/* * NVMe over Fabrics RDMA host code. * Copyright (c) 2015-2016 HGST, a Western Digital Company. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nvme.h" #include "fabrics.h" #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */ #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */ #define NVME_RDMA_MAX_SEGMENTS 256 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 /* * We handle AEN commands ourselves and don't even let the * block layer know about them. */ #define NVME_RDMA_NR_AEN_COMMANDS 1 #define NVME_RDMA_AQ_BLKMQ_DEPTH \ (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS) struct nvme_rdma_device { struct ib_device *dev; struct ib_pd *pd; struct kref ref; struct list_head entry; }; struct nvme_rdma_qe { struct ib_cqe cqe; void *data; u64 dma; }; struct nvme_rdma_queue; struct nvme_rdma_request { struct nvme_request req; struct ib_mr *mr; struct nvme_rdma_qe sqe; struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; u32 num_sge; int nents; bool inline_data; struct ib_reg_wr reg_wr; struct ib_cqe reg_cqe; struct nvme_rdma_queue *queue; struct sg_table sg_table; struct scatterlist first_sgl[]; }; enum nvme_rdma_queue_flags { NVME_RDMA_Q_CONNECTED = (1 << 0), NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1), NVME_RDMA_Q_DELETING = (1 << 2), }; struct nvme_rdma_queue { struct nvme_rdma_qe *rsp_ring; u8 sig_count; int queue_size; size_t cmnd_capsule_len; struct nvme_rdma_ctrl *ctrl; struct nvme_rdma_device *device; struct ib_cq *ib_cq; struct ib_qp *qp; unsigned long flags; struct rdma_cm_id *cm_id; int cm_error; struct completion cm_done; }; struct nvme_rdma_ctrl { /* read and written in the hot path */ spinlock_t lock; /* read only in the hot path */ struct nvme_rdma_queue *queues; u32 queue_count; /* other member variables */ struct blk_mq_tag_set tag_set; struct work_struct delete_work; struct work_struct reset_work; struct work_struct err_work; struct nvme_rdma_qe async_event_sqe; int reconnect_delay; struct delayed_work reconnect_work; struct list_head list; struct blk_mq_tag_set admin_tag_set; struct nvme_rdma_device *device; u64 cap; u32 max_fr_pages; union { struct sockaddr addr; struct sockaddr_in addr_in; }; struct nvme_ctrl ctrl; }; static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) { return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); } static LIST_HEAD(device_list); static DEFINE_MUTEX(device_list_mutex); static LIST_HEAD(nvme_rdma_ctrl_list); static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); static struct workqueue_struct *nvme_rdma_wq; /* * Disabling this option makes small I/O goes faster, but is fundamentally * unsafe. With it turned off we will have to register a global rkey that * allows read and write access to all physical memory. */ static bool register_always = true; module_param(register_always, bool, 0444); MODULE_PARM_DESC(register_always, "Use memory registration even for contiguous memory regions"); static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, struct rdma_cm_event *event); static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); /* XXX: really should move to a generic header sooner or later.. */ static inline void put_unaligned_le24(u32 val, u8 *p) { *p++ = val; *p++ = val >> 8; *p++ = val >> 16; } static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) { return queue - queue->ctrl->queues; } static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) { return queue->cmnd_capsule_len - sizeof(struct nvme_command); } static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, size_t capsule_size, enum dma_data_direction dir) { ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); kfree(qe->data); } static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, size_t capsule_size, enum dma_data_direction dir) { qe->data = kzalloc(capsule_size, GFP_KERNEL); if (!qe->data) return -ENOMEM; qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); if (ib_dma_mapping_error(ibdev, qe->dma)) { kfree(qe->data); return -ENOMEM; } return 0; } static void nvme_rdma_free_ring(struct ib_device *ibdev, struct nvme_rdma_qe *ring, size_t ib_queue_size, size_t capsule_size, enum dma_data_direction dir) { int i; for (i = 0; i < ib_queue_size; i++) nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); kfree(ring); } static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, size_t ib_queue_size, size_t capsule_size, enum dma_data_direction dir) { struct nvme_rdma_qe *ring; int i; ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); if (!ring) return NULL; for (i = 0; i < ib_queue_size; i++) { if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) goto out_free_ring; } return ring; out_free_ring: nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); return NULL; } static void nvme_rdma_qp_event(struct ib_event *event, void *context) { pr_debug("QP event %s (%d)\n", ib_event_msg(event->event), event->event); } static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) { wait_for_completion_interruptible_timeout(&queue->cm_done, msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); return queue->cm_error; } static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) { struct nvme_rdma_device *dev = queue->device; struct ib_qp_init_attr init_attr; int ret; memset(&init_attr, 0, sizeof(init_attr)); init_attr.event_handler = nvme_rdma_qp_event; /* +1 for drain */ init_attr.cap.max_send_wr = factor * queue->queue_size + 1; /* +1 for drain */ init_attr.cap.max_recv_wr = queue->queue_size + 1; init_attr.cap.max_recv_sge = 1; init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; init_attr.qp_type = IB_QPT_RC; init_attr.send_cq = queue->ib_cq; init_attr.recv_cq = queue->ib_cq; ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); queue->qp = queue->cm_id->qp; return ret; } static int nvme_rdma_reinit_request(void *data, struct request *rq) { struct nvme_rdma_ctrl *ctrl = data; struct nvme_rdma_device *dev = ctrl->device; struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); int ret = 0; if (!req->mr->need_inval) goto out; ib_dereg_mr(req->mr); req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, ctrl->max_fr_pages); if (IS_ERR(req->mr)) { ret = PTR_ERR(req->mr); req->mr = NULL; goto out; } req->mr->need_inval = false; out: return ret; } static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl, struct request *rq, unsigned int queue_idx) { struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; struct nvme_rdma_device *dev = queue->device; if (req->mr) ib_dereg_mr(req->mr); nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), DMA_TO_DEVICE); } static void nvme_rdma_exit_request(void *data, struct request *rq, unsigned int hctx_idx, unsigned int rq_idx) { return __nvme_rdma_exit_request(data, rq, hctx_idx + 1); } static void nvme_rdma_exit_admin_request(void *data, struct request *rq, unsigned int hctx_idx, unsigned int rq_idx) { return __nvme_rdma_exit_request(data, rq, 0); } static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl, struct request *rq, unsigned int queue_idx) { struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; struct nvme_rdma_device *dev = queue->device; struct ib_device *ibdev = dev->dev; int ret; BUG_ON(queue_idx >= ctrl->queue_count); ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), DMA_TO_DEVICE); if (ret) return ret; req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, ctrl->max_fr_pages); if (IS_ERR(req->mr)) { ret = PTR_ERR(req->mr); goto out_free_qe; } req->queue = queue; return 0; out_free_qe: nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), DMA_TO_DEVICE); return -ENOMEM; } static int nvme_rdma_init_request(void *data, struct request *rq, unsigned int hctx_idx, unsigned int rq_idx, unsigned int numa_node) { return __nvme_rdma_init_request(data, rq, hctx_idx + 1); } static int nvme_rdma_init_admin_request(void *data, struct request *rq, unsigned int hctx_idx, unsigned int rq_idx, unsigned int numa_node) { return __nvme_rdma_init_request(data, rq, 0); } static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_rdma_ctrl *ctrl = data; struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; BUG_ON(hctx_idx >= ctrl->queue_count); hctx->driver_data = queue; return 0; } static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) { struct nvme_rdma_ctrl *ctrl = data; struct nvme_rdma_queue *queue = &ctrl->queues[0]; BUG_ON(hctx_idx != 0); hctx->driver_data = queue; return 0; } static void nvme_rdma_free_dev(struct kref *ref) { struct nvme_rdma_device *ndev = container_of(ref, struct nvme_rdma_device, ref); mutex_lock(&device_list_mutex); list_del(&ndev->entry); mutex_unlock(&device_list_mutex); ib_dealloc_pd(ndev->pd); kfree(ndev); } static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) { kref_put(&dev->ref, nvme_rdma_free_dev); } static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) { return kref_get_unless_zero(&dev->ref); } static struct nvme_rdma_device * nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) { struct nvme_rdma_device *ndev; mutex_lock(&device_list_mutex); list_for_each_entry(ndev, &device_list, entry) { if (ndev->dev->node_guid == cm_id->device->node_guid && nvme_rdma_dev_get(ndev)) goto out_unlock; } ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); if (!ndev) goto out_err; ndev->dev = cm_id->device; kref_init(&ndev->ref); ndev->pd = ib_alloc_pd(ndev->dev, register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); if (IS_ERR(ndev->pd)) goto out_free_dev; if (!(ndev->dev->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)) { dev_err(&ndev->dev->dev, "Memory registrations not supported.\n"); goto out_free_pd; } list_add(&ndev->entry, &device_list); out_unlock: mutex_unlock(&device_list_mutex); return ndev; out_free_pd: ib_dealloc_pd(ndev->pd); out_free_dev: kfree(ndev); out_err: mutex_unlock(&device_list_mutex); return NULL; } static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) { struct nvme_rdma_device *dev; struct ib_device *ibdev; if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags)) return; dev = queue->device; ibdev = dev->dev; rdma_destroy_qp(queue->cm_id); ib_free_cq(queue->ib_cq); nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, sizeof(struct nvme_completion), DMA_FROM_DEVICE); nvme_rdma_dev_put(dev); } static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue, struct nvme_rdma_device *dev) { struct ib_device *ibdev = dev->dev; const int send_wr_factor = 3; /* MR, SEND, INV */ const int cq_factor = send_wr_factor + 1; /* + RECV */ int comp_vector, idx = nvme_rdma_queue_idx(queue); int ret; queue->device = dev; /* * The admin queue is barely used once the controller is live, so don't * bother to spread it out. */ if (idx == 0) comp_vector = 0; else comp_vector = idx % ibdev->num_comp_vectors; /* +1 for ib_stop_cq */ queue->ib_cq = ib_alloc_cq(dev->dev, queue, cq_factor * queue->queue_size + 1, comp_vector, IB_POLL_SOFTIRQ); if (IS_ERR(queue->ib_cq)) { ret = PTR_ERR(queue->ib_cq); goto out; } ret = nvme_rdma_create_qp(queue, send_wr_factor); if (ret) goto out_destroy_ib_cq; queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, sizeof(struct nvme_completion), DMA_FROM_DEVICE); if (!queue->rsp_ring) { ret = -ENOMEM; goto out_destroy_qp; } set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags); return 0; out_destroy_qp: ib_destroy_qp(queue->qp); out_destroy_ib_cq: ib_free_cq(queue->ib_cq); out: return ret; } static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl, int idx, size_t queue_size) { struct nvme_rdma_queue *queue; int ret; queue = &ctrl->queues[idx]; queue->ctrl = ctrl; init_completion(&queue->cm_done); if (idx > 0) queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; else queue->cmnd_capsule_len = sizeof(struct nvme_command); queue->queue_size = queue_size; queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(queue->cm_id)) { dev_info(ctrl->ctrl.device, "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); return PTR_ERR(queue->cm_id); } queue->cm_error = -ETIMEDOUT; ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr, NVME_RDMA_CONNECT_TIMEOUT_MS); if (ret) { dev_info(ctrl->ctrl.device, "rdma_resolve_addr failed (%d).