/* * Intel CPU Microcode Update Driver for Linux * * Copyright (C) 2000-2006 Tigran Aivazian * 2006 Shaohua Li * * Intel CPU microcode early update for Linux * * Copyright (C) 2012 Fenghua Yu * H Peter Anvin" * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ /* * This needs to be before all headers so that pr_debug in printk.h doesn't turn * printk calls into no_printk(). * *#define DEBUG */ #define pr_fmt(fmt) "microcode: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Temporary microcode blobs pointers storage. We note here during early load * the pointers to microcode blobs we've got from whatever storage (detached * initrd, builtin). Later on, we put those into final storage * mc_saved_data.mc_saved. * * Important: those are offsets from the beginning of initrd or absolute * addresses within the kernel image when built-in. */ static unsigned long mc_tmp_ptrs[MAX_UCODE_COUNT]; static struct mc_saved_data { unsigned int num_saved; struct microcode_intel **mc_saved; } mc_saved_data; /* Microcode blobs within the initrd. 0 if builtin. */ static struct ucode_blobs { unsigned long start; bool valid; } blobs; /* Go through saved patches and find the one suitable for the current CPU. */ static enum ucode_state find_microcode_patch(struct microcode_intel **saved, unsigned int num_saved, struct ucode_cpu_info *uci) { struct microcode_intel *ucode_ptr, *new_mc = NULL; struct microcode_header_intel *mc_hdr; int new_rev, ret, i; new_rev = uci->cpu_sig.rev; for (i = 0; i < num_saved; i++) { ucode_ptr = saved[i]; mc_hdr = (struct microcode_header_intel *)ucode_ptr; ret = has_newer_microcode(ucode_ptr, uci->cpu_sig.sig, uci->cpu_sig.pf, new_rev); if (!ret) continue; new_rev = mc_hdr->rev; new_mc = ucode_ptr; } if (!new_mc) return UCODE_NFOUND; uci->mc = (struct microcode_intel *)new_mc; return UCODE_OK; } static inline void copy_ptrs(struct microcode_intel **mc_saved, unsigned long *mc_ptrs, unsigned long off, int num_saved) { int i; for (i = 0; i < num_saved; i++) mc_saved[i] = (struct microcode_intel *)(mc_ptrs[i] + off); } #ifdef CONFIG_X86_32 static void microcode_phys(struct microcode_intel **mc_saved_tmp, struct mc_saved_data *mcs) { int i; struct microcode_intel ***mc_saved; mc_saved = (struct microcode_intel ***)__pa_nodebug(&mcs->mc_saved); for (i = 0; i < mcs->num_saved; i++) { struct microcode_intel *p; p = *(struct microcode_intel **)__pa_nodebug(mcs->mc_saved + i); mc_saved_tmp[i] = (struct microcode_intel *)__pa_nodebug(p); } } #endif static enum ucode_state load_microcode(struct mc_saved_data *mcs, unsigned long *mc_ptrs, unsigned long offset, struct ucode_cpu_info *uci) { struct microcode_intel *mc_saved_tmp[MAX_UCODE_COUNT]; unsigned int count = mcs->num_saved; if (!mcs->mc_saved) { copy_ptrs(mc_saved_tmp, mc_ptrs, offset, count); return find_microcode_patch(mc_saved_tmp, count, uci); } else { #ifdef CONFIG_X86_32 microcode_phys(mc_saved_tmp, mcs); return find_microcode_patch(mc_saved_tmp, count, uci); #else return find_microcode_patch(mcs->mc_saved, count, uci); #endif } } /* * Given CPU signature and a microcode patch, this function finds if the * microcode patch has matching family and model with the CPU. */ static enum ucode_state matching_model_microcode(struct microcode_header_intel *mc_header, unsigned long sig) { unsigned int fam, model; unsigned int fam_ucode, model_ucode; struct extended_sigtable *ext_header; unsigned long total_size = get_totalsize(mc_header); unsigned long data_size = get_datasize(mc_header); int ext_sigcount, i; struct extended_signature *ext_sig; fam = x86_family(sig); model = x86_model(sig); fam_ucode = x86_family(mc_header->sig); model_ucode = x86_model(mc_header->sig); if (fam == fam_ucode && model == model_ucode) return UCODE_OK; /* Look for ext. headers: */ if (total_size <= data_size + MC_HEADER_SIZE) return UCODE_NFOUND; ext_header = (void *) mc_header + data_size + MC_HEADER_SIZE; ext_sig = (void *)ext_header + EXT_HEADER_SIZE; ext_sigcount = ext_header->count; for (i = 0; i < ext_sigcount; i++) { fam_ucode = x86_family(ext_sig->sig); model_ucode = x86_model(ext_sig->sig); if (fam == fam_ucode && model == model_ucode) return UCODE_OK; ext_sig++; } return UCODE_NFOUND; } static int save_microcode(struct mc_saved_data *mcs, struct microcode_intel **mc_saved_src, unsigned int num_saved) { int i, j; struct microcode_intel **saved_ptr; int ret; if (!num_saved) return -EINVAL; /* * Copy new microcode data. */ saved_ptr = kcalloc(num_saved, sizeof(struct microcode_intel *), GFP_KERNEL); if (!saved_ptr) return -ENOMEM; for (i = 0; i < num_saved; i++) { struct microcode_header_intel *mc_hdr; struct microcode_intel *mc; unsigned long size; if (!mc_saved_src[i]) { ret = -EINVAL; goto err; } mc = mc_saved_src[i]; mc_hdr = &mc->hdr; size = get_totalsize(mc_hdr); saved_ptr[i] = kmemdup(mc, size, GFP_KERNEL); if (!saved_ptr[i]) { ret = -ENOMEM; goto err; } } /* * Point to newly saved microcode. */ mcs->mc_saved = saved_ptr; mcs->num_saved = num_saved; return 0; err: for (j = 0; j <= i; j++) kfree(saved_ptr[j]); kfree(saved_ptr); return ret; } /* * A microcode patch in ucode_ptr is saved into mc_saved * - if it has matching signature and newer revision compared to an existing * patch mc_saved. * - or if it is a newly discovered microcode patch. * * The microcode patch should have matching model with CPU. * * Returns: The updated number @num_saved of saved microcode patches. */ static unsigned int _save_mc(struct microcode_intel **mc_saved, u8 *ucode_ptr, unsigned int num_saved) { struct microcode_header_intel *mc_hdr, *mc_saved_hdr; unsigned int sig, pf; int found = 0, i; mc_hdr = (struct microcode_header_intel *)ucode_ptr; for (i = 0; i < num_saved; i++) { mc_saved_hdr = (struct microcode_header_intel *)mc_saved[i]; sig = mc_saved_hdr->sig; pf = mc_saved_hdr->pf; if (!find_matching_signature(ucode_ptr, sig, pf)) continue; found = 1; if (mc_hdr->rev <= mc_saved_hdr->rev) continue; /* * Found an older ucode saved earlier. Replace it with * this newer one. */ mc_saved[i] = (struct microcode_intel *)ucode_ptr; break; } /* Newly detected microcode, save it to memory. */ if (i >= num_saved && !found) mc_saved[num_saved++] = (struct microcode_intel *)ucode_ptr; return num_saved; } /* * Get microcode matching with BSP's model. Only CPUs with the same model as * BSP can stay in the platform. */ static enum ucode_state __init get_matching_model_microcode(unsigned long start, void *data, size_t size, struct mc_saved_data *mcs, unsigned long *mc_ptrs, struct ucode_cpu_info *uci) { struct microcode_intel *mc_saved_tmp[MAX_UCODE_COUNT]; struct microcode_header_intel *mc_header; unsigned int num_saved = mcs->num_saved; enum ucode_state state = UCODE_OK; unsigned int leftover = size; u8 *ucode_ptr = data; unsigned int mc_size; int i; while (leftover && num_saved < ARRAY_SIZE(mc_saved_tmp)) { if (leftover < sizeof(mc_header)) break; mc_header = (struct microcode_header_intel *)ucode_ptr; mc_size = get_totalsize(mc_header); if (!mc_size || mc_size > leftover || microcode_sanity_check(ucode_ptr, 0) < 0) break; leftover -= mc_size; /* * Since APs with same family and model as the BSP may boot in * the platform, we need to find and save microcode patches * with the same family and model as the BSP. */ if (matching_model_microcode(mc_header, uci->cpu_sig.sig) != UCODE_OK) { ucode_ptr += mc_size; continue; } num_saved = _save_mc(mc_saved_tmp, ucode_ptr, num_saved); ucode_ptr += mc_size; } if (leftover) { state = UCODE_ERROR; return state; } if (!num_saved) { state = UCODE_NFOUND; return state; } for (i = 0; i < num_saved; i++) mc_ptrs[i] = (unsigned long)mc_saved_tmp[i] - start; mcs->num_saved = num_saved; return state; } static int collect_cpu_info_early(struct ucode_cpu_info *uci) { unsigned int val[2]; unsigned int family, model; struct cpu_signature csig; unsigned int eax, ebx, ecx, edx; csig.sig = 0; csig.pf = 0; csig.rev = 0; memset(uci, 0, sizeof(*uci)); eax = 0x00000001; ecx = 0; native_cpuid(&eax, &ebx, &ecx, &edx); csig.sig = eax; family = x86_family(csig.sig); model = x86_model(csig.sig); if ((model >= 5) || (family > 6)) { /* get processor flags from MSR 0x17 */ native_rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]); csig.pf = 1 << ((val[1] >> 18) & 7); } native_wrmsrl(MSR_IA32_UCODE_REV, 0); /* As documented in the SDM: Do a CPUID 1 here */ sync_core(); /* get the current revision from MSR 0x8B */ native_rdmsr(MSR_IA32_UCODE_REV, val[0], val[1]); csig.rev = val[1]; uci->cpu_sig = csig; uci->valid = 1; return 0; } static void show_saved_mc(void) { #ifdef DEBUG int i, j; unsigned int sig, pf, rev, total_size, data_size, date; struct ucode_cpu_info uci; if (!mc_saved_data.num_saved) { pr_debug("no microcode data saved.\n"); return; } pr_debug("Total microcode saved: %d\n", mc_saved_data.num_saved); collect_cpu_info_early(&uci); sig = uci.cpu_sig.sig; pf = uci.cpu_sig.pf; rev = uci.cpu_sig.rev; pr_debug("CPU: sig=0x%x, pf=0x%x, rev=0x%x\n", sig, pf, rev); for (i = 0; i < mc_saved_data.num_saved; i++) { struct microcode_header_intel *mc_saved_header; struct extended_sigtable *ext_header; int ext_sigcount; struct extended_signature *ext_sig; mc_saved_header = (struct microcode_header_intel *) mc_saved_data.mc_saved[i]; sig = mc_saved_header->sig; pf = mc_saved_header->pf; rev = mc_saved_header->rev; total_size = get_totalsize(mc_saved_header); data_size = get_datasize(mc_saved_header); date = mc_saved_header->date; pr_debug("mc_saved[%d]: sig=0x%x, pf=0x%x, rev=0x%x, total size=0x%x, date = %04x-%02x-%02x\n", i, sig, pf, rev, total_size, date & 0xffff, date >> 24, (date >> 16) & 0xff); /* Look for ext. headers: */ if (total_size <= data_size + MC_HEADER_SIZE) continue; ext_header = (void *) mc_saved_header + data_size + MC_HEADER_SIZE; ext_sigcount = ext_header->count; ext_sig = (void *)ext_header + EXT_HEADER_SIZE; for (j = 0; j < ext_sigcount; j++) { sig = ext_sig->sig; pf = ext_sig->pf; pr_debug("\tExtended[%d]: sig=0x%x, pf=0x%x\n", j, sig, pf); ext_sig++; } } #endif } /* * Save this mc into mc_saved_data. So it will be loaded early when a CPU is * hot added or resumes. * * Please make sure this mc should be a valid microcode patch before calling * this function. */ static void save_mc_for_early(u8 *mc) { #ifdef CONFIG_HOTPLUG_CPU /* Synchronization during CPU hotplug. */ static DEFINE_MUTEX(x86_cpu_microcode_mutex); struct microcode_intel *mc_saved_tmp[MAX_UCODE_COUNT]; unsigned int mc_saved_count_init; unsigned int num_saved; struct microcode_intel **mc_saved; int ret, i; mutex_lock(&x86_cpu_microcode_mutex); mc_saved_count_init = mc_saved_data.num_saved; num_saved = mc_saved_data.num_saved; mc_saved = mc_saved_data.mc_saved; if (mc_saved && num_saved) memcpy(mc_saved_tmp, mc_saved, num_saved * sizeof(struct microcode_intel *)); /* * Save the microcode patch mc in mc_save_tmp structure if it's a newer * version. */ num_saved = _save_mc(mc_saved_tmp, mc, num_saved); /* * Save the mc_save_tmp in global mc_saved_data. */ ret = save_microcode(&mc_saved_data, mc_saved_tmp, num_saved); if (ret) { pr_err("Cannot save microcode patch.\n"); goto out; } show_saved_mc(); /* * Free old saved microcode data. */ if (mc_saved) { for (i = 0; i < mc_saved_count_init; i++) kfree(mc_saved[i]); kfree(mc_saved); } out: mutex_unlock(&x86_cpu_microcode_mutex); #endif } static bool __init load_builtin_intel_microcode(struct cpio_data *cp) { #ifdef CONFIG_X86_64 unsigned int eax = 0x00000001, ebx, ecx = 0, edx; char name[30]; native_cpuid(&eax, &ebx, &ecx, &edx); sprintf(name, "intel-ucode/%02x-%02x-%02x", x86_family(eax), x86_model(eax), x86_stepping(eax)); return get_builtin_firmware(cp, name); #else return false; #endif } /* * Print ucode update info. */ static void print_ucode_info(struct ucode_cpu_info *uci, unsigned int date) { pr_info_once("microcode updated early to revision 0x%x, date = %04x-%02x-%02x\n", uci->cpu_sig.rev, date & 0xffff, date >> 24, (date >> 16) & 0xff); } #ifdef CONFIG_X86_32 static int delay_ucode_info; static int current_mc_date; /* * Print early updated ucode info after printk works. This is delayed info dump. */ void show_ucode_info_early(void) { struct ucode_cpu_info uci; if (delay_ucode_info) { collect_cpu_info_early(&uci); print_ucode_info(&uci, current_mc_date); delay_ucode_info = 0; } } /* * At this point, we can not call printk() yet. Keep microcode patch number in * mc_saved_data.mc_saved and delay printing microcode info in * show_ucode_info_early() until printk() works. */ static void print_ucode(struct ucode_cpu_info *uci) { struct microcode_intel *mc; int *delay_ucode_info_p; int *current_mc_date_p; mc = uci->mc; if (!mc) return; delay_ucode_info_p = (int *)__pa_nodebug(&delay_ucode_info); current_mc_date_p = (int *)__pa_nodebug(¤t_mc_date); *delay_ucode_info_p = 1; *current_mc_date_p = mc->hdr.date; } #else /* * Flush global tlb. We only do this in x86_64 where paging has been enabled * already and PGE should be enabled as well. */ static inline void flush_tlb_early(void) { __native_flush_tlb_global_irq_disabled(); } static inline void print_ucode(struct ucode_cpu_info *uci) { struct microcode_intel *mc; mc = uci->mc; if (!mc) return; print_ucode_info(uci, mc->hdr.date); } #endif static int apply_microcode_early(struct ucode_cpu_info *uci, bool early) { struct microcode_intel *mc; unsigned int val[2]; mc = uci->mc; if (!mc) return 0; /* write microcode via MSR 0x79 */ native_wrmsrl(MSR_IA32_UCODE_WRITE, (unsigned long)mc->bits); native_wrmsrl(MSR_IA32_UCODE_REV, 0); /* As documented in the SDM: Do a CPUID 1 here */ sync_core(); /* get the current revision from MSR 0x8B */ native_rdmsr(MSR_IA32_UCODE_REV, val[0], val[1]); if (val[1] != mc->hdr.rev) return -1; #ifdef