/* * Copyright(c) 2015, 2016 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include "hfi.h" #include "mad.h" #include "verbs_txreq.h" #include "qp.h" /** * ud_loopback - handle send on loopback QPs * @sqp: the sending QP * @swqe: the send work request * * This is called from hfi1_make_ud_req() to forward a WQE addressed * to the same HFI. * Note that the receive interrupt handler may be calling hfi1_ud_rcv() * while this is being called. */ static void ud_loopback(struct rvt_qp *sqp, struct rvt_swqe *swqe) { struct hfi1_ibport *ibp = to_iport(sqp->ibqp.device, sqp->port_num); struct hfi1_pportdata *ppd; struct rvt_qp *qp; struct rdma_ah_attr *ah_attr; unsigned long flags; struct rvt_sge_state ssge; struct rvt_sge *sge; struct ib_wc wc; u32 length; enum ib_qp_type sqptype, dqptype; rcu_read_lock(); qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), &ibp->rvp, swqe->ud_wr.remote_qpn); if (!qp) { ibp->rvp.n_pkt_drops++; rcu_read_unlock(); return; } sqptype = sqp->ibqp.qp_type == IB_QPT_GSI ? IB_QPT_UD : sqp->ibqp.qp_type; dqptype = qp->ibqp.qp_type == IB_QPT_GSI ? IB_QPT_UD : qp->ibqp.qp_type; if (dqptype != sqptype || !(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { ibp->rvp.n_pkt_drops++; goto drop; } ah_attr = &ibah_to_rvtah(swqe->ud_wr.ah)->attr; ppd = ppd_from_ibp(ibp); if (qp->ibqp.qp_num > 1) { u16 pkey; u16 slid; u8 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(ah_attr)]; pkey = hfi1_get_pkey(ibp, sqp->s_pkey_index); slid = ppd->lid | (rdma_ah_get_path_bits(ah_attr) & ((1 << ppd->lmc) - 1)); if (unlikely(ingress_pkey_check(ppd, pkey, sc5, qp->s_pkey_index, slid))) { hfi1_bad_pkey(ibp, pkey, rdma_ah_get_sl(ah_attr), sqp->ibqp.qp_num, qp->ibqp.qp_num, slid, rdma_ah_get_dlid(ah_attr)); goto drop; } } /* * Check that the qkey matches (except for QP0, see 9.6.1.4.1). * Qkeys with the high order bit set mean use the * qkey from the QP context instead of the WR (see 10.2.5). */ if (qp->ibqp.qp_num) { u32 qkey; qkey = (int)swqe->ud_wr.remote_qkey < 0 ? sqp->qkey : swqe->ud_wr.remote_qkey; if (unlikely(qkey != qp->qkey)) goto drop; /* silently drop per IBTA spec */ } /* * A GRH is expected to precede the data even if not * present on the wire. */ length = swqe->length; memset(&wc, 0, sizeof(wc)); wc.byte_len = length + sizeof(struct ib_grh); if (swqe->wr.opcode == IB_WR_SEND_WITH_IMM) { wc.wc_flags = IB_WC_WITH_IMM; wc.ex.imm_data = swqe->wr.ex.imm_data; } spin_lock_irqsave(&qp->r_lock, flags); /* * Get the next work request entry to find where to put the data. */ if (qp->r_flags & RVT_R_REUSE_SGE) { qp->r_flags &= ~RVT_R_REUSE_SGE; } else { int ret; ret = hfi1_rvt_get_rwqe(qp, 0); if (ret < 0) { rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR); goto bail_unlock; } if (!ret) { if (qp->ibqp.qp_num == 0) ibp->rvp.n_vl15_dropped++; goto bail_unlock; } } /* Silently drop packets which are too big. */ if (unlikely(wc.byte_len > qp->r_len)) { qp->r_flags |= RVT_R_REUSE_SGE; ibp->rvp.n_pkt_drops++; goto bail_unlock; } if (rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH) { struct ib_grh grh; const struct ib_global_route *grd = rdma_ah_read_grh(ah_attr); hfi1_make_grh(ibp, &grh, grd, 0, 0); hfi1_copy_sge(&qp->r_sge, &grh, sizeof(grh), true, false); wc.wc_flags |= IB_WC_GRH; } else { rvt_skip_sge(&qp->r_sge, sizeof(struct ib_grh), true); } ssge.sg_list = swqe->sg_list + 1; ssge.sge = *swqe->sg_list; ssge.num_sge = swqe->wr.num_sge; sge = &ssge.sge; while (length) { u32 len = sge->length; if (len > length) len = length; if (len > sge->sge_length) len = sge->sge_length; WARN_ON_ONCE(len == 0); hfi1_copy_sge(&qp->r_sge, sge->vaddr, len, true, false); sge->vaddr += len; sge->length -= len; sge->sge_length -= len; if (sge->sge_length == 0) { if (--ssge.num_sge) *sge = *ssge.sg_list++; } else if (sge->length == 0 && sge->mr->lkey) { if (++sge->n >= RVT_SEGSZ) { if (++sge->m >= sge->mr->mapsz) break; sge->n = 0; } sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr; sge->length = sge->mr->map[sge->m]->segs[sge->n].length; } length -= len; } rvt_put_ss(&qp->r_sge); if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) goto bail_unlock; wc.wr_id = qp->r_wr_id; wc.status = IB_WC_SUCCESS; wc.opcode = IB_WC_RECV; wc.qp = &qp->ibqp; wc.src_qp = sqp->ibqp.qp_num; if (qp->ibqp.qp_type == IB_QPT_GSI || qp->ibqp.qp_type == IB_QPT_SMI) { if (sqp->ibqp.qp_type == IB_QPT_GSI || sqp->ibqp.qp_type == IB_QPT_SMI) wc.pkey_index = swqe->ud_wr.pkey_index; else wc.pkey_index = sqp->s_pkey_index; } else { wc.pkey_index = 0; } wc.slid = ppd->lid | (rdma_ah_get_path_bits(ah_attr) & ((1 << ppd->lmc) - 1)); /* Check for loopback when the port lid is not set */ if (wc.slid == 0 && sqp->ibqp.qp_type == IB_QPT_GSI) wc.slid = be16_to_cpu(IB_LID_PERMISSIVE); wc.sl = rdma_ah_get_sl(ah_attr); wc.dlid_path_bits = rdma_ah_get_dlid(ah_attr) & ((1 << ppd->lmc) - 1); wc.port_num = qp->port_num; /* Signal completion event if the solicited bit is set. */ rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, swqe->wr.send_flags & IB_SEND_SOLICITED); ibp->rvp.n_loop_pkts++; bail_unlock: spin_unlock_irqrestore(&qp->r_lock, flags); drop: rcu_read_unlock(); } /** * hfi1_make_ud_req - construct a UD request packet * @qp: the QP * * Assume s_lock is held. * * Return 1 if constructed; otherwise, return 0. */ int hfi1_make_ud_req(struct rvt_qp *qp, struct hfi1_pkt_state *ps) { struct hfi1_qp_priv *priv = qp->priv; struct ib_other_headers *ohdr; struct rdma_ah_attr *ah_attr; struct hfi1_pportdata *ppd; struct hfi1_ibport *ibp; struct rvt_swqe *wqe; u32 nwords; u32 extra_bytes; u32 bth0; u16 lrh0; u16 lid; int next_cur; u8 sc5; ps->s_txreq = get_txreq(ps->dev, qp); if (IS_ERR(ps->s_txreq)) goto bail_no_tx; if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_NEXT_SEND_OK)) { if (!