMA_STATUS_BASE; cmd_q->reg_dma_read_status = cmd_q->reg_control + CMD5_Q_DMA_READ_STATUS_BASE; cmd_q->reg_dma_write_status = cmd_q->reg_control + CMD5_Q_DMA_WRITE_STATUS_BASE; init_waitqueue_head(&cmd_q->int_queue); dev_dbg(dev, "queue #%u available\n", i); } if (ccp->cmd_q_count == 0) { dev_notice(dev, "no command queues available\n"); ret = -EIO; goto e_pool; } /* Turn off the queues and disable interrupts until ready */ for (i = 0; i < ccp->cmd_q_count; i++) { cmd_q = &ccp->cmd_q[i]; cmd_q->qcontrol = 0; /* Start with nothing */ iowrite32(cmd_q->qcontrol, cmd_q->reg_control); /* Disable the interrupts */ iowrite32(0x00, cmd_q->reg_int_enable); ioread32(cmd_q->reg_int_status); ioread32(cmd_q->reg_status); /* Clear the interrupts */ iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status); } dev_dbg(dev, "Requesting an IRQ...\n"); /* Request an irq */ ret = ccp->get_irq(ccp); if (ret) { dev_err(dev, "unable to allocate an IRQ\n"); goto e_pool; } dev_dbg(dev, "Loading LSB map...\n"); /* Copy the private LSB mask to the public registers */ status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET); status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET); iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET); iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET); status = ((u64)status_hi<<30) | (u64)status_lo; dev_dbg(dev, "Configuring virtual queues...\n"); /* Configure size of each virtual queue accessible to host */ for (i = 0; i < ccp->cmd_q_count; i++) { u32 dma_addr_lo; u32 dma_addr_hi; cmd_q = &ccp->cmd_q[i]; cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT); cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT; cmd_q->qdma_tail = cmd_q->qbase_dma; dma_addr_lo = low_address(cmd_q->qdma_tail); iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo); iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo); dma_addr_hi = high_address(cmd_q->qdma_tail); cmd_q->qcontrol |= (dma_addr_hi << 16); iowrite32(cmd_q->qcontrol, cmd_q->reg_control); /* Find the LSB regions accessible to the queue */ ccp_find_lsb_regions(cmd_q, status); cmd_q->lsb = -1; /* Unassigned value */ } dev_dbg(dev, "Assigning LSBs...\n"); ret = ccp_assign_lsbs(ccp); if (ret) { dev_err(dev, "Unable to assign LSBs (%d)\n", ret); goto e_irq; } /* Optimization: pre-allocate LSB slots for each queue */ for (i = 0; i < ccp->cmd_q_count; i++) { ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2); ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2); } dev_dbg(dev, "Starting threads...\n"); /* Create a kthread for each queue */ for (i = 0; i < ccp->cmd_q_count; i++) { struct task_struct *kthread; cmd_q = &ccp->cmd_q[i]; kthread = kthread_create(ccp_cmd_queue_thread, cmd_q, "%s-q%u", ccp->name, cmd_q->id); if (IS_ERR(kthread)) { dev_err(dev, "error creating queue thread (%ld)\n", PTR_ERR(kthread)); ret = PTR_ERR(kthread); goto e_kthread; } cmd_q->kthread = kthread; wake_up_process(kthread); } dev_dbg(dev, "Enabling interrupts...\n"); /* Enable interrupts */ for (i = 0; i < ccp->cmd_q_count; i++) { cmd_q = &ccp->cmd_q[i]; iowrite32(ALL_INTERRUPTS, cmd_q->reg_int_enable); } dev_dbg(dev, "Registering device...\n"); /* Put this on the unit list to make it available */ ccp_add_device(ccp); ret = ccp_register_rng(ccp); if (ret) goto e_kthread; /* Register the DMA engine support */ ret = ccp_dmaengine_register(ccp); if (ret) goto e_hwrng; return 0; e_hwrng: ccp_unregister_rng(ccp); e_kthread: for (i = 0; i < ccp->cmd_q_count; i++) if (ccp->cmd_q[i].kthread) kthread_stop(ccp->cmd_q[i].kthread); e_irq: ccp->free_irq(ccp); e_pool: for (i = 0; i < ccp->cmd_q_count; i++) dma_pool_destroy(ccp->cmd_q[i].dma_pool); return ret; } static void ccp5_destroy(struct ccp_device *ccp) { struct device *dev = ccp->dev; struct ccp_cmd_queue *cmd_q; struct ccp_cmd *cmd; unsigned int i; /* Unregister the DMA