\n", ret); goto out_destroy_cm_id; } ret = nvme_rdma_wait_for_cm(queue); if (ret) { dev_info(ctrl->ctrl.device, "rdma_resolve_addr wait failed (%d).\n", ret); goto out_destroy_cm_id; } clear_bit(NVME_RDMA_Q_DELETING, &queue->flags); set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags); return 0; out_destroy_cm_id: nvme_rdma_destroy_queue_ib(queue); rdma_destroy_id(queue->cm_id); return ret; } static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) { rdma_disconnect(queue->cm_id); ib_drain_qp(queue->qp); } static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) { nvme_rdma_destroy_queue_ib(queue); rdma_destroy_id(queue->cm_id); } static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue) { if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags)) return; nvme_rdma_stop_queue(queue); nvme_rdma_free_queue(queue); } static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) { int i; for (i = 1; i < ctrl->queue_count; i++) nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); } static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl) { int i, ret = 0; for (i = 1; i < ctrl->queue_count; i++) { ret = nvmf_connect_io_queue(&ctrl->ctrl, i); if (ret) break; } return ret; } static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl) { int i, ret; for (i = 1; i < ctrl->queue_count; i++) { ret = nvme_rdma_init_queue(ctrl, i, ctrl->ctrl.opts->queue_size); if (ret) { dev_info(ctrl->ctrl.device, "failed to initialize i/o queue: %d\n", ret); goto out_free_queues; } } return 0; out_free_queues: for (i--; i >= 1; i--) nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); return ret; } static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl) { nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe, sizeof(struct nvme_command), DMA_TO_DEVICE); nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); blk_cleanup_queue(ctrl->ctrl.admin_q); blk_mq_free_tag_set(&ctrl->admin_tag_set); nvme_rdma_dev_put(ctrl->device); } static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) { struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); if (list_empty(&ctrl->list)) goto free_ctrl; mutex_lock(&nvme_rdma_ctrl_mutex); list_del(&ctrl->list); mutex_unlock(&nvme_rdma_ctrl_mutex); kfree(ctrl->queues); nvmf_free_options(nctrl->opts); free_ctrl: kfree(ctrl); } static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) { struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), struct nvme_rdma_ctrl, reconnect_work); bool changed; int ret; if (ctrl->queue_count > 1) { nvme_rdma_free_io_queues(ctrl); ret = blk_mq_reinit_tagset(&ctrl->tag_set); if (ret) goto requeue; } nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set); if (ret) goto requeue; ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); if (ret) goto requeue; blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true); ret = nvmf_connect_admin_queue(&ctrl->ctrl); if (ret) goto stop_admin_q; ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); if (ret) goto stop_admin_q; nvme_start_keep_alive(&ctrl->ctrl); if (ctrl->queue_count > 1) { ret = nvme_rdma_init_io_queues(ctrl); if (ret) goto stop_admin_q; ret = nvme_rdma_connect_io_queues(ctrl); if (ret) goto stop_admin_q; } changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); WARN_ON_ONCE(!changed); if (ctrl->queue_count > 1) { nvme_start_queues(&ctrl->ctrl); nvme_queue_scan(&ctrl->ctrl); nvme_queue_async_events(&ctrl->ctrl); } dev_info(ctrl->ctrl.device, "Successfully reconnected\n"); return; stop_admin_q: blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); requeue: /* Make sure we are not resetting/deleting */ if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) { dev_info(ctrl->ctrl.device, "Failed reconnect attempt, requeueing...\n"); queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, ctrl->reconnect_delay * HZ); } } static void nvme_rdma_error_recovery_work(struct work_struct *work) { struct nvme_rdma_ctrl *ctrl = container_of(work, struct nvme_rdma_ctrl, err_work); int i; nvme_stop_keep_alive(&ctrl->ctrl); for (i = 0; i < ctrl->queue_count; i++) clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags); if (ctrl->queue_count > 1) nvme_stop_queues(&ctrl->ctrl); blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); /* We must take care of fastfail/requeue all our inflight requests */ if (ctrl->queue_count > 1) blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request, &ctrl->ctrl); blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request, &ctrl->ctrl); dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n", ctrl->reconnect_delay); queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, ctrl->reconnect_delay * HZ); } static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) { if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) return; queue_work(nvme_rdma_wq, &ctrl->err_work); } static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, const char *op) { struct nvme_rdma_queue *queue = cq->cq_context; struct nvme_rdma_ctrl *ctrl = queue->ctrl; if (ctrl->ctrl.state == NVME_CTRL_LIVE) dev_info(ctrl->ctrl.device, "%s for CQE 0x%p failed with status %s (%d)\n", op, wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); nvme_rdma_error_recovery(ctrl); } static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) { if (unlikely(wc->status != IB_WC_SUCCESS)) nvme_rdma_wr_error(cq, wc, "MEMREG"); } static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) { if (unlikely(wc->status != IB_WC_SUCCESS)) nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); } static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req) { struct ib_send_wr *bad_wr; struct ib_send_wr wr = { .opcode = IB_WR_LOCAL_INV, .next = NULL, .num_sge = 0, .send_flags = 0, .ex.invalidate_rkey = req->mr->rkey, }; req->reg_cqe.done = nvme_rdma_inv_rkey_done; wr.wr_cqe = &req->reg_cqe; return ib_post_send(queue->qp, &wr, &bad_wr); } static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, struct request *rq) { struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); struct nvme_rdma_ctrl *ctrl = queue->ctrl; struct nvme_rdma_device *dev = queue->device; struct ib_device *ibdev = dev->dev; int res; if (!blk_rq_bytes(rq)) return; if (req->mr->need_inval) { res = nvme_rdma_inv_rkey(queue, req); if (res < 0) { dev_err(ctrl->ctrl.device, "Queueing INV WR for rkey %#x failed (%d)\n", req->mr->rkey, res); nvme_rdma_error_recovery(queue->ctrl); } } ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); nvme_cleanup_cmd(rq); sg_free_table_chained(&req->sg_table, true); } static int nvme_rdma_set_sg_null(struct nvme_command *c) { struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; sg->addr = 0; put_unaligned_le24(0, sg->length); put_unaligned_le32(0, sg->key); sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; return 0; } static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req, struct nvme_command *c) { struct nvme_sgl_desc *sg = &c->common.dptr.sgl; req->sge[1].addr = sg_dma_address(req->sg_table.sgl); req->sge[1].length = sg_dma_len(req->sg_table.sgl); req->sge[1].lkey = queue->device->pd->local_dma_lkey; sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; req->inline_data = true; req->num_sge++; return 0; } static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req, struct nvme_command *c) { struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; return 0; } static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, struct nvme_rdma_request *req, struct nvme_command *c, int count) { struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; int nr; nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE); if (nr < count) { if (nr < 0) return nr; return -EINVAL; } ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); req->reg_cqe.done = nvme_rdma_memreg_done; memset(&req->reg_wr, 0, sizeof(req->reg_wr)); req->reg_wr.wr.opcode = IB_WR_REG_MR; req->reg_wr.wr.wr_cqe = &req->reg_cqe; req->reg_wr.wr.num_sge = 0; req->reg_wr.mr = req->mr; req->reg_wr.key = req->mr->rkey; req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; req->mr->need_inval = true; sg->addr = cpu_to_le64(req->mr->iova); put_unaligned_le24(req->mr->length, sg->length); put_unaligned_le32(req->mr->rkey, sg->key); sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_INVALIDATE; return 0; } static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, struct request *rq, unsigned int map_len, struct nvme_command *c) { struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); struct nvme_rdma_device *dev = queue->device; struct ib_device *ibdev = dev->dev; int nents, count; int ret; req->num_sge = 1; req->inline_data = false; req->mr->need_inval = false; c->common.flags |= NVME_CMD_SGL_METABUF; if (!blk_rq_bytes(rq)) return nvme_rdma_set_sg_null(c); req->sg_table.sgl = req->first_sgl; ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments, req->sg_table.sgl); if (ret) return -ENOMEM; nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); BUG_ON(nents > rq->nr_phys_segments); req->nents = nents; count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents, rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); if (unlikely(count <= 0)) { sg_free_table_chained(&req->sg_table, true); return -EIO; } if (count == 1) { if (rq_data_dir(rq) == WRITE && map_len <= nvme_rdma_inline_data_size(queue) && nvme_rdma_queue_idx(queue)) return nvme_rdma_map_sg_inline(queue, req, c); if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) return nvme_rdma_map_sg_single(queue, req, c); } return nvme_rdma_map_sg_fr(queue, req, c, count); } static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) { if (unlikely(wc->status != IB_WC_SUCCESS)) nvme_rdma_wr_error(cq, wc, "SEND"); } static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, struct ib_send_wr *first, bool flush) { struct ib_send_wr wr, *bad_wr; int ret; sge->addr = qe->dma; sge->length = sizeof(struct nvme_command), sge->lkey = queue->device->pd->local_dma_lkey; qe->cqe.done = nvme_rdma_send_done; wr.next = NULL; wr.wr_cqe = &qe->cqe; wr.sg_list = sge; wr.num_sge = num_sge; wr.opcode = IB_WR_SEND; wr.send_flags = 0; /* * Unsignalled send completions are another giant desaster in the * IB Verbs spec: If we don't regularly post signalled sends * the send queue will fill up and only a QP reset will rescue us. * Would have been way to obvious to handle this in hardware or * at least the RDMA stack.. * * This messy and racy code sniplet is copy and pasted from the iSER * initiator, and the magic '32' comes from there as well. * * Always signal the flushes. The magic request used for the flush * sequencer is not allocated in our driver's tagset and it's * triggered to be freed by blk_cleanup_queue(). So we need to * always mark it as signaled to ensure that the "wr_cqe", which is * embeded in request's payload, is not freed when __ib_process_cq() * calls wr_cqe->done(). */ if ((++queue->sig_count % 32) == 0 || flush) wr.send_flags |= IB_SEND_SIGNALED; if (first) first->next = ≀ else first = ≀ ret = ib_post_send(queue->qp, first, &bad_wr); if (ret) { dev_err(queue->ctrl->ctrl.device, "%s failed with error code %d\n", __func__, ret); } return ret; } static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, struct nvme_rdma_qe *qe) { struct ib_recv_wr wr, *bad_wr; struct ib_sge list; int ret; list.addr = qe->dma; list.length = sizeof(struct nvme_completion); list.lkey = queue->device->pd->local_dma_lkey; qe->cqe.done = nvme_rdma_recv_done; wr.next = NULL; wr.wr_cqe = &qe->cqe; wr.sg_list = &list; wr.num_sge = 1; ret = ib_post_recv(queue->qp, &wr, &bad_wr); if (ret) { dev_err(queue->ctrl->ctrl.device, "%s failed with error code %d\n", __func__, ret); } return ret; } static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) { u32 queue_idx = nvme_rdma_queue_idx(queue); if (queue_idx == 0) return queue->ctrl->admin_tag_set.tags[queue_idx]; return queue->ctrl->tag_set.tags[queue_idx - 1]; } static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx) { struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); struct nvme_rdma_queue *queue = &ctrl->queues[0]; struct ib_device *dev = queue->device->dev; struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; struct nvme_command *cmd = sqe->data; struct ib_sge sge; int ret; if (WARN_ON_ONCE(aer_idx != 0)) return; ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); memset(cmd, 0, sizeof(*cmd)); cmd->common.opcode = nvme_admin_async_event; cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH; cmd->common.flags |= NVME_CMD_SGL_METABUF; nvme_rdma_set_sg_null(cmd); ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); WARN_ON_ONCE(ret); } static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, struct nvme_completion *cqe, struct ib_wc *wc, int tag) { struct request *rq; struct nvme_rdma_request *req; int ret = 0; rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); if (!rq) { dev_err(queue->ctrl->ctrl.device, "tag 0x%x on QP %#x not found\n", cqe->command_id, queue->qp->qp_num); nvme_rdma_error_recovery(queue->ctrl); return ret; } req = blk_mq_rq_to_pdu(rq); if (rq->tag == tag) ret = 1; if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && wc->ex.invalidate_rkey == req->mr->rkey) req->mr->need_inval = false; req->req.result = cqe->result; blk_mq_complete_request(rq, le16_to_cpu(cqe->status) >> 1); return ret; } static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) { struct nvme_rdma_qe *qe = container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); struct nvme_rdma_queue *queue = cq->cq_context; struct ib_device *ibdev = queue->device->dev; struct nvme_completion *cqe = qe->data; const size_t len = sizeof(struct nvme_completion); int ret = 0; if (unlikely(wc->status != IB_WC_SUCCESS)) { nvme_rdma_wr_error(cq, wc, "RECV"); return 0; } ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); /* * AEN requests are special as they don't time out and can * survive any kind of queue freeze and often don't respond to * aborts. We don't even bother to allocate a struct request * for them but rather special case them here. */ if (unlikely(nvme_rdma_queue_idx(queue) == 0 && cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH)) nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, &cqe->result); else ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); nvme_rdma_post_recv(queue, qe); return ret; } static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) { __nvme_rdma_recv_done(cq, wc, -1); } static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) { int ret, i; for (i = 0; i < queue->queue_size; i++) { ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); if (ret) goto out_destroy_queue_ib; } return 0; out_destroy_queue_ib: nvme_rdma_destroy_queue_ib(queue); return ret; } static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, struct rdma_cm_event *ev) { if (ev->param.conn.private_data_len) { struct nvme_rdma_cm_rej *rej = (struct nvme_rdma_cm_rej *)ev->param.conn.private_data; dev_err(queue->ctrl->ctrl.device, "Connect rejected, status %d.", le16_to_cpu(rej->sts)); /* XXX: Think of something clever to do here... */ } else { dev_err(queue->ctrl->ctrl.device, "Connect rejected, no private data.\n"); } return -ECONNRESET; } static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) { struct nvme_rdma_device *dev; int ret; dev = nvme_rdma_find_get_device(queue->cm_id); if (!dev) { dev_err(queue->cm_id->device->dma_device, "no client data found!\n"); return -ECONNREFUSED; } ret = nvme_rdma_create_queue_ib(queue, dev); if (ret) { nvme_rdma_dev_put(dev); goto out; } ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); if (ret) { dev_err(queue->ctrl->ctrl.device, "rdma_resolve_route failed (%d).\n", queue->cm_error); goto out_destroy_queue; } return 0; out_destroy_queue: nvme_rdma_destroy_queue_ib(queue); out: return ret; } static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) { struct nvme_rdma_ctrl *ctrl = queue->ctrl; struct rdma_conn_param param = { }; struct nvme_rdma_cm_req priv = { }; int ret; param.qp_num = queue->qp->qp_num; param.flow_control = 1; param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; /* maximum retry count */ param.retry_count = 7; param.rnr_retry_count = 7; param.private_data = &priv; param.private_data_len = sizeof(priv); priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); /* * set the admin queue depth to the minimum size * specified by the Fabrics standard. */ if (priv.qid == 0) { priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH); priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1); } else { /* * current interpretation of the fabrics spec * is at minimum you make hrqsize sqsize+1, or a * 1's based representation of sqsize. */ priv.hrqsize = cpu_to_le16(queue->queue_size); priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); } ret = rdma_connect(queue->cm_id, ¶m); if (ret) { dev_err(ctrl->ctrl.device, "rdma_connect failed (%d).