(ib_rvt_state_ops[qp->state] & RVT_FLUSH_SEND)) goto bail; /* We are in the error state, flush the work request. */ smp_read_barrier_depends(); /* see post_one_send */ if (qp->s_last == ACCESS_ONCE(qp->s_head)) goto bail; /* If DMAs are in progress, we can't flush immediately. */ if (iowait_sdma_pending(&priv->s_iowait)) { qp->s_flags |= RVT_S_WAIT_DMA; goto bail; } wqe = rvt_get_swqe_ptr(qp, qp->s_last); hfi1_send_complete(qp, wqe, IB_WC_WR_FLUSH_ERR); goto done_free_tx; } /* see post_one_send() */ smp_read_barrier_depends(); if (qp->s_cur == ACCESS_ONCE(qp->s_head)) goto bail; wqe = rvt_get_swqe_ptr(qp, qp->s_cur); next_cur = qp->s_cur + 1; if (next_cur >= qp->s_size) next_cur = 0; /* Construct the header. */ ibp = to_iport(qp->ibqp.device, qp->port_num); ppd = ppd_from_ibp(ibp); ah_attr = &ibah_to_rvtah(wqe->ud_wr.ah)->attr; if (rdma_ah_get_dlid(ah_attr) < be16_to_cpu(IB_MULTICAST_LID_BASE) || rdma_ah_get_dlid(ah_attr) == be16_to_cpu(IB_LID_PERMISSIVE)) { lid = rdma_ah_get_dlid(ah_attr) & ~((1 << ppd->lmc) - 1); if (unlikely(!loopback && (lid == ppd->lid || (lid == be16_to_cpu(IB_LID_PERMISSIVE) && qp->ibqp.qp_type == IB_QPT_GSI)))) { unsigned long tflags = ps->flags; /* * If DMAs are in progress, we can't generate * a completion for the loopback packet since * it would be out of order. * Instead of waiting, we could queue a * zero length descriptor so we get a callback. */ if (iowait_sdma_pending(&priv->s_iowait)) { qp->s_flags |= RVT_S_WAIT_DMA; goto bail; } qp->s_cur = next_cur; spin_unlock_irqrestore(&qp->s_lock, tflags); ud_loopback(qp, wqe); spin_lock_irqsave(&qp->s_lock, tflags); ps->flags = tflags; hfi1_send_complete(qp, wqe, IB_WC_SUCCESS); goto done_free_tx; } } qp->s_cur = next_cur; extra_bytes = -wqe->length & 3; nwords = (wqe->length + extra_bytes) >> 2; /* header size in 32-bit words LRH+BTH+DETH = (8+12+8)/4. */ qp->s_hdrwords = 7; ps->s_txreq->s_cur_size = wqe->length; ps->s_txreq->ss = &qp->s_sge; qp->s_srate = rdma_ah_get_static_rate(ah_attr); qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); qp->s_wqe = wqe; qp->s_sge.sge = wqe->sg_list[0]; qp->s_sge.sg_list = wqe->sg_list + 1; qp->s_sge.num_sge = wqe->wr.num_sge; qp->s_sge.total_len = wqe->length; if (rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH) { /* Header size in 32-bit words. */ qp->s_hdrwords += hfi1_make_grh(ibp, &ps->s_txreq->phdr.hdr.u.l.grh, rdma_ah_read_grh(ah_attr), qp->s_hdrwords, nwords); lrh0 = HFI1_LRH_GRH; ohdr = &ps->s_txreq->phdr.hdr.u.l.oth; /* * Don't worry about sending to locally attached multicast * QPs. It is unspecified by the spec. what happens. */ } else { /* Header size in 32-bit words. */ lrh0 = HFI1_LRH_BTH; ohdr = &ps->s_txreq->phdr.hdr.u.oth; } if (wqe->wr.opcode == IB_WR_SEND_WITH_IMM) { qp->s_hdrwords++; ohdr->u.ud.imm_data = wqe->wr.ex.imm_data; bth0 = IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE << 24; } else { bth0 = IB_OPCODE_UD_SEND_ONLY << 24; } sc5 = ibp->sl_to_sc[rdma_ah_get_sl(ah_attr)]; lrh0 |= (rdma_ah_get_sl(ah_attr) & 0xf) << 4; if (qp->ibqp.qp_type == IB_QPT_SMI) { lrh0 |= 