engine */ ccp_dmaengine_unregister(ccp); /* Unregister the RNG */ ccp_unregister_rng(ccp); /* Remove this device from the list of available units first */ ccp_del_device(ccp); /* Disable and clear interrupts */ for (i = 0; i < ccp->cmd_q_count; i++) { cmd_q = &ccp->cmd_q[i]; /* Turn off the run bit */ iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control); /* Disable the interrupts */ iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status); /* Clear the interrupt status */ iowrite32(0x00, cmd_q->reg_int_enable); ioread32(cmd_q->reg_int_status); ioread32(cmd_q->reg_status); } /* Stop the queue kthreads */ for (i = 0; i < ccp->cmd_q_count; i++) if (ccp->cmd_q[i].kthread) kthread_stop(ccp->cmd_q[i].kthread); ccp->free_irq(ccp); for (i = 0; i < ccp->cmd_q_count; i++) { cmd_q = &ccp->cmd_q[i]; dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase, cmd_q->qbase_dma); } /* Flush the cmd and backlog queue */ while (!list_empty(&ccp->cmd)) { /* Invoke the callback directly with an error code */ cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry); list_del(&cmd->entry); cmd->callback(cmd->data, -ENODEV); } while (!list_empty(&ccp->backlog)) { /* Invoke the callback directly with an error code */ cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry); list_del(&cmd->entry); cmd->callback(cmd->data, -ENODEV); } } static irqreturn_t ccp5_irq_handler(int irq, void *data) { struct device *dev = data; struct ccp_device *ccp = dev_get_drvdata(dev); u32 status; unsigned int i; for (i = 0; i < ccp->cmd_q_count; i++) { struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i]; status = ioread32(cmd_q->reg_interrupt_status); if (status) { cmd_q->int_status = status; cmd_q->q_status = ioread32(cmd_q->reg_status); cmd_q->q_int_status = ioread32(cmd_q->reg_int_status); /* On error, only save the first error value */ if ((status & INT_ERROR) && !cmd_q->cmd_error) cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status); cmd_q->int_rcvd = 1; /* Acknowledge the interrupt and wake the kthread */ iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status); wake_up_interruptible(&cmd_q->int_queue); } } return IRQ_HANDLED; } static void ccp5_config(struct ccp_device *ccp) { /* Public side */ iowrite32(0x0, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET); } static void ccp5other_config(struct ccp_device *ccp) { int i; u32 rnd; /* We own all of the queues on the NTB CCP */ iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET); iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET); for (i = 0; i < 12; i++) { rnd = ioread32(ccp->io_regs + TRNG_OUT_REG); iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET); } iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET); iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET); iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET); iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET); iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET); iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET); ccp5_config(ccp); } /* Version 5 adds some function, but is essentially the same as v5 */ static const struct ccp_actions ccp5_actions = { .aes = ccp5_perform_aes, .xts_aes = ccp5_perform_xts_aes, .sha = ccp5_perform_sha, .des3 = ccp5_perform_des3, .rsa = ccp5_perform_rsa, .passthru = ccp5_perform_passthru, .ecc = ccp5_perform_ecc, .sballoc = ccp_lsb_alloc, .sbfree = ccp_lsb_free, .init = ccp5_init, .destroy = ccp5_destroy, .get_free_slots = ccp5_get_free_slots, .irqhandler = ccp5_irq_handler, }; const struct ccp_vdata ccpv5a = { .version = CCP_VERSION(5, 0), .setup = ccp5_config, .perform = &ccp5_actions, .bar = 2, .offset = 0x0, }; const struct ccp_vdata ccpv5b = { .version = CCP_VERSION(5, 0), .dma_chan_attr = DMA_PRIVATE, .setup = ccp5other_config, .perform = &ccp5_actions, .bar = 2, .offset = 0x0, };