\n", ret); goto out_destroy_queue_ib; } return 0; out_destroy_queue_ib: nvme_rdma_destroy_queue_ib(queue); return ret; } static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, struct rdma_cm_event *ev) { struct nvme_rdma_queue *queue = cm_id->context; int cm_error = 0; dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", rdma_event_msg(ev->event), ev->event, ev->status, cm_id); switch (ev->event) { case RDMA_CM_EVENT_ADDR_RESOLVED: cm_error = nvme_rdma_addr_resolved(queue); break; case RDMA_CM_EVENT_ROUTE_RESOLVED: cm_error = nvme_rdma_route_resolved(queue); break; case RDMA_CM_EVENT_ESTABLISHED: queue->cm_error = nvme_rdma_conn_established(queue); /* complete cm_done regardless of success/failure */ complete(&queue->cm_done); return 0; case RDMA_CM_EVENT_REJECTED: cm_error = nvme_rdma_conn_rejected(queue, ev); break; case RDMA_CM_EVENT_ADDR_ERROR: case RDMA_CM_EVENT_ROUTE_ERROR: case RDMA_CM_EVENT_CONNECT_ERROR: case RDMA_CM_EVENT_UNREACHABLE: dev_dbg(queue->ctrl->ctrl.device, "CM error event %d\n", ev->event); cm_error = -ECONNRESET; break; case RDMA_CM_EVENT_DISCONNECTED: case RDMA_CM_EVENT_ADDR_CHANGE: case RDMA_CM_EVENT_TIMEWAIT_EXIT: dev_dbg(queue->ctrl->ctrl.device, "disconnect received - connection closed\n"); nvme_rdma_error_recovery(queue->ctrl); break; case RDMA_CM_EVENT_DEVICE_REMOVAL: /* device removal is handled via the ib_client API */ break; default: dev_err(queue->ctrl->ctrl.device, "Unexpected RDMA CM event (%d)\n", ev->event); nvme_rdma_error_recovery(queue->ctrl); break; } if (cm_error) { queue->cm_error = cm_error; complete(&queue->cm_done); } return 0; } static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq, bool reserved) { struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); /* queue error recovery */ nvme_rdma_error_recovery(req->queue->ctrl); /* fail with DNR on cmd timeout */ rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR; return BLK_EH_HANDLED; } static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct nvme_ns *ns = hctx->queue->queuedata; struct nvme_rdma_queue *queue = hctx->driver_data; struct request *rq = bd->rq; struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); struct nvme_rdma_qe *sqe = &req->sqe; struct nvme_command *c = sqe->data; bool flush = false; struct ib_device *dev; unsigned int map_len; int ret; WARN_ON_ONCE(rq->tag < 0); dev = queue->device->dev; ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(struct nvme_command), DMA_TO_DEVICE); ret = nvme_setup_cmd(ns, rq, c); if (ret != BLK_MQ_RQ_QUEUE_OK) return ret; blk_mq_start_request(rq); map_len = nvme_map_len(rq); ret = nvme_rdma_map_data(queue, rq, map_len, c); if (ret < 0) { dev_err(queue->ctrl->ctrl.device, "Failed to map data (%d)\n", ret); nvme_cleanup_cmd(rq); goto err; } ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(struct nvme_command), DMA_TO_DEVICE); if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH) flush = true; ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); if (ret) { nvme_rdma_unmap_data(queue, rq); goto err; } return BLK_MQ_RQ_QUEUE_OK; err: return (ret == -ENOMEM || ret == -EAGAIN) ? BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR; } static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) { struct nvme_rdma_queue *queue = hctx->driver_data; struct ib_cq *cq = queue->ib_cq; struct ib_wc wc; int found = 0; ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); while (ib_poll_cq(cq, 1, &wc) > 0) { struct ib_cqe *cqe = wc.wr_cqe; if (cqe) { if (cqe->done == nvme_rdma_recv_done) found |= __nvme_rdma_recv_done(cq, &wc, tag); else cqe->done(cq, &wc); } } return found; } static void nvme_rdma_complete_rq(struct request *rq) { struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); struct nvme_rdma_queue *queue = req->queue; int error = 0; nvme_rdma_unmap_data(queue, rq); if (unlikely(rq->errors)) { if (nvme_req_needs_retry(rq, rq->errors)) { nvme_requeue_req(rq); return; } if (rq->cmd_type == REQ_TYPE_DRV_PRIV) error = rq->errors; else error = nvme_error_status(rq->errors); } blk_mq_end_request(rq, error); } static struct blk_mq_ops nvme_rdma_mq_ops = { .queue_rq = nvme_rdma_queue_rq, .complete = nvme_rdma_complete_rq, .init_request = nvme_rdma_init_request, .exit_request = nvme_rdma_exit_request, .reinit_request = nvme_rdma_reinit_request, .init_hctx = nvme_rdma_init_hctx, .poll = nvme_rdma_poll, .timeout = nvme_rdma_timeout, }; static struct blk_mq_ops nvme_rdma_admin_mq_ops = { .queue_rq = nvme_rdma_queue_rq, .complete = nvme_rdma_complete_rq, .init_request = nvme_rdma_init_admin_request, .exit_request = nvme_rdma_exit_admin_request, .reinit_request = nvme_rdma_reinit_request, .init_hctx = nvme_rdma_init_admin_hctx, .timeout = nvme_rdma_timeout, }; static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl) { int error; error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); if (error) return error; ctrl->device = ctrl->queues[0].device; /* * We need a reference on the device as long as the tag_set is alive, * as the MRs in the request structures need a valid ib_device. */ error = -EINVAL; if (!nvme_rdma_dev_get(ctrl->device)) goto out_free_queue; ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, ctrl->device->dev->attrs.max_fast_reg_page_list_len); memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops; ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH; ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */ ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) + SG_CHUNK_SIZE * sizeof(struct scatterlist); ctrl->admin_tag_set.driver_data = ctrl; ctrl->admin_tag_set.nr_hw_queues = 1; ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); if (error) goto out_put_dev; ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); if (IS_ERR(ctrl->ctrl.admin_q)) { error = PTR_ERR(ctrl->ctrl.admin_q); goto out_free_tagset; } error = nvmf_connect_admin_queue(&ctrl->ctrl); if (error) goto out_cleanup_queue; error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap); if (error) { dev_err(ctrl->ctrl.device, "prop_get NVME_REG_CAP failed\n"); goto out_cleanup_queue; } ctrl->ctrl.sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize); error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); if (error) goto out_cleanup_queue; ctrl->ctrl.max_hw_sectors = (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9); error = nvme_init_identify(&ctrl->ctrl); if (error) goto out_cleanup_queue; error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe, sizeof(struct nvme_command), DMA_TO_DEVICE); if (error) goto out_cleanup_queue; nvme_start_keep_alive(&ctrl->ctrl); return 0; out_cleanup_queue: blk_cleanup_queue(ctrl->ctrl.admin_q); out_free_tagset: /* disconnect and drain the queue before freeing the tagset */ nvme_rdma_stop_queue(&ctrl->queues[0]); blk_mq_free_tag_set(&ctrl->admin_tag_set); out_put_dev: nvme_rdma_dev_put(ctrl->device); out_free_queue: nvme_rdma_free_queue(&ctrl->queues[0]); return error; } static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl) { nvme_stop_keep_alive(&ctrl->ctrl); cancel_work_sync(&ctrl->err_work); cancel_delayed_work_sync(&ctrl->reconnect_work); if (ctrl->queue_count > 1) { nvme_stop_queues(&ctrl->ctrl); blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request, &ctrl->ctrl); nvme_rdma_free_io_queues(ctrl); } if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags)) nvme_shutdown_ctrl(&ctrl->ctrl); blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request, &ctrl->ctrl); nvme_rdma_destroy_admin_queue(ctrl); } static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) { nvme_uninit_ctrl(&ctrl->ctrl); if (shutdown) nvme_rdma_shutdown_ctrl(ctrl); if (ctrl->ctrl.tagset) { blk_cleanup_queue(ctrl->ctrl.connect_q); blk_mq_free_tag_set(&ctrl->tag_set); nvme_rdma_dev_put(ctrl->device); } nvme_put_ctrl(&ctrl->ctrl); } static void nvme_rdma_del_ctrl_work(struct work_struct *work) { struct nvme_rdma_ctrl *ctrl = container_of(work, struct nvme_rdma_ctrl, delete_work); __nvme_rdma_remove_ctrl(ctrl, true); } static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl) { if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) return -EBUSY; if (!queue_work(nvme_rdma_wq, &ctrl->delete_work)) return -EBUSY; return 0; } static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl) { struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); int ret = 0; /* * Keep a reference until all work is flushed since * __nvme_rdma_del_ctrl can free the ctrl mem */ if (!kref_get_unless_zero(&ctrl->ctrl.kref)) return -EBUSY; ret = __nvme_rdma_del_ctrl(ctrl); if (!ret) flush_work(&ctrl->delete_work); nvme_put_ctrl(&ctrl->ctrl); return ret; } static void nvme_rdma_remove_ctrl_work(struct work_struct *work) { struct nvme_rdma_ctrl *ctrl = container_of(work, struct nvme_rdma_ctrl, delete_work); __nvme_rdma_remove_ctrl(ctrl, false); } static void nvme_rdma_reset_ctrl_work(struct work_struct *work) { struct nvme_rdma_ctrl *ctrl = container_of(work, struct nvme_rdma_ctrl, reset_work); int ret; bool changed; nvme_rdma_shutdown_ctrl(ctrl); ret = nvme_rdma_configure_admin_queue(ctrl); if (ret) { /* ctrl is already shutdown, just remove the ctrl */ INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work); goto del_dead_ctrl; } if (ctrl->queue_count > 1) { ret = blk_mq_reinit_tagset(&ctrl->tag_set); if (ret) goto del_dead_ctrl; ret = nvme_rdma_init_io_queues(ctrl); if (ret) goto del_dead_ctrl; ret = nvme_rdma_connect_io_queues(ctrl); if (ret) goto del_dead_ctrl; } changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); WARN_ON_ONCE(!changed); if (ctrl->queue_count > 1) { nvme_start_queues(&ctrl->ctrl); nvme_queue_scan(&ctrl->ctrl); nvme_queue_async_events(&ctrl->ctrl); } return; del_dead_ctrl: /* Deleting this dead controller... */ dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work)); } static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl) { struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) return -EBUSY; if (!queue_work(nvme_rdma_wq, &ctrl->reset_work)) return -EBUSY; flush_work(&ctrl->reset_work); return 0; } static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { .name = "rdma", .module = THIS_MODULE, .is_fabrics = true, .reg_read32 = nvmf_reg_read32, .reg_read64 = nvmf_reg_read64, .reg_write32 = nvmf_reg_write32, .reset_ctrl = nvme_rdma_reset_ctrl, .free_ctrl = nvme_rdma_free_ctrl, .submit_async_event = nvme_rdma_submit_async_event, .delete_ctrl = nvme_rdma_del_ctrl, .get_subsysnqn = nvmf_get_subsysnqn, .get_address = nvmf_get_address, }; static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl) { struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; int ret; ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues); if (ret) return ret; ctrl->queue_count = opts->nr_io_queues + 1; if (ctrl->queue_count < 2) return 0; dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n", opts->nr_io_queues); ret = nvme_rdma_init_io_queues(ctrl); if (ret) return ret; /* * We need a reference on the device as long as the tag_set is alive, * as the MRs in the request structures need a valid ib_device. */ ret = -EINVAL; if (!nvme_rdma_dev_get(ctrl->device)) goto out_free_io_queues; memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); ctrl->tag_set.ops = &nvme_rdma_mq_ops; ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; ctrl->tag_set.reserved_tags = 1; /* fabric connect */ ctrl->tag_set.numa_node = NUMA_NO_NODE; ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) + SG_CHUNK_SIZE * sizeof(struct scatterlist); ctrl->tag_set.driver_data = ctrl; ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1; ctrl->tag_set.timeout = NVME_IO_TIMEOUT; ret = blk_mq_alloc_tag_set(&ctrl->tag_set); if (ret) goto out_put_dev; ctrl->ctrl.tagset = &ctrl->tag_set; ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); if (IS_ERR(ctrl->ctrl.connect_q)) { ret = PTR_ERR(ctrl->ctrl.connect_q); goto out_free_tag_set; } ret = nvme_rdma_connect_io_queues(ctrl); if (ret) goto out_cleanup_connect_q; return 0; out_cleanup_connect_q: blk_cleanup_queue(ctrl->ctrl.connect_q); out_free_tag_set: blk_mq_free_tag_set(&ctrl->tag_set); out_put_dev: nvme_rdma_dev_put(ctrl->device); out_free_io_queues: nvme_rdma_free_io_queues(ctrl); return ret; } static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p) { u8 *addr = (u8 *)&in_addr->sin_addr.s_addr; size_t buflen = strlen(p); /* XXX: handle IPv6 addresses */ if (buflen > INET_ADDRSTRLEN) return -EINVAL; if (in4_pton(p, buflen, addr, '\0', NULL) == 0) return -EINVAL; in_addr->sin_family = AF_INET; return 0; } static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) { struct nvme_rdma_ctrl *ctrl; int ret; bool changed; ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return ERR_PTR(-ENOMEM); ctrl->ctrl.opts = opts; INIT_LIST_HEAD(&ctrl->list); ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr); if (ret) { pr_err("malformed IP address passed: %s\n", opts->traddr); goto out_free_ctrl; } if (opts->mask & NVMF_OPT_TRSVCID) { u16 port; ret = kstrtou16(opts->trsvcid, 0, &port); if (ret) goto out_free_ctrl; ctrl->addr_in.sin_port = cpu_to_be16(port); } else { ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT); } ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 0 /* no quirks, we're perfect! */); if (ret) goto out_free_ctrl; ctrl->reconnect_delay = opts->reconnect_delay; INIT_DELAYED_WORK(&ctrl->reconnect_work, nvme_rdma_reconnect_ctrl_work); INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work); INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work); spin_lock_init(&ctrl->lock); ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ ctrl->ctrl.sqsize = opts->queue_size - 1; ctrl->ctrl.kato = opts->kato; ret = -ENOMEM; ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues), GFP_KERNEL); if (!ctrl->queues) goto out_uninit_ctrl; ret = nvme_rdma_configure_admin_queue(ctrl); if (ret) goto out_kfree_queues; /* sanity check icdoff */ if (ctrl->ctrl.icdoff) { dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); goto out_remove_admin_queue; } /* sanity check keyed sgls */ if (!(ctrl->ctrl.sgls & (1 << 20))) { dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); goto out_remove_admin_queue; } if (opts->queue_size > ctrl->ctrl.maxcmd) { /* warn if maxcmd is lower than queue_size */ dev_warn(ctrl->ctrl.device, "queue_size %zu > ctrl maxcmd %u, clamping down\n", opts->queue_size, ctrl->ctrl.maxcmd); opts->queue_size = ctrl->ctrl.maxcmd; } if (opts->queue_size > ctrl->ctrl.sqsize + 1) { /* warn if sqsize is lower than queue_size */ dev_warn(ctrl->ctrl.device, "queue_size %zu > ctrl sqsize %u, clamping down\n", opts->queue_size, ctrl->ctrl.sqsize + 1); opts->queue_size = ctrl->ctrl.sqsize + 1; } if (opts->nr_io_queues) { ret = nvme_rdma_create_io_queues(ctrl); if (ret) goto out_remove_admin_queue; } changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); WARN_ON_ONCE(!changed); dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", ctrl->ctrl.opts->subsysnqn, &ctrl->addr); kref_get(&ctrl->ctrl.kref); mutex_lock(&nvme_rdma_ctrl_mutex); list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); mutex_unlock(&nvme_rdma_ctrl_mutex); if (opts->nr_io_queues) { nvme_queue_scan(&ctrl->ctrl); nvme_queue_async_events(&ctrl->ctrl); } return &ctrl->ctrl; out_remove_admin_queue: nvme_stop_keep_alive(&ctrl->ctrl); nvme_rdma_destroy_admin_queue(ctrl); out_kfree_queues: kfree(ctrl->queues); out_uninit_ctrl: nvme_uninit_ctrl(&ctrl->ctrl); nvme_put_ctrl(&ctrl->ctrl); if (ret > 0) ret = -EIO; return ERR_PTR(ret); out_free_ctrl: kfree(ctrl); return ERR_PTR(ret); } static struct nvmf_transport_ops nvme_rdma_transport = { .name = "rdma", .required_opts = NVMF_OPT_TRADDR, .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY, .create_ctrl = nvme_rdma_create_ctrl, }; static void nvme_rdma_add_one(struct ib_device *ib_device) { } static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) { struct nvme_rdma_ctrl *ctrl; /* Delete all controllers using this device */ mutex_lock(&nvme_rdma_ctrl_mutex); list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { if (ctrl->device->dev != ib_device) continue; dev_info(ctrl->ctrl.device, "Removing ctrl: NQN \"%s\", addr %pISp\n", ctrl->ctrl.opts->subsysnqn, &ctrl->addr); __nvme_rdma_del_ctrl(ctrl); } mutex_unlock(&nvme_rdma_ctrl_mutex); flush_workqueue(nvme_rdma_wq); } static struct ib_client nvme_rdma_ib_client = { .name = "nvme_rdma", .add = nvme_rdma_add_one, .remove = nvme_rdma_remove_one }; static int __init nvme_rdma_init_module(void) { int ret; nvme_rdma_wq = create_workqueue("nvme_rdma_wq"); if (!nvme_rdma_wq) return -ENOMEM; ret = ib_register_client(&nvme_rdma_ib_client); if (ret) { destroy_workqueue(nvme_rdma_wq); return ret; } nvmf_register_transport(&nvme_rdma_transport); return 0; } static void __exit nvme_rdma_cleanup_module(void) { nvmf_unregister_transport(&nvme_rdma_transport); ib_unregister_client(&nvme_rdma_ib_client); destroy_workqueue(nvme_rdma_wq); } module_init(nvme_rdma_init_module); module_exit(nvme_rdma_cleanup_module); MODULE_LICENSE("GPL v2");