0xF000; /* Set VL (see ch. 13.5.3.1) */ priv->s_sc = 0xf; } else { lrh0 |= (sc5 & 0xf) << 12; priv->s_sc = sc5; } priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc); ps->s_txreq->sde = priv->s_sde; priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc); ps->s_txreq->psc = priv->s_sendcontext; ps->s_txreq->phdr.hdr.lrh[0] = cpu_to_be16(lrh0); ps->s_txreq->phdr.hdr.lrh[1] = cpu_to_be16(rdma_ah_get_dlid(ah_attr)); ps->s_txreq->phdr.hdr.lrh[2] = cpu_to_be16(qp->s_hdrwords + nwords + SIZE_OF_CRC); if (rdma_ah_get_dlid(ah_attr) == be16_to_cpu(IB_LID_PERMISSIVE)) { ps->s_txreq->phdr.hdr.lrh[3] = IB_LID_PERMISSIVE; } else { lid = ppd->lid; if (lid) { lid |= rdma_ah_get_path_bits(ah_attr) & ((1 << ppd->lmc) - 1); ps->s_txreq->phdr.hdr.lrh[3] = cpu_to_be16(lid); } else { ps->s_txreq->phdr.hdr.lrh[3] = IB_LID_PERMISSIVE; } } if (wqe->wr.send_flags & IB_SEND_SOLICITED) bth0 |= IB_BTH_SOLICITED; bth0 |= extra_bytes << 20; if (qp->ibqp.qp_type == IB_QPT_GSI || qp->ibqp.qp_type == IB_QPT_SMI) bth0 |= hfi1_get_pkey(ibp, wqe->ud_wr.pkey_index); else bth0 |= hfi1_get_pkey(ibp, qp->s_pkey_index); ohdr->bth[0] = cpu_to_be32(bth0); ohdr->bth[1] = cpu_to_be32(wqe->ud_wr.remote_qpn); ohdr->bth[2] = cpu_to_be32(mask_psn(wqe->psn)); /* * Qkeys with the high order bit set mean use the * qkey from the QP context instead of the WR (see 10.2.5). */ ohdr->u.ud.deth[0] = cpu_to_be32((int)wqe->ud_wr.remote_qkey < 0 ? qp->qkey : wqe->ud_wr.remote_qkey); ohdr->u.ud.deth[1] = cpu_to_be32(qp->ibqp.qp_num); /* disarm any ahg */ priv->s_ahg->ahgcount = 0; priv->s_ahg->ahgidx = 0; priv->s_ahg->tx_flags = 0; /* pbc */ ps->s_txreq->hdr_dwords = qp->s_hdrwords + 2; return 1; done_free_tx: hfi1_put_txreq(ps->s_txreq); ps->s_txreq = NULL; return 1; bail: hfi1_put_txreq(ps->s_txreq); bail_no_tx: ps->s_txreq = NULL; qp->s_flags &= ~RVT_S_BUSY; qp->s_hdrwords = 0; return 0; } /* * Hardware can't check this so we do it here. * * This is a slightly different algorithm than the standard pkey check. It * special cases the management keys and allows for 0x7fff and 0xffff to be in * the table at the same time. * * @returns the index found or -1 if not found */ int hfi1_lookup_pkey_idx(struct hfi1_ibport *ibp, u16 pkey) { struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); unsigned i; if (pkey == FULL_MGMT_P_KEY || pkey == LIM_MGMT_P_KEY) { unsigned lim_idx = -1; for (i = 0; i < ARRAY_SIZE(ppd->pkeys); ++i) { /* here we look for an exact match */ if (ppd->pkeys[i] == pkey) return i; if (ppd->pkeys[i] == LIM_MGMT_P_KEY) lim_idx = i; } /* did not find 0xffff return 0x7fff idx if found */ if (pkey == FULL_MGMT_P_KEY) return lim_idx; /* no match... */ return -1; } pkey &= 0x7fff; /* remove limited/full membership bit */ for (i = 0; i < ARRAY_SIZE(ppd->pkeys); ++i) if ((ppd->pkeys[i] & 0x7fff) == pkey) return i; /* * Should not get here, this means hardware failed to validate pkeys. */ return -1; } void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn, u32 