CONFIG_X86_64 /* Flush global tlb. This is precaution. */ flush_tlb_early(); #endif uci->cpu_sig.rev = val[1]; if (early) print_ucode(uci); else print_ucode_info(uci, mc->hdr.date); return 0; } /* * This function converts microcode patch offsets previously stored in * mc_tmp_ptrs to pointers and stores the pointers in mc_saved_data. */ int __init save_microcode_in_initrd_intel(void) { struct microcode_intel *mc_saved[MAX_UCODE_COUNT]; unsigned int count = mc_saved_data.num_saved; unsigned long offset = 0; int ret; if (!count) return 0; /* * We have found a valid initrd but it might've been relocated in the * meantime so get its updated address. */ if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && blobs.valid) offset = initrd_start; copy_ptrs(mc_saved, mc_tmp_ptrs, offset, count); ret = save_microcode(&mc_saved_data, mc_saved, count); if (ret) pr_err("Cannot save microcode patches from initrd.\n"); else show_saved_mc(); return ret; } static __init enum ucode_state __scan_microcode_initrd(struct cpio_data *cd, struct ucode_blobs *blbp) { #ifdef CONFIG_BLK_DEV_INITRD static __initdata char ucode_name[] = "kernel/x86/microcode/GenuineIntel.bin"; char *p = IS_ENABLED(CONFIG_X86_32) ? (char *)__pa_nodebug(ucode_name) : ucode_name; # ifdef CONFIG_X86_32 unsigned long start = 0, size; struct boot_params *params; params = (struct boot_params *)__pa_nodebug(&boot_params); size = params->hdr.ramdisk_size; /* * Set start only if we have an initrd image. We cannot use initrd_start * because it is not set that early yet. */ start = (size ? params->hdr.ramdisk_image : 0); # else /* CONFIG_X86_64 */ unsigned long start = 0, size; size = (u64)boot_params.ext_ramdisk_size << 32; size |= boot_params.hdr.ramdisk_size; if (size) { start = (u64)boot_params.ext_ramdisk_image << 32; start |= boot_params.hdr.ramdisk_image; start += PAGE_OFFSET; } # endif *cd = find_cpio_data(p, (void *)start, size, NULL); if (cd->data) { blbp->start = start; blbp->valid = true; return UCODE_OK; } else #endif /* CONFIG_BLK_DEV_INITRD */ return UCODE_ERROR; } static __init enum ucode_state scan_microcode(struct mc_saved_data *mcs, unsigned long *mc_ptrs, struct ucode_cpu_info *uci, struct ucode_blobs *blbp) { struct cpio_data cd = { NULL, 0, "" }; enum ucode_state ret; /* try built-in microcode first */ if (load_builtin_intel_microcode(&cd)) /* * Invalidate blobs as we might've gotten an initrd too, * supplied by the boot loader, by mistake or simply forgotten * there. That's fine, we ignore it since we've found builtin * microcode already. */ blbp->valid = false; else { ret = __scan_microcode_initrd(&cd, blbp); if (ret != UCODE_OK) return ret; } return get_matching_model_microcode(blbp->start, cd.data, cd.size, mcs, mc_ptrs, uci); } static void __init _load_ucode_intel_bsp(struct mc_saved_data *mcs, unsigned long *mc_ptrs, struct ucode_blobs *blbp) { struct ucode_cpu_info uci; enum ucode_state ret; collect_cpu_info_early(&uci); ret = scan_microcode(mcs, mc_ptrs, &uci, blbp); if (ret != UCODE_OK) return; ret = load_microcode(mcs, mc_ptrs, blbp->start, &uci); if (ret != UCODE_OK) return; apply_microcode_early(&uci, true); } void __init load_ucode_intel_bsp(void) { struct ucode_blobs *blobs_p; struct mc_saved_data *mcs; unsigned long *ptrs; #ifdef CONFIG_X86_32 mcs = (struct mc_saved_data *)__pa_nodebug(&mc_saved_data); ptrs = (unsigned long *)__pa_nodebug(&mc_tmp_ptrs); blobs_p = (struct ucode_blobs *)__pa_nodebug(&blobs); #else mcs = &mc_saved_data; ptrs = mc_tmp_ptrs; blobs_p = &blobs; #endif _load_ucode_intel_bsp(mcs, ptrs, blobs_p); } void load_ucode_intel_ap(void) { struct ucode_blobs *blobs_p; unsigned long *ptrs, start = 0; struct mc_saved_data *mcs; struct ucode_cpu_info uci; enum ucode_state ret; #ifdef CONFIG_X86_32 mcs = (struct mc_saved_data *)__pa_nodebug(&mc_saved_data); ptrs = (unsigned long *)__pa_nodebug(mc_tmp_ptrs); blobs_p = (struct ucode_blobs *)__pa_nodebug(&blobs); #else mcs = &mc_saved_data; ptrs = mc_tmp_ptrs; blobs_p = &blobs; #endif /* * If there is no valid ucode previously saved in memory, no need to * update ucode on this AP. */ if (!mcs->num_saved) return; if (blobs_p->valid) { start = blobs_p->start; /* * Pay attention to CONFIG_RANDOMIZE_MEMORY=y as it shuffles * physmem mapping too and there we have the initrd. */ start += PAGE_OFFSET - __PAGE_OFFSET_BASE; } collect_cpu_info_early(&uci); ret = load_microcode(mcs, ptrs, start, &uci); if (ret != UCODE_OK) return; apply_microcode_early(&uci, true); } void reload_ucode_intel(void) { struct ucode_cpu_info uci; enum ucode_state ret; if (!mc_saved_data.num_saved) return; collect_cpu_info_early(&uci); ret = find_microcode_patch(mc_saved_data.mc_saved, mc_saved_data.num_saved, &uci); if (ret != UCODE_OK) return; apply_microcode_early(&uci, false); } static int collect_cpu_info(int cpu_num, struct cpu_signature *csig) { static struct cpu_signature prev; struct cpuinfo_x86 *c = &cpu_data(cpu_num); unsigned int val[2]; memset(csig, 0, sizeof(*csig)); csig->sig = cpuid_eax(0x00000001); if ((c->x86_model >= 5) || (c->x86 > 6)) { /* get processor flags from MSR 0x17 */ rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]); csig->pf = 1 << ((val[1] >> 18) & 7); } csig->rev = c->microcode; /* No extra locking on prev, races are harmless. */ if (csig->sig != prev.sig || csig->pf != prev.pf || csig->rev != prev.rev) { pr_info("sig=0x%x, pf=0x%x, revision=0x%x\n", csig->sig, csig->pf, csig->rev); prev = *csig; } return 0; } /* * return 0 - no update found * return 1 - found update */ static int get_matching_mc(struct microcode_intel *mc, int cpu) { struct cpu_signature cpu_sig; unsigned int csig, cpf, crev; collect_cpu_info(cpu, &cpu_sig); csig = cpu_sig.sig; cpf = cpu_sig.pf; crev = cpu_sig.rev; return has_newer_microcode(mc, csig, cpf, crev); } static int apply_microcode_intel(int cpu) { struct microcode_intel *mc; struct ucode_cpu_info *uci; struct cpuinfo_x86 *c; unsigned int val[2]; static int prev_rev; /* We should bind the task to the CPU */ if (WARN_ON(raw_smp_processor_id() != cpu)) return -1; uci = ucode_cpu_info + cpu; mc = uci->mc; if (!mc) return 0; /* * Microcode on this CPU could be updated earlier. Only apply the * microcode patch in mc when it is newer than the one on this * CPU. */ if (!get_matching_mc(mc, cpu)) return 0; /* write microcode via MSR 0x79 */ wrmsrl(MSR_IA32_UCODE_WRITE, (unsigned long)mc->bits); wrmsrl(MSR_IA32_UCODE_REV, 0); /* As documented in the SDM: Do a CPUID 1 here */ sync_core(); /* get the current revision from MSR 0x8B */ rdmsr(MSR_IA32_UCODE_REV, val[0], val[1]); if (val[1] != mc->hdr.rev) { pr_err("CPU%d update to revision 0x%x failed\n", cpu, mc->hdr.rev); return -1; } if (val[1] != prev_rev) { pr_info("updated to revision 0x%x, date = %04x-%02x-%02x\n", val[1], mc->hdr.date & 0xffff, mc->hdr.date >> 24, (mc->hdr.date >> 16) & 0xff); prev_rev = val[1]; } c = &cpu_data(cpu); uci->cpu_sig.rev = val[1]; c->microcode = val[1]; return 0; } static enum ucode_state generic_load_microcode(int cpu, void *data, size_t size, int (*get_ucode_data)(void *, const void *, size_t)) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; u8 *ucode_ptr = data, *new_mc = NULL, *mc = NULL; int new_rev = uci->cpu_sig.rev; unsigned int leftover = size; unsigned int curr_mc_size = 0; unsigned int csig, cpf; while (leftover) { struct microcode_header_intel mc_header; unsigned int mc_size; if (leftover < sizeof(mc_header)) { pr_err("error! Truncated header in microcode data file\n"); break; } if (get_ucode_data(&mc_header, ucode_ptr, sizeof(mc_header))) break; mc_size = get_totalsize(&mc_header); if (!mc_size || mc_size > leftover) { pr_err("error! Bad data in microcode data file\n"); break; } /* For performance reasons, reuse mc area when possible */ if (!mc || mc_size > curr_mc_size) { vfree(mc); mc = vmalloc(mc_size); if (!mc) break; curr_mc_size = mc_size; } if (get_ucode_data(mc, ucode_ptr, mc_size) || microcode_sanity_check(mc, 1) < 0) { break; } csig = uci->cpu_sig.sig; cpf = uci->cpu_sig.pf; if (has_newer_microcode(mc, csig, cpf, new_rev)) { vfree(new_mc); new_rev = mc_header.rev; new_mc = mc; mc = NULL; /* trigger new vmalloc */ } ucode_ptr += mc_size; leftover -= mc_size; } vfree(mc); if (leftover) { vfree(new_mc); return UCODE_ERROR; } if (!new_mc) return UCODE_NFOUND; vfree(uci->mc); uci->mc = (struct microcode_intel *)new_mc; /* * If early loading microcode is supported, save this mc into * permanent memory. So it will be loaded early when a CPU is hot added * or resumes. */ save_mc_for_early(new_mc); pr_debug("CPU%d found a matching microcode update with version 0x%x (current=0x%x)\n", cpu, new_rev, uci->cpu_sig.rev); return UCODE_OK; } static int get_ucode_fw(void *to, const void *from, size_t n) { memcpy(to, from, n); return 0; } static enum ucode_state request_microcode_fw(int cpu, struct device *device, bool refresh_fw) { char name[30]; struct cpuinfo_x86 *c = &cpu_data(cpu); const struct firmware *firmware; enum ucode_state ret; sprintf(name, "intel-ucode/%02x-%02x-%02x", c->x86, c->x86_model, c->x86_mask); if (request_firmware_direct(&firmware, name, device)) { pr_debug("data file %s load failed\n", name); return UCODE_NFOUND; } ret = generic_load_microcode(cpu, (void *)firmware->data, firmware->size, &get_ucode_fw); release_firmware(firmware); return ret; } static int get_ucode_user(void *to, const void *from, size_t n) { return copy_from_user(to, from, n); } static enum ucode_state request_microcode_user(int cpu, const void __user *buf, size_t size) { return generic_load_microcode(cpu, (void *)buf, size, &get_ucode_user); } static void microcode_fini_cpu(int cpu) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; vfree(uci->mc); uci->mc = NULL; } static struct microcode_ops microcode_intel_ops = { .request_microcode_user = request_microcode_user, .request_microcode_fw = request_microcode_fw, .collect_cpu_info = collect_cpu_info, .apply_microcode = apply_microcode_intel, .microcode_fini_cpu = microcode_fini_cpu, }; struct microcode_ops * __init init_intel_microcode(void) { struct cpuinfo_x86 *c = &boot_cpu_data; if (c->x86_vendor != X86_VENDOR_INTEL || c->x86 < 6 || cpu_has(c, X86_FEATURE_IA64)) { pr_err("Intel CPU family 0x%x not supported\n", c->x86); return NULL; } return µcode_intel_ops; }