pkey, u32 slid, u32 dlid, u8 sc5, const struct ib_grh *old_grh) { u64 pbc, pbc_flags = 0; u32 bth0, plen, vl, hwords = 5; u16 lrh0; u8 sl = ibp->sc_to_sl[sc5]; struct ib_header hdr; struct ib_other_headers *ohdr; struct pio_buf *pbuf; struct send_context *ctxt = qp_to_send_context(qp, sc5); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); if (old_grh) { struct ib_grh *grh = &hdr.u.l.grh; grh->version_tclass_flow = old_grh->version_tclass_flow; grh->paylen = cpu_to_be16((hwords - 2 + SIZE_OF_CRC) << 2); grh->hop_limit = 0xff; grh->sgid = old_grh->dgid; grh->dgid = old_grh->sgid; ohdr = &hdr.u.l.oth; lrh0 = HFI1_LRH_GRH; hwords += sizeof(struct ib_grh) / sizeof(u32); } else { ohdr = &hdr.u.oth; lrh0 = HFI1_LRH_BTH; } lrh0 |= (sc5 & 0xf) << 12 | sl << 4; bth0 = pkey | (IB_OPCODE_CNP << 24); ohdr->bth[0] = cpu_to_be32(bth0); ohdr->bth[1] = cpu_to_be32(remote_qpn | (1 << IB_BECN_SHIFT)); ohdr->bth[2] = 0; /* PSN 0 */ hdr.lrh[0] = cpu_to_be16(lrh0); hdr.lrh[1] = cpu_to_be16(dlid); hdr.lrh[2] = cpu_to_be16(hwords + SIZE_OF_CRC); hdr.lrh[3] = cpu_to_be16(slid); plen = 2 /* PBC */ + hwords; pbc_flags |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT); vl = sc_to_vlt(ppd->dd, sc5); pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen); if (ctxt) { pbuf = sc_buffer_alloc(ctxt, plen, NULL, NULL); if (pbuf) ppd->dd->pio_inline_send(ppd->dd, pbuf, pbc, &hdr, hwords); } } /* * opa_smp_check() - Do the regular pkey checking, and the additional * checks for SMPs specified in OPAv1 rev 1.0, 9/19/2016 update, section * 9.10.25 ("SMA Packet Checks"). * * Note that: * - Checks are done using the pkey directly from the packet's BTH, * and specifically _not_ the pkey that we attach to the completion, * which may be different. * - These checks are specifically for "non-local" SMPs (i.e., SMPs * which originated on another node). SMPs which are sent from, and * destined to this node are checked in opa_local_smp_check(). * * At the point where opa_smp_check() is called, we know: * - destination QP is QP0 * * opa_smp_check() returns 0 if all checks succeed, 1 otherwise. */ static int opa_smp_check(struct hfi1_ibport *ibp, u16 pkey, u8 sc5, struct rvt_qp *qp, u16 slid, struct opa_smp *smp) { struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); /* * I don't think it's possible for us to get here with sc != 0xf, * but check it to be certain. */ if (sc5 != 0xf) return 1; if (rcv_pkey_check(ppd, pkey, sc5, slid)) return 1; /* * At this point we know (and so don't need to check again) that * the pkey is either LIM_MGMT_P_KEY, or FULL_MGMT_P_KEY * (see ingress_pkey_check). */ if (smp->mgmt_class != IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE && smp->mgmt_class != IB_MGMT_CLASS_SUBN_LID_ROUTED) { ingress_pkey_table_fail(ppd, pkey, slid); return 1; } /* * SMPs fall into one of four (disjoint) categories: * SMA request, SMA response, SMA trap, or SMA trap repress. * Our response depends, in part, on which type of SMP we're * processing. * * If this is an SMA response, skip the check here. * * If this is an SMA request or SMA trap repress: * - pkey != FULL_MGMT_P_KEY => * increment port recv constraint errors, drop MAD * * Otherwise: * - accept if the port is running an SM * - drop MAD if it's an SMA trap * - pkey == FULL_MGMT_P_KEY => * reply with unsupported method * - pkey != FULL_MGMT_P_KEY => * increment port recv constraint errors, drop MAD */ switch (smp->method) { case IB_MGMT_METHOD_GET_RESP: case IB_MGMT_METHOD_REPORT_RESP: break; case IB_MGMT_METHOD_GET: case IB_MGMT_METHOD_SET: case IB_MGMT_METHOD_REPORT: case IB_MGMT_METHOD_TRAP_REPRESS: if (pkey != FULL_MGMT_P_KEY) { ingress_pkey_table_fail(ppd, pkey, slid); return 1; } break; default: if (ibp->rvp.port_cap_flags & IB_PORT_SM) return 0; if (smp->method == IB_MGMT_METHOD_TRAP) return 1; if (pkey == FULL_MGMT_P_KEY) { smp->status |= IB_SMP_UNSUP_METHOD; return 0; } ingress_pkey_table_fail(ppd, pkey, slid); return 1; } return 0; } /** * hfi1_ud_rcv - receive an incoming UD packet * @ibp: the port the packet came in on * @hdr: the packet header * @rcv_flags: flags relevant to rcv processing * @data: the packet data * @tlen: the packet length * @qp: the QP the packet came on * * This is called from qp_rcv() to process an incoming UD packet * for the given QP. * Called at interrupt level. */ void hfi1_ud_rcv(struct hfi1_packet *packet) { struct ib_other_headers *ohdr = packet->ohdr; u32 hdrsize = packet->hlen; struct ib_wc wc; u32 qkey; u32 src_qp; u16 pkey; int mgmt_pkey_idx = -1; struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); struct ib_header *hdr = packet->hdr; void *data = packet->payload; u32 tlen = packet->tlen; struct rvt_qp *qp = packet->qp; u8 sc5 = hfi1_9B_get_sc5(hdr, packet->rhf); u8 sl_from_sc; u8 extra_bytes = packet->pad; u8 opcode = packet->opcode; u8 sl = packet->sl; u32 dlid = packet->dlid; u32 slid = packet->slid; qkey = ib_get_qkey(ohdr); src_qp = ib_get_sqpn(ohdr); pkey = ib_bth_get_pkey(ohdr); extra_bytes += (SIZE_OF_CRC << 2); sl_from_sc = ibp->sc_to_sl[sc5]; process_ecn(qp, packet, (opcode != IB_OPCODE_CNP)); /* * Get the number of bytes the message was padded by * and drop incomplete packets. */ if (unlikely(tlen < (hdrsize + extra_bytes))) goto drop; tlen -= hdrsize + extra_bytes; /* * Check that the permissive LID is only used on QP0 * and the QKEY matches (see 9.6.1.4.1 and 9.6.1.5.1). */ if (qp->ibqp.qp_num) { if (unlikely(hdr->lrh[1] == IB_LID_PERMISSIVE || hdr->lrh[3] == IB_LID_PERMISSIVE)) goto drop; if (qp->ibqp.qp_num > 1) { if (unlikely(rcv_pkey_check(ppd, pkey, sc5, slid))) { /* * Traps will not be sent for packets dropped * by the HW. This is fine, as sending trap * for invalid pkeys is optional according to * IB spec (release 1.3, section 10.9.4) */ hfi1_bad_pkey(ibp, pkey, sl, src_qp, qp->ibqp.qp_num, slid, dlid); return; } } else { /* GSI packet */ mgmt_pkey_idx = hfi1_lookup_pkey_idx(ibp, pkey); if (mgmt_pkey_idx < 0) goto drop; } if (unlikely(qkey != qp->qkey)) /* Silent drop */ return; /* Drop invalid MAD packets (see 13.5.3.1). */ if (unlikely(qp->ibqp.qp_num == 1 && (tlen > 2048 || (sc5 == 0xF)))) goto drop; } else { /* Received on QP0, and so by definition, this is an SMP */ struct opa_smp *smp = (struct opa_smp *)data; if (opa_smp_check(ibp, pkey, sc5, qp, slid, smp)) goto drop; if (tlen > 2048) goto drop; if ((hdr->lrh[1] == IB_LID_PERMISSIVE || hdr->lrh[3] == IB_LID_PERMISSIVE) && smp->mgmt_class != IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE) goto drop; /* look up SMI pkey */ mgmt_pkey_idx = hfi1_lookup_pkey_idx(ibp, pkey); if (mgmt_pkey_idx < 0) goto drop; } if (qp->ibqp.qp_num > 1 && opcode == IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE) { wc.ex.imm_data = ohdr->u.ud.imm_data; wc.wc_flags = IB_WC_WITH_IMM; tlen -= sizeof(u32); } else if (opcode == IB_OPCODE_UD_SEND_ONLY) { wc.ex.imm_data = 0; wc.wc_flags = 0; } else { goto drop; } /* * A GRH is expected to precede the data even if not * present on the wire. */ wc.byte_len = tlen + sizeof(struct ib_grh); /* * Get the next work request entry to find where to put the data. */ if (qp->r_flags & RVT_R_REUSE_SGE) { qp->r_flags &= ~RVT_R_REUSE_SGE; } else { int ret; ret = hfi1_rvt_get_rwqe(qp, 0); if (ret < 0) { rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR); return; } if (!ret) { if (qp->ibqp.qp_num == 0) ibp->rvp.n_vl15_dropped++; return; } } /* Silently drop packets which are too big. */ if (unlikely(wc.byte_len > qp->r_len)) { qp->r_flags |= RVT_R_REUSE_SGE; goto drop; } if (packet->grh) { hfi1_copy_sge(&qp->r_sge, &hdr->u.l.grh, sizeof(struct ib_grh), true, false); wc.wc_flags |= IB_WC_GRH; } else { rvt_skip_sge(&qp->r_sge, sizeof(struct ib_grh), true); } hfi1_copy_sge(&qp->r_sge, data, wc.byte_len - sizeof(struct ib_grh), true, false); rvt_put_ss(&qp->r_sge); if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) return; wc.wr_id = qp->r_wr_id; wc.status = IB_WC_SUCCESS; wc.opcode = IB_WC_RECV; wc.vendor_err = 0; wc.qp = &qp->ibqp; wc.src_qp = src_qp; if (qp->ibqp.qp_type == IB_QPT_GSI || qp->ibqp.qp_type == IB_QPT_SMI) { if (mgmt_pkey_idx < 0) { if (net_ratelimit()) { struct hfi1_devdata *dd = ppd->dd; dd_dev_err(dd, "QP type %d mgmt_pkey_idx < 0 and packet not dropped???\n", qp->ibqp.qp_type); mgmt_pkey_idx = 0; } } wc.pkey_index = (unsigned)mgmt_pkey_idx; } else { wc.pkey_index = 0; } wc.slid = slid; wc.sl = sl_from_sc; /* * Save the LMC lower bits if the destination LID is a unicast LID. */ wc.dlid_path_bits = dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE) ? 0 : dlid & ((1 << ppd_from_ibp(ibp)->lmc) - 1); wc.port_num = qp->port_num; /* Signal completion event if the solicited bit is set. */ rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, (ohdr->bth[0] & cpu_to_be32(IB_BTH_SOLICITED)) != 0); return; drop: ibp->rvp.n_pkt_drops++; }